
Just Do It: Fast and Easy Mobilization of Spot Tasks in
Web-based Enterprise Applications
Uma Parthavi Moravapalle and Raghupathy Sivakumar

Georgia Institute of Technology, Atlanta, GA

ABSTRACT
In this paper, we consider the problem of mobilizing Spot Tasks,
a special category of workflows within web-based enterprise ap-
plications. Spot tasks are simple workflows that can be finished
by interacting with only one page of the application. We present
Taskr, a do-it-yourself mobilization solution that users, regardless
of their skills, can rely on to mobilize their spot tasks in a robust
fashion. Taskr uses remote computing with application refactoring
to achieve code-less mobilization and allows for flexible mobile de-
livery wherein users can execute their spot tasks through Twitter,
Email or a native mobile app. We implement a prototype of Taskr
and show through user studies that it has the potential to reduce
task burden significantly.

ACM Reference Format:
Uma Parthavi Moravapalle and Raghupathy Sivakumar Georgia Institute
of Technology, Atlanta, GA. 2018. Just Do It: Fast and Easy Mobilization
of Spot Tasks in Web-based Enterprise Applications. In Proceedings of 19th
International Workshop on Mobile Computing Systems and Applications (Hot-
Mobile’18). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3177102.3177117

1 INTRODUCTION
The adoption of mobile devices, and in particular smartphones, has
grown steadily over the last decade. Fifty-one percent of enterprise
workers today use mandated apps for their business on their phones
[2]. Seventy-seven percent of the workers rely on their personal
smartphones to perform their work [4]. One of the key drivers of
the adoption and use of smartphones is the self-perceived increase
in productivity. Employees self-reported getting an hour of time
back by relying on smartphone apps for their work. Intriguingly,
employees were relying as much on company-issued mobile apps
as they were on bring your own application apps [7].

Now consider an enterprise worker, Alice, who is a field salesper-
son. An average enterprise runs 400+ applications for its business
operations. Alice is likely to interact with many of these applica-
tions, with examples ranging from Oracle HR, SAP ERP, Microsoft

Corresponding author: Uma Parthavi Moravapalle (parthavi@gatech.edu)

This work was funded in part by National Science Foundation grants IIP-1701115,
CNS-1513884, and CNS-1319455, and the Wayne J. Holman Endowed Chair.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile’18, February 12–13, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5630-5/18/02. . . $15.00
https://doi.org/10.1145/3177102.3177117

Sharepoint, and Salesforce CRM. If Alice desires to do some of her
Salesforce tasks on her smartphone when she is away from her desk,
she currently has to be dependent on either Salesforce releasing a
mobile app or her employer building a custom mobile app that taps
into the Salesforce APIs. In both cases, not only does the mobile
app for Salesforce need to exist, but her specific task also has to
make the cut through the de-featurization process necessary for
mobilization, and has to be achievable with minimal burden within
the design of the mobile app.

Interestingly, in spite of the increasing adoption of mobility in
enterprises, studies show that over eighty percent of enterprise
mobile apps are abandoned after the first use [1]. In this context,
we identify a category of tasks called Spot Tasks, and present a
strategy wherein Alice can perform the desired mobilization herself
and without requiring any support from either the application vendor
or the enterprise.

We define spot tasks as tasks that can be accomplished by the
users interacting substantively with the desktop application only
on a single page. The interaction on that page could be in the form
of read, act, and navigate actions. Also, that specific page could
be arbitrarily anywhere within the application’s navigation tree.
While we relax these definitions in subtle ways later in the paper,
we also show how even such a constrained definition can support
a wide variety of enterprise task profiles. For example, consider a
purchase approval task on a typical SAP SRM (supplier relationship
management) application. This could require the user to login and
authenticate herself, navigate to“My Work”, navigate to “Purchase
Management”, navigate to“Requisition Approvals", see a list of
approval requests, check on those requests that need to be approved,
click on the “Approve” button, and finally logout of the application.
In this example, the first sequence of pages visited is for navigational
purposes while the purchase request review and approval are done
on a single page. Thus, we categorize such a task as a spot task.

