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ABSTRACT
Wi-Fi is one of the key wireless technologies for the Internet of
things (IoT) owing to its ubiquity. Low-power operation of com-
mercial Wi-Fi enabled IoT modules (typically powered by replace-
able batteries) is critical in order to achieve a long battery life,
while maintaining connectivity, and thereby reduce the cost and
frequency of maintenance. In this work, we focus on commonly
used sparse periodic uplink traffic scenario in IoT. Through exten-
sive experiments with a state-of-the-art Wi-Fi enabled IoT module
(Texas Instruments SimpleLink CC3235SF), we study the perfor-
mance of the power save mechanism (PSM) in the IEEE 802.11
standard and show that the battery life of the module is limited,
while running thin uplink traffic, to ∼ 30% of its battery life on an
idle connection, even when utilizing IEEE 802.11 PSM. Focusing
on sparse uplink traffic, a prominent traffic scenario for IoT (e.g.,
periodic measurements, keep-alive mechanisms, etc.), we design a
simulation framework for single-user sparse uplink traffic on ns-3,
and develop a detailed and platform-agnostic accurate power con-
sumption model within the framework and calibrate it to CC3235SF.
Subsequently, we present five potential power optimization strate-
gies (including standard IEEE 802.11 PSM) and analyze, with sim-
ulation results, the sensitivity of power consumption to specific
network characteristics (e.g., round-trip time (RTT) and relative
timing between TCP segment transmissions and beacon receptions)
to present key insights. Finally, we propose a standard-compliant
client-side cross-layer power saving optimization algorithm that
can be implemented on client IoT modules. We show that the pro-
posed optimization algorithm extends battery life by 24%, 26%, and
31% on average for sparse TCP uplink traffic with 5 TCP segments
per second for networks with constant RTT values of 25𝑚𝑠 , 10𝑚𝑠 ,
and 5𝑚𝑠 , respectively.
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1 INTRODUCTION
Wi-Fi is fast emerging as one of the prime choices for wireless
connectivity for Internet of things (IoT), particularly for indoor and
medium-range applications (< 100 meters). Compared to other com-
peting wireless technologies (see [10] for examples), Wi-Fi features
advantages of ubiquity and standardization with backward com-
patibility, and provides toolkits to support system tradeoff between
throughput, latency, range, power, and spectral efficiency [9].

A significant proportion of IoT use cases require power saving
optimization (i.e., optimal power efficiency), particularly battery-
operated sensors with wireless communication capabilities that
are deployed over vast areas and hard-to-reach places. However,
reducing power consumption in such devices is not straightforward
since key connectivity requirements such as wireless range, latency,
and throughput depend upon the power drawn.

Power save mechanism (PSM) is the major IEEE 802.11 standard
mechanism that enables low-power operation in client devices (ex-
plained in Sec. 2.1). Such mechanisms work primarily by allowing
coordination between the access point (AP) and the IoT client to
power down the client when not in use while the AP buffers in-
coming frames, making Wi-Fi a viable candidate for low-power IoT.
Since PSM is part of the Wi-Fi Alliance (WFA) certification, com-
mercial Wi-Fi capable IoT devices often use PSM to conserve power.
As will be discussed in Sec. 2.3, there have been works on studying
the effect of PSM on power consumption, throughput, packet losses,
and latency - all at a high level. However, there is a lack of work
that uses extensive experimental analysis of a real-world device to
analyze the key components of power consumption in detail. In
addition, a majority of the works that aim at increasing the power
efficiency of Wi-Fi client devices require modifications to the Wi-Fi
standards (e.g., [12]).
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The focus of this paper is to study, analyze, and increase the
power efficiency of fully standard-compliant low-power Wi-Fi IoT
clients. Following are the key contributions:

(1) We conduct extensive experiments with a state-of-the-art
Wi-Fi enabled IoT module (Texas Instruments SimpleLink
CC3235SF) which relies on the provisions in the IEEE 802.11
standard for power saving, analyze the experimental obser-
vations, and identify the components that constitute power
consumption to present several key insights. Besides, we
show that without PSM, even for a scenario without any
data traffic, the battery life of the IoT module is as poor as
two days, and that with PSM, the battery-life is about six
months. When a scenario with thin upstream data traffic is
considered, the battery life drops down to two months.

(2) We design and enhance the ns-3 simulation framework with
a detailed and generic power consumption model taking into
account implications of sparse traffic and PSM signaling to
estimate power consumption considering specific network
characteristics (e.g., round-trip time (RTT) and traffic con-
ditions). In addition, we propose five standard-compliant
strategies for low-power operation that mitigate the impact
of sparse upstream data traffic and calibrate the power con-
sumption model to SimpleLink CC3235SF for simulating
these strategies.