Spot tasks are limited in capabilities, but have several critical
advantages that make them an interesting candidate for a mobi-
lization strategy. We present a mobilization solution called Taskr
to mobilize spot tasks that exploits these advantages and delivers
the following properties: (i) Configuration by doing: Taskr allows
the user to perform the mobilization herself regardless of the user’s
technical skills. All Taskr requires for the mobilization of a spot
task is for the user to be able to perform the spot task on the desktop
application; (ii) Programmatic APIfication: Once the user configures
what needs to be mobilized, Taskr programmatically creates the
necessary APIs using purely a front-end strategy1 that requires no
access to source code from the application vendor, or even special
provisions by the enterprise; (iii) Flexible mobile delivery: Since

1We elaborate later in the paper, but at a high level this involves relying on a remote-
computing based approach to create the APIs.

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

69

https://doi.org/10.1145/3177102.3177117
https://doi.org/10.1145/3177102.3177117
https://doi.org/10.1145/3177102.3177117

Figure 1: Complexity of the Salesforce desktop application

spot tasks are restricted to a single interaction page, and Taskr fur-
ther imposes limits on the amount of content and actions mobilized
on the interaction page, it allows for flexible delivery mechanisms
on the smartphone. Taskr, specifically, allows the user to consume
the mobilized tasks through Twitter (direct messaging), Email, and
a Native Mobile App.

We implement Taskr on an AWS backend and an Android fron-
tend, and conduct preliminary user experiments to evaluate its
performance. The results are promising and show that not only
does Taskr reduce the actions required to complete tasks (by over
35%) but also that users are more satisfied completing spot tasks
with Taskr compared to the desktop or the mobile browser (by over
7x). The rest of the paper is organized as follows: We define spot
tasks in Section 2 and introduce Taskr’s design in Section 3. We
then evaluate it in Section 4 and discuss related work in Section 5.
Finally, we discuss some issues with Taskr and conclude in Section
6.

2 MOBILIZATION AND SPOT TASKS
2.1 Mobilization and Defeaturization
Enterprise desktop applications are complex and allow a wide vari-
ety of business functions. These applications support a large number
of workflows - wherein each workflow represents a goal-oriented
series of actions taken by the user2. Considering the constraints of
the smartphone, it is not feasible for a mobile app to support all the
desktop workflows. Therefore, the desktop application has to be
defeaturized before it can be mobilized. For example, The Salesforce
CRM web application has over a 180K navigational workflows at a
depth of 4 levels (see Figure 1). On the other hand, in Salesforce1
mobile app (the mobile version of Salesforce CRM), there are only
48 navigational workflows at the first level (as opposed to 117 in
the desktop version).

Enterprises typically defeaturize at the following granularities:
(i) The entire web application along with all the features are retained
in the mobile app. Considering the desktop application as a large col-
lection of pages, the structure of the pages within the application is
largely maintained. This granularity is chosen when all the features
within the application are heavily used; (ii) A subset of features from
the original application, carefully chosen either by the enterprise or
the vendor, are mobilized. The features to be mobilized are chosen
based on how heavily they are used and the requirements of the
user’s job functions. With this strategy, the structure of the pages
among the application is largely maintained, while reducing the
number of features on any given page; (iii) A mobile-first approach

2For example, Salesforce has about 180K navigational workflows with just 4 naviga-
tional steps

that uses APIs provided by the application to build the mobile app
ground up. This approach can only mobilize those features that
have been exposed as APIs; (iv) A sequence of features that consti-
tute different steps of a single workflow are mobilized. In this case,
once the user starts the workflow on the mobile device, only the
features relating to this workflow are presented, thereby decreasing
the effort of finding a feature.

2.2 Spot Tasks
In this paper, we identify another potential defeaturization granu-
larity - Spot Tasks. A spot task is a simple linear workflow within
an enterprise application where-in all the user interactions are only
performed on one page of the application. However, this page can
be buried deep within the complex application and the navigational
effort required to reach that particular page may be high.

UI elements within an application page can be classified as: (i)
READ: elements that carry content that is only consumed by the
user (e.g., text content of an article); (ii) ACT: elements through
which the user writes some parameters in the web application (e.g.,
text boxes to enter values, dropdown lists, etc.); and (iii) NAV: el-
ements that progress the workflow to the next stage (e.g., links,
submit buttons, etc.); For a spot task, each stage of the workflow, ex-
cept the last stage, has only one NAV element and the final stage of
the workflow can have READ/ACT/NAV elements. In other words,
if the presence of READ, ACT, and NAV elements in a stage is de-
noted as R, A, and N, respectively, and the end of a stage is denoted
as X, the spot task can be described using a regular expression as
follows:

ST = [NX] ∗ R?A?N ?X

Note that even such a constraining definition of spot tasks still
covers a substantial number of workflows within enterprise appli-
cations. We identify 45 spot tasks within 9 enterprise applications in
Section 4. For example, checking the revenue on Salesforce, adding
a vendor on Quickbooks, and viewing the available vacation days
on Oracle Peoplesoft are all spot tasks (assuming the user is logged
in).
Spot task variations: In this paper, we further expand the defi-
nition of spot tasks to also account for workflows with fixed (non-
variable) inputs along all the stages except the last stage. The non-
variable inputs allow for the hard coding of the ACT actions needed
to reach the final screen where the user actions are performed. If the
user is required to enter a username and password before executing
a workflow, then all of the previous examples are still spot tasks
under this definition (username and password are fixed values) 3.

2.3 Mobilizing Spot Tasks
The granularities at which mobilization has traditionally been per-
formed necessitate the enterprises to invest significant resources
and employ developers with specialized skill sets. Further, the re-
sultant mobile apps are constructed in a one-size-fits-all fashion
and are unlikely to address the needs of the entire user base within
an enterprise. Thus, for many users, there will exist workflows that
the resultant mobile app (i) will not support at all; or (ii) have a
considerably increased task burden to perform.

3We provide more examples of spot tasks in Section 4

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

70

However, if there exists a mobilization solution that the users
themselves rely on to create an app that is custom built for their
workflows, these issues could indeed be addressed. The challenge
though is how to enable such configuration of the mobile app
regardless of the skills possessed by the user, and also, how the
resultant mobile app can be made user-friendly. In this paper, the
only skill that we assume from the user is the ability to perform the
workflows (to be mobilized) on the desktop. Since the user performs
the workflows on the desktop anyway, this is a reliable assumption.

The simplicity of the spot tasks allows for the design of such a
mobilization solution to be possible. Since the spot tasks have a
limited number of UI elements from within only one screen of the
application, easy configuration of the apps (and the layouts) can
be achieved, without requiring the user to have coding and design
skills. Also, the linear non-parametric nature of spot tasks allows
for the creation of robust mobile apps. Since the value of ACT and
NAV elements are fixed for spot tasks, the sequence of stages in the
workflow will always be the same. This eliminates the need for the
user to anticipate any branches that may depend on the value of
ACT/NAV elements and configure them. Furthermore, even if these
tasks are already mobilized under other granularities, the users still
might have to experience navigational burden just to perform these
simple tasks.
Scope and Goals: The scope of our work is limited to the mobiliza-
tion of spot tasks within enterprise web applications. We primarily
consider HTML/JS compatible web applications due to their domi-
nance [5]. The solution needs to support all major smartphone OSs
(Android, iOS, Microsoft). The solution also needs to be usable by
all users regardless of their skills.