(3) With the developed simulation framework, we perform de-
tailed analysis on the implications of specific network char-
acteristics (IEEE 802.11 PSM, network RTT, and frame trans-
mission time with respect to the next beacon reception) on
power consumption. In doing so, we establish several practi-
cal bounds on power consumption for a common IoT traffic
scenario - periodic uplink reporting over transmission con-
trol protocol (TCP).

(4) Based on the insights from the analysis, we design a cross-
layer power saving optimization algorithm operating within
IEEE 802.11 standards by intelligently timing uplink TCP
transmissions. With simulations, we show the efficacy of the
developed optimization in reducing power consumption.

The rest of the paper is organized as follows: Sec. 2 provides nec-
essary background information and sets up the scope along with
problem statement. Sec. 3 presents experimental results and in-
sights. The simulation framework and power consumption model
are described in Sec. 4. Sec. 5 describes power saving optimization
strategies for low-power operation and simulation results. Sec. 6
presents the optimization scheme, while Sec. 7 concludes the paper
and presents future research directions.

2 BACKGROUND AND PROBLEM
STATEMENT

2.1 IEEE 802.11 PSM
The IEEE 802.11b specification revision introduced the PSM which
allows the client device network interface to power down periodi-
cally between beacon receptions. A client device wishing to enter
the lower-power sleep state informs the AP usually through a null
frame with the Power Management bit set to 1. Upon receiving
acknowledgement (ACK) from the AP, the client enters the sleep

state, while the AP begins to buffer frames that are intended for the
specific client. The maximum duration for which the AP buffers
frames before discarding is not specified in the standard and is up
to the AP capabilities and configuration. Typically, APs are required
to buffer unicast frames till at least the arrival of the next beacon
and multicast/broadcast frames till at least the arrival of the next
delivery traffic indication message (DTIM) frame.

The AP informs the specific client of buffered unicast frames
via the traffic indication map (TIM) field in beacons. Client devices
are typically configured to receive beacons while in the sleep state.
If the corresponding association identifier (AID) bit is set as 1 in
the beacon, the client wakes up and transmits a Power-Save Poll
(PS-POLL) frame to the AP to retrieve buffered frames back-to-back
till there are no more frames before returning to the sleep state.
When using the PS-POLL mechanism to retrieve TCP ACKs, the
RTT is rounded up to the next beacon reception (represented as
⌈𝑅𝑇𝑇 ⌉𝐵𝐶𝑁 ) [12]. If a client device transmits a PS-POLL frame when
there is no buffered traffic, the AP typically transmits back a Null
frame with the More Data field set to 0. In the presence of more
than one buffered unicast frames, the More Data flag of the first
buffered frame sent from the AP to the client will be set to 1. Note
that the client device can wake up and send frames (PS-POLL or
others) to the AP at any point for communication within or outside
the wireless local area network.

2.2 IoT - Traffic Scenarios
The paradigm of IoT encompasses a wide variety of applications
with different traffic profiles. Based on the size of data transmitted
within short duration, IoT traffic can be broadly classified into
two categories, bursty traffic (e.g., surveillance camera) and lean
traffic (e.g., soil moisture sensor).

In this work, we focus on lean traffic scenarios that generate
(uplink) sparse traffic which is either periodic or triggered. Peri-
odic sparse traffic is very prominent in IoT low-cost sensing use
cases that involve periodic, sporadic, or unpredictable reporting
of measurements (temperature, moisture, CO2 levels, etc.) as small
packets of data over a period of few seconds. This also occurs in
IoT application mechanisms such as uplink TCP for application
layer keep-alive packets sent by the IoT client device periodically
to remote servers. Unpredictable triggered uplink traffic includes
applications such as smoke detectors that generate sparse traffic
when triggered by a physical event [13].

2.3 Related Work
The power efficiency of wireless devices is an area of active research,
and this section presents a brief review of related works specifically
in the context of power consumption modeling and optimization
for Wi-Fi IoT devices.

Existing works on power consumption models for wireless de-
vices such as [11], [18] and [7] focus on macroscopic lifetime esti-
mation for wireless IoT devices, simplifying device operation into
a limited set of states. In this work, we develop a detailed power
consumption model that takes into account state transitions and
power operation profiles.



Optimizing radio transmission characteristics is one way for
saving power. [8] presents a brief survey of methods using op-
timal selection of modulation and coding schemes (MCS) which
depend on the link quality and traffic requirements. Specifically
for wireless sensor networks, [19] proposes an adaptive MCS se-
lection for higher power efficiency. Power efficiency can also be
improved by optimizing circuit design, as explored in [2]. Another
way to increase battery life is by replenishing batteries through
energy harvesting. For instance, authors of [14] improve the power
efficiency by developing a novel energy harvesting front-end. More-
over, an interesting approach for low-power wireless connectivity
is wake-up radio (WUR) which uses a separate low-power radio for
connectivity maintenance [4].