3 TASKR: A DO-IT-YOURSELF APPROACH TO
SPOT TASK MOBILIZATION

In this section, we present Taskr, a framework that allows for mobi-
lization of spot tasks within enterprise applications by all users. The
Taskr infrastructure consists of three components - Taskr-recorder,
Taskr-server and Taskr-client (Figure 1). The Taskr-server is hosted
on a cloud platform. When the enterprise wants to allow DIY mo-
bilization for a particular application, it hosts the corresponding
application client (for web applications, this would mean a browser
pointing to the appropriate URL) on the infrastructure. When a
user wants to mobilize her workflows, she uses the Taskr-recorder
configuration tool to configure the mobile app simply by performing
the workflow that needs to be mobilized. The infrastructure generates
a Taskr-client mobile app (.ipa, .apk, and URL) for the user to down-
load and install onto her smartphone. When the user launches the
Taskr-client app, a computing slice is set-up on the fly to service that
specific user session. The slice automatically loads the correspond-
ing desktop application and user configuration. The infrastructure
delivers the mobile view as configured to the smartphone. The user
interacts with the Taskr-client app, and the actions are shipped to
the cloud infrastructure where they are performed on the desktop
client. In addition to the mobile app, the user can also start the spot
tasks by sending a command to the Taskr over Email, Twitter, SMS,
Slack, etc. The server replies to the user with any configured READ
elements and asks the user to send the values of the configured

Figure 2: Taskr architecture
ACT elements. The user can then reply to this message with the
ACT values. We now delve into the key design elements of Taskr.

3.1 Key Design Elements
Remote Computing with Refactoring: Taskr uses remote com-
puting [8, 17] to mobilize applications while requiring no develop-
ment and minimal deployment effort from the enterprise or the
end-user. To mobilize any given application, enterprises can host
a remote computing server and the application client on a Virtual
Machine in the cloud. The application client’s view is then streamed
to the remote computing client on the user’s smartphone. The user
interacts with the application locally on her smartphone. It is in-
deed an interesting candidate to solve the mobilization problem.
However, the key limitation of remote computing is that the entire
application is streamed to the smartphone as-is.

Taskr optimizes the remote view for the client device through
Application Refactoring, wherein the desktop application UI is dy-
namically transformed into an appropriate UI for the smartphone.
Refactoring restructures the view for the target platform without
changing the underlying application behavior via two steps - (i)
reducing the number of features available (Defeaturization) and
(ii) optimizing the application view (Transformation). The benefit
of this approach stems from the fact that the UI elements of the
desktop application can be selectively chosen and transformed into
highly optimized versions for usability on the smartphone.
Do-It-Yourself Configuration: Users of an enterprise applica-
tion best know what features are required to be present in the
mobile app, in order to perform their job functions easily. Taskr
leverages this fact and allows the users to configure defeaturiza-
tion and transformation within remote computing themselves. For
configuration, the users are only required to perform the work-
flows on the Desktop application in the presence of a configuration
tool - Taskr-recorder. This tool observes the user’s interactions with
the application to know what UI elements are necessary for the
completion of the task and defeaturizes the application to include
only these elements. The tool also allows the users to fine-tune the
configuration through an intuitive user interface.
FlexibleMobile Delivery: The result of the configuration process
is a mobile app through which the users can view all their spot tasks
and execute them. Note that a key goal of Taskr is to reduce the task
burden of performing the tasks for all users irrespective of their
skill levels. Therefore, Taskr does not restrict the users to use the
mobile app to execute the tasks. Smartphone users use certain apps
extensively throughout their day (e.g., Twitter, SMS, Email, Slack,

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

71

Messenger, etc.). Taskr leverages the users’ familiarity with these
modalities and allows them to execute their tasks within them. This
saves the user the burden of learning to use the interface of a new
mobile app - Taskr client. Taskr transforms the UI of the desktop
application to suit these usage modalities i.e. smartphone native UI
for the Taskr-client app and text blurbs for the other modalities.
Single Screen Transaction: The ideal candidates for DIY mobi-
lization are the workflows that can be performed easily with the
limited screen real estate of a smartphone. The workflows should
not only require little user interaction but also be simple enough
to be configurable by users of all skill ranges. Therefore, in order
to maintain usability while at the same time requiring minimal
intervention from the user, Taskr restricts the users to configure
only a limited number of UI elements within one spot task. In this
paper, we set the limit to 140 characters each for the total character
count of READ elements and the labels of ACT elements4.