There have also been works on analyzing and enhancing the
PSM in IEEE 802.11 standards. An analysis of PSM is presented in
[3], exploring the effectiveness of PSM for Wi-Fi hotspots in terms
of packet loss probability, RTT, and the number of users. A similar
study of PSM on the application throughput, packet losses, and
power consumption at the client devices is presented in [17]. In
[12], an optimal algorithm called Bounded Slowdown is developed,
which minimizes power consumption while guaranteeing that the
latency will be bounded. In [15], the authors propose PSM with
adaptive wake-up (PSM-AW) to maximize the sleep time period of
client devices while maintaining acceptable performance.

Note that the above presented works, in most cases, require
modification of Wi-Fi standards or adoption of the WFA certifi-
cation. In this work, we propose a client-side optimization that is
standard-compliant and can work with any WFA-compliant AP.

2.4 Scope and Problem Statement
The focus of this paper is the power consumption of Wi-Fi enabled
IoT client devices that can operate with commodity (consumer)
WFA certified Wi-Fi APs. Currently, state-of-the-art Wi-Fi enabled
low-power IoT modules are capable of operating within the IEEE
802.11 b/g/n standards and rely on IEEE 802.11 PSM to reduce
power consumption. In addition, we focus on single-user scenar-
ios where power consumption optimization is achieved for client
devices independently of the existence and capabilities of other
clients, considering the power efficiency performance of client-side
optimization which can fully interoperate with any WFA certi-
fied AP without modifications to IEEE 802.11 standards. Besides,
only power saving optimization strategies that do not compromise
application throughput and latency requirements are considered.
For example, beacon skipping, a technique where the client device
chooses to skip receiving beacons for periodic intervals at the cost
of increasing application latency, is beyond the scope. For the same
reason, data aggregation techniques where IoT data are buffered
at the client while the client is in low-power states are not consid-
ered. Similarly, optimizing the DTIM period to enable longer sleep
periods is not explored as it requires changes to AP configuration.

In this paper, we study the sparse uplink IoT traffic described in
Sec. 2.2 since it represents a prominent IoT use case, and address
the problem of reducing power consumption of Wi-Fi enabled IoT
clients (thereby increasing their battery life) with sparse uplink
traffic profiles through client-side optimization that is compliant
with IEEE 802.11 standards.

3 EXPERIMENTAL ANALYSIS OF A
STATE-OF-THE-ART IOT MODULE

The state-of-the-art Wi-Fi enabled low-power IoT module Sim-
pleLink CC3235SF 1 from Texas Instruments is used in this paper for
experimental analysis and for calibration of the developed power
consumption model.
3.1 Texas Instruments CC3235SF
The IoT module supports IEEE 802.11 a/b/g/n dual-band (2.4 and 5
GHz) Wi-Fi with an on-board application microcontroller (32-bit
Arm Cortex-M4) which is capable of running user applications.
This system-on-chip (SoC) architecture is optimized for low-power
wireless operation and supports wireless security features up to and
including Wi-Fi protected access 3 (WPA3). The battery-powered
module allows user applications to configure and utilize built-in
low-power profiles depending on the application requirements.

3.2 System Setup
3.2.1 Components of the Experiment
The experimental setup in Fig. 1 consists of five major components:
Wi-Fi IoT module (explained in Sec. 3.1), current measurement
module, Wi-Fi AP, TCP/UDP server (laptop), and network sniffer.
Current measurement module: The IMETER-BOOST Booster-
Pack2 housing a high-accuracy power monitor INA226 is used for
current measurement in this work with an accuracy of 5 𝜇A at a
minimum sampling interval of 0.1 𝜇s. IMETER-BOOST is connected
in series with CC3235SF using jumper wires for measurement.

Figure 1: Experimental setup

Wi-Fi AP: Netgear R75003 is a high-performance wireless router
supporting IEEE 802.11 a/b/g/n/ac in the 2.4 and 5 GHz bands that
is used as the Wi-Fi AP (AP).
TCP server: An Acer TravelMate P648 laptop running Ubuntu
Linux equipped with Qualcomm Atheros QCA6174 Wi-Fi card
supporting IEEE 802.11 a/b/g/n/ac is used as the TCP/UDP server
(Server).
Wi-Fi sniffer: A dedicated Ubuntu machine equipped with Alfa
AWUS036ACH USB Wi-Fi adapter running Wireshark in monitor
mode is used as the network sniffer (Sniffer).

3.2.2 Experimental Conditions and Metrics
The IoT module, AP, Server, and Sniffer are in the same roomwithin
10 meters of each other and with line-of-sight (LoS) connectivity
with each other. The IoT module and Server are the only devices
connected to the Wi-Fi network hosted by the AP over the 2.4 GHz
1https://www.ti.com/product/CC3235SF
2https://www.ti.com/tool/IMETER-BOOST
3https://www.netgear.com/support/product/R7500.aspx



band. The network RTT is estimated to be 4.1𝑚𝑠 on average. The
AP is configured with the DTIM period of 1 and beacon period
(𝑇𝐵𝐶𝑁 ) 102.4𝑚𝑠 . The experiments are carried out in an academic
building with multiple active Wi-Fi networks available. While the
IoT module is programmed to a specific power configuration for
specific experiments, the MCS and PHY type are chosen adaptively
based on the network conditions and traffic requirements.

For evaluation, we assume that the IoT module is powered by
a 3V battery of capacity (𝐶𝐵 ) 3000 mAh hereafter. The average
current (𝐼𝑎𝑣𝑔) is measured over an interval of 1024 ms (ten beacon
periods) unless mentioned otherwise. The expected battery life
(𝑇𝐸𝐵 ) is calculated in hours (ℎ) as

𝑇𝐸𝐵 (ℎ) = 𝐶𝐵 (𝑚𝐴ℎ)/𝐼𝑎𝑣𝑔 (𝑚𝐴) .

Another metric used is the effective network RTT (𝑅𝑇𝑇𝑒 𝑓 𝑓 ) as seen
by the IoT application. For uplink TCP traffic, we define 𝑅𝑇𝑇𝑒 𝑓 𝑓 as
the time interval between the transmission of a TCP segment and
the reception of the corresponding TCP ACK, taking into account
the effects of the evaluated scheme.

3.3 Experimental Results
3.3.1 Default Power States and Profiles
The IoT client can switch to and remain in low power modes to save
energy in appropriate scenarios. The availability of multiple power
states is common in low-power IoT clients to tailor for different
applications. Specifically, the module can be in one of the following
power states:
Shutdown is the lowest-power state. The module is powered off
and memories are not retained. The average current is negligible
and measured to be less than 5 𝜇A (1 𝜇A from datasheet).
Hibernate is the lowest-power state keeping the real time clock
(RTC) running. Device is powered off except for the hibernate logic
and memories are not retained. The module deauthenticates from
the associated Wi-Fi network before entering this state, and hence
must initiate authentication and association upon wake-up. The
average current is measured to be less than 5 𝜇A (4.5 𝜇A from
datasheet).
Low-power deep sleep (LPDS) is a sleep state where device volt-
age levels are lowered and fast clocks are off. Memories are in
retention mode (read/write not possible). The module consumes an
average current of 120 𝜇A while in this state.
Active is the operational state where both the application micro-
controller unit (MCU) and the network processor (NWP) are on
with the module always listening. When there is no active trans-
mission, the module consumes 66𝑚𝐴 on average in this state.
It is seen that, without any network activity, the battery discharges
in less than two days with the Active state while lasts for over 1000
days with the LPDS state.

3.3.2 Beacon Reception
When the module is configured in PSM, it switches to the LPDS
state between beacon receptions as shown in Fig. 2a, consuming an
average current of 0.67𝑚𝐴. For comparison, Fig. 2b shows that the
module consumes an average current of ∼66𝑚𝐴 when receiving
beacons without any transmission in the Active state. When con-
figured to only receive beacons with no traffic, the battery will last

(a) In PSM (b) In Active

(c) Power consumption percentage in PSM over one beacon period

Figure 2: Beacon reception with CC3235SF

for 2 days and 6 months in Active and PSM profiles, respectively,
highlighting the significance of PSM. According to the frame cap-
ture from the sniffer shown in Table 1, the duration of the beacon
frame (including the preamble) is 2120 𝜇𝑠 . However, as shown in
Fig. 2a, the average duration of the module not being in the LPDS
state is 4600 𝜇𝑠 . This is because the module spends time waking
up from and going back to the LPDS state before and after beacon
reception. These ramp-ups and ramp-downs happen when the mod-
ule transitions between any two states and must be accounted for
while estimating power consumption. In Fig. 2c, we observe that
32% and 51% of the energy are spent in state transitions and beacon
reception, respectively.

3.3.3 Power Usage with TCP Uplink Traffic

(a) TCP uplink transmission (TX) and ACK in PSM

(b) Power consumption percentage in PSM over one second

Figure 3: Power usage with TCP uplink traffic
TCP is generally the chosen protocol for reliable communication

over the Internet. We consider periodic uplink sparse traffic (as
described in Sec. 2.2) wherein one or more segments are sent every
specified time interval. The module is configured to send one TCP
segment with 1460 bytes of data every second to the TCP server



while taking advantage of IEEE 802.11 PSM (described in Sec. 2.1).
Fig. 3a shows the current profile of data transmission and ACK
reception with regard to 1 TCP segment. We observe the rounding
up effect of PSM on RTT as 𝑅𝑇𝑇𝑒 𝑓 𝑓 is rounded up to the next
beacon reception [12]. The average current is measured as 2.26𝑚𝐴
corresponding to a battery life of 1.84 (∼2) months.