3.2 Challenges and Design Choices
How is the configuration done? The user configures a spot task
by simply performing that particular task in the presence of Taskr-
recorder. For all the stages except the last stage of the task, the tool
automatically tracks the UI elements that are acted upon by the user
and records the action parameters - ACT elements, their values and
NAV elements. For the last stage, the tool has an interface through
which users can select any elements that may have been missed
and assign a category to them - READ/ACT/NAV. As the user is
selecting the elements, the tool records the number of characters
of READ elements and the labels of ACT elements. Once the total
number of characters in each category reaches the limit defined in
Section 3.1, the user is notified and a further selection of elements
is disabled.
How are UI elements identified reliably? If the actions per-
formed by the user on the refactored view have to be correctly
executed by the server, the UI elements involved in a workflow
need to be reliably identified among all the other elements in that
application, even when the application changes. Identification of UI
element involves extracting a set of parameters (say, the fingerprint)
unique to that element in the entire application view. Graphical
coordinates cannot be used as a fingerprint, as minor changes on
the page can easily break the element’s fingerprint. Given that web
applications are structured as a tree, called the document object
model (DOM), the position of the element from an anchor element
(nearest ancestor with an HTML attribute id) in the DOM can be
considered as a fingerprint. However, it is susceptible to failure due
to changes along the path from the anchor to the element. There-
fore Taskr, instead of statically extracting an element’s fingerprint,
observes an element’s features across multiple instances of the ap-
plication over a period of time to determine what features remain
stable and uses only these features as a fingerprint. Specifically,
the features tracked by Taskr are: (i) Tag name, (ii) All HTML tag
attributes, (iii) Path from the root node in the DOM , (iv) Path from
the nearest ancestor on the DOM with an id, (v) Path from the
nearest ancestor on the DOM with more than one children, (vi)
Graphical coordinates with respect to the top left corner of the

4This restriction is arbitrary and is imposed to allow all transactions to mostly fit
within a few text messages

page, (vii) Graphical coordinates from the nearest ancestor with
an id, and (viii) Graphical coordinates from the nearest ancestor
with more than one children. A subset of features that are the most
stable (the same in at least 80% of all instances) is then used as the
fingerprint.
How is data extraction done? Once the UI elements are identi-
fied, extracting the (i) nature of the UI element (e.g., textbox/button
etc.) and any (ii) associated context (e.g., label) is crucial so that the
user can understand and execute its function on the mobile device
as intended. This information cannot always be inferred from the
HTML source of the element. This problem is further aggravated by
the presence of complex third-party UI frameworks. For example, a
button drop-down menu from Bootstrap with source < a class=‘btn’
> would be incorrectly classified as a link (from the ‘a’ tag). There-
fore, Taskr uses a hybrid approach that not only obtains data from
the source but also from the other surrounding tags, and by taking
the user’s help where such extraction is not possible. Using tag
and attribute definitions from the HTML5 standard and from the
complex UI frameworks, a list of rules for extraction is first created
manually. For e.g., to get a label for an <input> element, the text
within that element’s tags is processed. When no text is found,
the page source is be parsed to see if a ‘label’ tag for that input is
present. At the configuration step, the extracted nature and context
are displayed to the user. Whenever extraction using rules fails, the
user is prompted to specify the nature and the context. Note that
this is tractable as it only needs to be done once for every new UI
element encountered.
Translation to a mobile view: Every UI element in the workflow
selected by the user needs to be translated into the desired usage
modality on the smartphone - native UI element for the smartphone
app client and text for email, twitter, SMS, slack, etc. Taskr uses
a translation table that maps each UI element (including the ones
from the third-party UI frameworks) to a corresponding native UI
element (for the app) and also a text version for the other modalities.
The result of the translation is presented to the user during config-
uration. When the translation table does not contain a mapping for
the selected UI element or if the result of the translation is not sat-
isfactory, the user can manually specify the translation by selecting
a type (e.g., text box, radio button, etc.) and a corresponding label.
For every new element encountered this step needs to be done only
once5.
Mobile delivery and presentation: For every workflow stage,
the translated versions of these elements have to be displayed on
the mobile screen in a manner that enables the user to finish the
task with minimal effort. Taking into account the simplicity of spot
tasks and the inherent limits on the number of characters allowed
in the final stage of the task, Taskr follows a fixed display template
for every spot task. For the mobile app modality, Taskr divides the
screen into three panes, and populates the READ elements in the
first pane, the translated versions of the ACT elements in the second
pane and two buttons ‘SUBMIT’ and ‘CANCEL’ in the final pane.
The elements are displayed in a list within the respective panes and
in the order of their selection during the configuration phase to
preserve the logical sequence of actions in the workflow. For the

5Note that, the current version of the translation table coversmost of the input elements
from HTML5 standard.

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

72

Application Workflows Application Workflows
1. Create a security group 1. View the latest salary amount
2. View service status 2. Add direct deposit account

AWS 3.View instance status Peoplesoft 3. View year to date earnings
4. View account balance 4. Get balance vacation hours
5. Create new volume 5. Update contact information
1. Get the next task deadline 1. Get Quarterly net performance
2. Create a task and assign it 2. Create a poll for followers

Sharepoint 3. Edit a wiki page Salesforce 3. Get information on the top deal
4. Sync the website 4. Create a new campaign
5. Share a project 5. Create an open lead

Figure 3: List of Worflows configured on enterprise applications

 0

 20

 40

 60

 80

 100

Mobile Desktop Taskr

%
 o

f
to

ta
l

5
4

3
2

1

Figure 4: Likert responses from
volunteers

other usage modalities, a text blurb is constructed with the text
version of the READ elements in the final stage followed by the
labels of the ACT elements (one in each line) and sent to the user. To
execute the workflow, the user can reply to this blurb with values
for the ACT elements (one in each line and in the same order).

4 EVALUATION
Prototype: We implement a proof of concept prototype of Taskr
with which users can easily mobilize spot tasks and execute them
through three different usage modalities - app, Twitter and Email
(see Figure 4).Within this prototype, the Taskr-recorder is a Javascript
browser extension for Google Chrome. The Taskr-server is written
in python and deployed in the Amazon EC2 cloud. When the user
selects a spot task, it instantiates a headless Chrome browser and
attaches a Selenium automation driver to it. Upon receiving any
user actions performed on the Taskr-client, it executes them on
the browser through selenium. For the Twitter usage modality, the
server uses Twitter Direct Messaging APIs to filter out appropriate
commands from its Twitter stream and to send responses to the
user. For the Email usage modality, the server monitors its email
mailbox for any emails with commands using Python’s imaplib.
Any response to be sent to the user is handled by smtplib. Finally,
the Taskr-client is implemented as an app for Android OS.
User Study: We mobilize spot tasks in 9 enterprise applications
using Taskr in the following categories - Learning Management Sys-
tem (Sakai [9]), Human Resources Management (Oracle Peoplesoft),
Collaboration (Sharepoint), Customer Relationship Management
(Salesforce CRM), Accounting (Quickbooks [6]), Cloud Manage-
ment (Amazon Web Services), Billing portal (A utility company
website - name anonymized), Electronic Health Record (AtlasMD)
and FleetManagement (Element Fleet).We configure fiveworkflows
from each of these applications representing typical daily usage
patterns of employees. For brevity, we only show workflows from
four of these applications in Table 3. We then start the Taskr-client
on a Google Pixel smartphone (Android 7 Nougat) and the Taskr-
server on an Ubuntu Server hosted on Amazon EC2 cloud instance.
We subsequently execute each of the workflows on the Taskr-client,
Chrome browser on the smartphone, and a Chrome browser on a
desktop. Whenever the workflow cannot be performed using the
mobile web version of the application, we load the desktop page of
the application on the mobile browser to complete the workflow.
We observed that, on an average, the workflows on Taskr-client

take 40.67% fewer actions compared to the desktop browser and
38.19% fewer actions compared to the mobile browser.