The major components of power consumption (including sub-
components associated with the component of TCP activity) are
shown in Fig. 3b. TCP ACK reception and IEEE 802.11 ACK RX/TX
consume less than 1% of power and hence are not shown. We ob-
serve that 72% of power is consumed by TCP activity and 23% by
beacon receptions. Within the 72% of power consumed by TCP
activity, waiting for TCP ACKs accounts for 36%, while ramp-ups
to and ramp-downs from TCP activity accounts for 29%.

Key Insights: IEEE 802.11 PSM is very effective in reducing
power consumption (e.g., reducing the average current for beacon
receptions by ∼99%). We also notice the significance of transitional
power states in device power consumption with over 32% contri-
bution during beacon reception and 29% contribution during TCP
activity. With sparse uplink traffic at the rate of 1 TCP segment per
second, the battery life reduces from 6 months (without traffic) to
2 months, which shows the significance of data traffic on battery
life. Even though PSM drastically reduces power consumption, we
note its adverse effect on 𝑅𝑇𝑇𝑒 𝑓 𝑓 , which increases (∼ ⌈𝑅𝑇𝑇 ⌉𝐵𝐶𝑁 )
and therefore increases the duration over which the buffer for un-
acknowledged TCP segments needs to be powered.

4 A NOVEL SIMULATION FRAMEWORK FOR
POWER CONSUMPTION MODELING

To analyze the effect of network conditions, device behavior, and
other factors on power consumption and investigate alternative
power saving optimization strategies, we develop4 a generic but
comprehensive power consumption model to estimate the power
consumption of IoT client devices under sparse uplink TCP traffic.
The power consumptionmodel is designed to function on top of Net-
work Simulator 3 (ns-3) and is then calibrated to accurately estimate
the power consumption characteristics of SimpleLink CC3235SF.
In this section, we present the simulation platform and the power
consumption model, outline five power saving optimization strate-
gies for device operation along with simulation results, and finally
summarize several key insights.

4.1 ns-3 Setup
ns-3 is an open-source discrete-event modular network simula-
tor ([6], [16]) that provides models of data networks along with
a versatile simulation engine. The availability of models for IEEE
802.11 standards and the capability to simulate networks with a
high degree of control make ns-3 an ideal choice for simulation.
We begin by emulating the experimental setup as a topology as
shown in Fig. 4 where the configurable parameters for simulation
trials are in the boxes below network components. There are three
stationary network nodes: IoT client node (STA), Wi-Fi AP, and
TCP server (Server), which model their namesakes respectively.
The STA is served by the Wi-Fi network created by the AP with LoS

4Available at https://github.com/shyam100v/LowPowerWiFi-IoT

connectivity. Each frame (relevant to the purposes of the power con-
sumption model) originating from the AP and the STA are matched
in specification for the experiments, as shown in Table 1.

Figure 4: Network topology and configurable parameters

The AP and Server are connected via a wired full-duplex link
using the point-to-point (P2P) model with a high capacity (1000
Mbps) such that the link does not risk becoming a bottleneck. The
simulation is set up with the following configurable parameters:
TCP segment size (segmentSize) and data period (dataPeriod) to
characterize the uplink traffic profile, time instant of TCP segment
transmission (tcpTxTime), link delay of the P2P link (p2pdelay)
to vary the network RTT, and TCP delayed ACK timer (delACK-
Timer) at the TCP server. We utilize two trace files to create the
power consumption model:
ASCII Trace is a plain text file consisting of all network events
with timestamps, frame specification, and protocol information.
PHY state log of STA contains information about the STA’s PHY
state at every time instant, including Transmit (Tx), Receive (Rx),
and IDLE states.

Although ns-3 provides an energy framework to model power
consumption [18] that is compatible with its Wi-Fi PHY model,
there are three major limitations related to sparse traffic power
consumption modeling:
Absence of transitional power states: A key inference from
experiments is the significance of transitional power states (e.g.,
switching between OFF, RX, TX, and IDLE) in terms of power con-
sumption. Switching between states involves multiple-operation
transitional mechanisms such as stabilization/gating of clocks and
(de-)activation of analog components and hence consumes time
and energy. Therefore, transitional power states must be accounted
for in the power consumption model. Note that for sparse traffic
the impact of transition between states on power consumption is
significant and should not be neglected.
Limited choice of system power states: Multiple low-power
states and the ability to switch between these states are com-
mon in very low-power IoT client devices (such as SLEEP and
SLEEP_BUFFER states from Table 2). In addition, IEEE 802.11 PSM is
not implemented as a part of the Wi-Fi device and standard models.
The power consumption model should have provisions to define
system power states and to implement and model IEEE 802.11 com-
pliant power saving mechanisms.
Traffic content unawareness: Power consumption for RX and
TX states may depend upon the type of traffic. For example, beacon
reception may consume less power than TCP segment reception.
Traffic content should be factored in by the power consumption
model for defining current consumption values per component
while performing a specific operation flow. Due to the inherent
sparse nature of IoT traffic, the entropy of packet types increases
dramatically.



Packet/Frame Specification Experiment Simulation Communication direction
PHY type (rate) 802.11b (HR/DSSS)
Size (duration) 217 bytes (1928 𝜇𝑠) 147 bytes (1368 𝜇𝑠)Beacon

Preamble duration 192 𝜇𝑠
AP 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡−−−−−−−−−→ STA

PHY type (rate) 802.11n (72.2 Mbps)
Size (duration) 1554 bytes (209 𝜇𝑠) 1550 bytes (209 𝜇𝑠)TCP Data

Preamble duration 36 𝜇𝑠
STA −→ Server

PHY type (rate) 802.11n (52 Mbps) 802.11n (57.8 Mbps)
Size (duration) 94 bytes (52 𝜇𝑠) 90 bytes (50 𝜇𝑠)TCP ACK

Preamble duration 36 𝜇𝑠
AP 𝐹𝑜𝑟𝑤𝑎𝑟𝑑−−−−−−−−→ STA

PHY type (rate) 802.11g (24 Mbps)
Size (duration) 14 bytes (28 𝜇𝑠)IEEE 802.11 ACK

Preamble duration 20 𝜇𝑠
AP←→ STA

Table 1: Packet/Frame specifications

4.2 Power Consumption Model

Figure 5: Simulation platform and the IoT power consump-
tion model

We design a power consumption model to mitigate the above-
mentioned limitations and to achieve realistic power consumption
assessment for the sparse IoT traffic scenario. The IoT traffic power
consumption model is developed as a wrapper script (written in
Python) running on top of the ns-3 simulator and processes, taking
the two trace files mentioned in Sec. 4.1 according to a specified
configuration and outputting the current consumption, based on
ns-3 events, as a time series with the sample interval of 1 𝜇𝑠 .

The work flow of the IoT traffic power consumption model and
the simulation platform is shown in Fig. 5 and involves the steps
described below.
Network Event Identification: The PHY state log is used to iden-
tify the start time and the duration of all Tx and Rx states during
the time interval of interest. This information is correlated with
the ASCII trace, and the network event corresponding to each Tx
and Rx state is identified. For example, if an Rx state at a specific
time instant corresponds to a beacon frame, then the time instant
(and the corresponding duration) is tagged as BCN_RX.
State duration correction: In Table 1, the beacon duration in ex-
periments is different from that in simulation due to a difference
in the beacon size. To accurately calibrate the power consumption
model for a fair comparison with experimental results of a Wi-Fi
device, the duration of frame transmissions and receptions must
match between experiments and simulations. Thus, to enable cal-
ibration, the model allows to selectively change the duration of
states by a constant factor. In this case, all BCN_RX (beacon recep-
tion) states are inflated by a factor of 1.41 (≈ 1928/1368).

Power profile application: The power consumption model sup-
ports modeling and analysis of IEEE 802.11 standard-based power
save signaling and state transition power profiles (including PSM;
see Sec. 5.1) with provisions to activate and de-activate power sav-
ing profiles conditionally. The standard power save profile (PSM) is
also provided as an input to the model with which sate manipula-
tions will be carried out. This includes:

(1) Introduction of low-power sleep mode by replacing IDLE
states between BCN_RX states with SLEEP states.

(2) Emulation of IEEE 802.11 PSM by manipulating the time
instant of occurrence of TCP acknowledgement reception
(TCP_ACK_RX ) state to be after the next BCN_RX state. The
model accounts for average delays and the power consump-
tion impact of PS-POLL signaling mechanism.

State transition addition: With every steady power state identi-
fied based on the network events, traffic type, and the power profile,
this step accounts for the power implications of state transitions.
For any pair of states 𝑆1 and 𝑆2, the transitions are defined using
four parameters: 𝐴𝑆1→𝑆2, 𝐷𝑆1→𝑆2, 𝐴𝑆2→𝑆1, and 𝐷𝑆2→𝑆1, where
𝐴𝑆1→𝑆2 and 𝐷𝑆1→𝑆2 are the average current and duration of the
transition 𝑆1→ 𝑆2 (similarly for 𝑆2→ 𝑆1).Current value assign-
ment: With every state and state transition accounted for, the IoT
traffic power consumption model uses the sequence of states and
their corresponding duratios along with a current value to output
a time series of current values which can then be visualized and
used for further analysis.