We also evaluate Taskr using subjective experiments on 15 volun-
teers6. We selected the following 5 workflows from 3 applications
- Sakai (editing a wiki page, changing permissions of a site and
adding a participant to a site), Amazon AWS (#4), and Peoplesoft
(#2). Each volunteer performed the workflows on three platforms
(Taskr client, Desktop and Mobile browser) in a random order. The
volunteers were then asked to answer 7 questions rating each of
the platforms. Each question had 5 Likert-type [13] responses from
which the user could choose one. Each option has a score corre-
sponding to it (from 1:worst to 5:best). Figure 4 shows the % of total
responses across the scores from the users in a stacked graph for
one of the questions - How satisfied are you with the application?
The responses to other questions follow similar trends. The users
consistently rated Taskr-client better than the other two platforms
for all the questions. For example, 100% of the users were satisfied
(score > 3) for Taskr. On the other hand, only 66.67% of users were
satisfied with the desktop experience and 13.33% with the mobile
experience. The desktop was rated the better in general than the
mobile, due to the user’s familiarity with the application on the
desktop.

5 RELATEDWORK
In [3, 19], the content of a website is rearranged or enlarged to
improve the readability on a small screen . [15, 16] allow users
to access web applications from mobile phones. However, these
solutions are designed for static web applications; [18] is a remote
computing solution that reduces the task burden by creating macros
for repeated tasks. However, this solution does not rely on smart-
phone native UI, and rather relies on the Desktop UI as-is and does
not defeaturize. [11, 14] create application mashups that allow users
to define a smaller subset of UI elements to be visible from a smart-
phone. However, complex image recognition is required to identify
the user intent automatically. PageTailor [10] introduces reusable
customization wherein the users can select the components of a
web page to be rendered on the smartphone. However, this is only
applicable to read content-centric web pages and not complex enter-
prise applications that require user interactions. [12] deconstructs
PC applications to graphical primitives and reconstructs them on
the mobile browser. However, it retains all features of the original

6The volunteers were mostly university students within 22-30 year age group

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

73

(a) Peoplesoft on Desktop (b) Taskr-client (c) Email
(d) Twitter

Figure 5: Taskr prototype for a test workflow on Oracle Peoplesoft
application, thereby reducing the usability when rendered on a
small screen.

6 DISCUSSION
Security: Most enterprise applications require the user to log in
(either explicitly or through a single sign-on service) before any
workflow can be executed. The requirement of log in usually does
not restrict the number of workflows that qualify as spot tasks as
the username and password can be treated as fixed parameters.
The login username and password required are required by Taskr
to execute workflows on most enterprise applications. The login
parameters constitute sensitive information and can be encrypted
and stored on the local device using services like keychain API
for iOS. When the spot task has to be executed, these parameters
can be encrypted and sent to the server using transport security
such as SSL. Alternately, this sensitive data can be stored in the
cloud isolated within enterprise network and hence be protected by
enterprise firewalls. The user can then be restricted to using Taskr
within the enterprise network. If the application server allows it,
a continuous login session can be maintained at the Taskr-server
using the stored username and password.
Evaluation: Taskr requires accurate fingerprinting of UI elements
to execute the workflow.While we discuss the fingerprint technique
used by Taskr in Section 3 and implement it in the prototype, we
do not evaluate it for correctness. We plan to investigate this in
the future. We implemented Taskr-client and server for twitter,
email and native app usage modalities. However, we only conduct
subjective tests on the native mobile app modality. We plan to
implement a few other modalities and extend the testing in the
future.
Extraction rules and Translation tables: Taskr relies on manu-
ally constructed rules for information extraction and fixed transla-
tion tables. For the prototype, we constructed these rules for most
elements defined by the HTML5 standard. However, many web
applications use elements defined by third party UI frameworks.
We plan to extend these rules for some popular UI frameworks used
by web applications.
Extension to other workflows: Taskr helps users mobilize sim-
ple workflows that can be described as spot tasks. This restriction
limits the number of workflows that can be mobilized. We plan to
relax these restrictions to include workflows that can be described

as a sequence of spot tasks, and also other general workflows in
the future.