In this paper, we focus on the optimization for continuous IoT
operation scenarios, considering only the time intervals within
which there is ongoing sparse uplink TCP traffic to explore the
power efficiency implications of TCP communication. This means
that the STA has already successfully associated with the AP and
has established a TCP connection with the server.

To align the power consumption model with a specific IoT client
hardware and software implementation, a calibration should be
conducted. Our power consumption model was calibrated (and
then validated) to match SimpleLink CC3235SF. The calibration
for the IoT traffic power consumption model was conducted by
estimating the average current of each state and the five parameters
(segmentSize, dataPeriod, tcpTxTime, p2pdelay, and delACKTimer)
described in Sec. 4.1 for state transitions. As part of calibration,
a subset of calibrated parameters for SimpleLink CC3235SF are



Figure 6: Beacon reception - model vs. experimental

Figure 7: TCP uplink traffic - model vs. experimental
shown in Tables 2 and 3. Note that SLEEP_BUFFER is the power
state when the module is waiting for beacons with unacknowledged
TCP segments in low power sleep.

Fig. 6 shows the current consumption of beacon reception from
both experimental results and the power consumption model cali-
brated to within 1% of error on average (compared to experimental
results), and highlights each state and state transition. Note that
calibration is carried out in a piece-wise fashion by matching frame
specifications and inflating beacon duration as discussed.

For the case of TCP uplink traffic, the comparison between ex-
perimental results and the calibrated power consumption model is
shown in Fig. 7 with the states (considered in the power consump-
tion model) labelled. In case of PSM, the power consumed for the
PS-POLL mechanism is accounted for in the state transition leading
up to TCP ACK reception. Similar to beacon reception, the power
consumption model is calibrated to within 1% of error.

State Average Current
SLEEP 0.12𝑚𝐴
ACTIVE 66𝑚𝐴
BCN_RX 45𝑚𝐴
TCP_TX 232𝑚𝐴
ACK_802_11_RX 50𝑚𝐴
SLEEP_BUFFER 10𝑚𝐴
Table 2: Power profile configuration - steady states

State transition Average Current Duration
SLEEP→ BCN_RX 4.5𝑚𝐴 2.6𝑚𝑠
BCN_RX→ SLEEP 12.5𝑚𝐴 0.8𝑚𝑠
SLEEP→ TCP_TX 25𝑚𝐴 23.5𝑚𝑠
TCP_TX→
SLEEP_BUFFER

36𝑚𝐴 5.5𝑚𝑠

Table 3: Power profile configuration - state transitions

5 SIMULATION RESULTS
5.1 Power Saving Optimization Strategies for

Sparse TCP Uplink Traffic
We present five IEEE 802.11-compliant client-side power saving
optimization strategies (summarized in Table 4 and depicted in Fig.
8) for uplink TCP traffic scenarios. These optimization strategies
are generic in the sense that they may be implemented on any IoT
module. The underlying motivation is that any specific module
would consist of its own set of individual power consumption char-
acteristics/states. A calibrated power consumption model can be
used to show which power optimization strategy would be optimal
with respect to the specific module’s characteristics as well as to
the network characteristics. We demonstrate this on the calibrated
power consumption model for the CC3235SF module (described in
Sec. 4.2).

Power saving optimization strategies: In all five power sav-
ing optimization strategies, the client remains in the SLEEP state
between beacon receptions in the absence of uplink TCP traf-
fic. In strategy (a) Power Save Mode (PSM), TCP ACKs are re-
trieved through the PS-POLL mechanism and the client enters
the SLEEP_BUFFER state. In the case of strategy (b) Long-Term
Sleep PSM (LTS-PSM), the client enters a lower-power SLEEP
state while waiting for TCP ACKs. Instead of sending PS-POLL
after beacon reception, the client skips the corresponding beacon
and transmits PS-POLL at a configured interval after the beacon,
taking into consideration the TCP retransmission timeout (RTO)
and the application latency requirement. The three dynamic PSM
strategies (c), (d), and (e) described below involve switching to an
Active power profile only during TCP activity and then switching
back to PSM while informing the AP accordingly. The difference is
in the state that the client enters while waiting for TCP ACKs - AC-
TIVE, SLEEP_BUFFER, and SLEEP in the cases of (c) dynamic PSM
(dPSM), (d) Low-Power dPSM (LP-dPSM), and (e) LP2-dPSM,
respectively. The calibrated power consumption model is config-
ured to emulate each of the five strategies for analysis. We also
analyze the effect of current consumption of specific power states
on average power consumption while establishing practical current
consumption bounds with regard to PSM.