7 CONCLUSION
In this paper, we identify a new granularity of mobilization - spot
tasks, and argue that it empowers the users to drive the mobilization
efforts themselves. We present Taskr a do-it-yourself mobilization
infrastructure and implement a prototype through which users can
mobilize spot tasks and execute them through a mobile app, Twitter
or Email. We then evaluate it with users and show its benefits.

REFERENCES
[1] 2017 trends in enterprise mobility. https://goo.gl/3M2Ruv.
[2] Employees say smartphones boost productivity by 34 percent. https://goo.gl/

PmEUys.
[3] Feed circuit. http://feedcircuit.garage.maemo.org/.
[4] Gartner survey shows that mobile device adoption in the workplace is not yet

mature. https://www.gartner.com/newsroom/id/3528217.
[5] Google trends on web platforms. https://goo.gl/qqy558.
[6] Intuit quickbooks. https://quickbooks.intuit.com/.
[7] Mobile workforce to drive further enterprise change in 2017. https://goo.gl/

uWHqGm.
[8] Remote desktop protocol. http://msdn.microsoft.com/en-us/library/aa383015(VS.

85).aspx.
[9] Sakai. https://sakaiproject.org/.
[10] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and E. de Lara. Pagetailor: Reusable

end-user customization for the mobile web. In Proceedings of the 5th International
Conference on Mobile Systems, Applications and Services, MobiSys ’07, New York,
NY, USA, 2007.

[11] F. Lamberti and A. Sanna. Extensible guis for remote application control on
mobile devices. IEEE Computer Graphics and Applications, 28(4):50–57, July 2008.

[12] H. Li, P. Li, S. Guo, X. Liao, and H. Jin. Modeap: Moving desktop application to
mobile cloud service. Mobile Networks and Applications, 19(4):563–571, 2014.

[13] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):1–55, 1932.

[14] I. Mohomed. Enabling mobile application mashups with merlion. In Proceed-
ings of the Eleventh Workshop on Mobile Computing Systems & Applications,
HotMobile ’10, New York, NY, USA, 2010.

[15] A. Moshchuk, S. D. Gribble, and H. M. Levy. Flashproxy: Transparently enabling
rich web content via remote execution. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, pages 81–93, New York,
NY, USA, 2008.

[16] J. Nichols and T. Lau. Mobilization by demonstration: Using traces to re-author
existing web sites. In Proceedings of the 13th International Conference on Intelligent
User Interfaces, IUI ’08, pages 149–158, New York, NY, USA, 2008. ACM.

[17] T. Richardson and J. Levine. The remote framebuffer protocol. 2011.
[18] C.-L. Tsao, S. Kakumanu, and R. Sivakumar. Smartvnc: An effective remote com-

puting solution for smartphones. In Proceedings of the 17th Annual International
Conference on Mobile Computing and Networking, pages 13–24, New York, NY,
USA, 2011.

[19] D. Zhang. Web content adaptation for mobile handheld devices. Commun. ACM,
50(2):75–79, Feb. 2007.

Session: Web HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

74

https://goo.gl/3M2Ruv
https://goo.gl/PmEUys
https://goo.gl/PmEUys
http://feedcircuit.garage.maemo.org/
https://www.gartner.com/newsroom/id/3528217
https://goo.gl/qqy558
https://quickbooks.intuit.com/
https://goo.gl/uWHqGm
https://goo.gl/uWHqGm
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
https://sakaiproject.org/

	Abstract
	1 Introduction
	2 Mobilization and Spot Tasks
	2.1 Mobilization and Defeaturization
	2.2 Spot Tasks
	2.3 Mobilizing Spot Tasks

	3 Taskr: A Do-it-Yourself Approach to Spot Task Mobilization
	3.1 Key Design Elements
	3.2 Challenges and Design Choices

	4 Evaluation
	5 Related Work
	6 Discussion
	7 Conclusion
	References