5.2 Simulation and Sensitivity Analysis
The ns-3 simulation setup is configured to simulate and calculate
the average current consumed in a period of 1024𝑚𝑠 for the five
strategies described in Sec. 5.1. Let us define the time interval be-
tween the TCP segment transmission and the subsequent beacon
reception in each simulation as timeToNextBeacon. The param-
eter delAckTimer is set to 0 𝑚𝑠 , segmentSize to 1460 bytes, and
dataPeriod to 1024𝑚𝑠 . p2pDelay is varied in such a way that the
resulting network RTT varies from 0.4𝑚𝑠 to 200.4𝑚𝑠 in steps of 0.5
𝑚𝑠 . Similarly, tcpTxTime is varied between simulations in a manner
that timeToNextBeacon varies from 1𝑚𝑠 to 102𝑚𝑠 in steps of 1𝑚𝑠 .
Totally, it results in over 40,000 sample points for each strategy.
It is observed that increasing delAckTimer simply translates to an
increase in RTT. Hence, for the purpose of current estimation, we
choose to manipulate RTT only through p2pDelay.

The resulting samples of average current are plotted as a function
of RTT and timeToNextBeacon in Fig. 9 for each strategy to analyze



PSM LTS-PSM dPSM LP-dPSM LP2-dPSM
Power save profile for UL TCP traffic ✓ ✓ × × ×
Power state waiting for TCP ACK SLEEP_BUFFER SLEEP ACTIVE SLEEP_BUFFER SLEEP

𝑅𝑇𝑇𝑒 𝑓 𝑓 (latency) ∼ ⌈𝑅𝑇𝑇 ⌉𝐵𝐶𝑁 < 𝑅𝑇𝑂 , > ⌈𝑅𝑇𝑇 ⌉𝐵𝐶𝑁 𝑅𝑇𝑇 𝑅𝑇𝑇 𝑅𝑇𝑇

Table 4: Summary of five strategies for IoT TCP uplink traffic

(a) PSM (b) LTS-PSM (c) dPSM (d) LP-dPSM (e) LP2-dPSM

Legend: A: Beacon RX, B: TCP TX, C: TCP ACK RX, D: 802.11 ACK RX, E: 802.11 ACK TX, F: PS-POLL TX

Figure 8: IoT TCP uplink traffic with five strategies

(a) PSM (b) LTS-PSM (c) dPSM (d) LP-dPSM (e) LP2-dPSM

Figure 9: Average current vs. RTT and timeToNextBeacon

the sensitivity of average current to RTT and timeToNextBeacon.
We note the irregularities in average current for small values of
timeToNextBeacon and RTT, which result from the overlap of state
transitions in these cases. Similarly, we observe minor disconti-
nuities in Figs. 9d and 9e at points satisfying eq. (1) below due to
overlap of state transitions and beacon receptions. Hereafter, we
focus on the general trend of average current consumption with
respect to RTT and timeToNextBeacon.

Observations: In case of PSM, we observe a jump in average
current at points satisfying

𝑅𝑇𝑇 = (𝐾 ×𝑇𝐵𝐶𝑁 ) + 𝑡𝑖𝑚𝑒𝑇𝑜𝑁𝑒𝑥𝑡𝐵𝑒𝑎𝑐𝑜𝑛, (1)

where 𝐾 = 0, 1, 2, .... At these points, the TCP ACK arrives at the AP
just after a beacon and the AP buffers the frames till the next beacon,
while the client expends a constant current for the duration of𝑇𝐵𝐶𝑁 .
For a given timeToNextBeacon, the average current increases only at
the discontinuities described above due to the rounding up effect of
PSM. Similarly, for a given RTT, we observe that the average current
increases linearly with timeToNextBeacon and exhibits a jump at the
points where the discontinuity condition satisfies. Average current
depends upon both timeToNextBeacon and RTT in case of PSM.

The average current of LTS-PSM is observed to be independent
of both timeToNextBeacon and RTT because LTS-PSM enters the
SLEEP state while waiting for TCP ACKs and does not draw extra
current while doing so. The current consumption of dPSM and LP-
dPSM is found to be independent of timeToNextBeacon since they
switch to an Active profile for TCP traffic. In addition, dPSM and

LP-dPSM follow very similar current consumption profiles with av-
erage current increasing linearly with RTT. However, dPSM follows
a much higher slope due to the higher current drawn while waiting
for TCP ACKs. Finally, LP2-dPSM exhibits an average current that
is independent of both timeToNextBeacon and RTT since an Active
profile is used for TCP traffic and the SLEEP state is used while
waiting for TCP ACKs.

By uniformly averaging across timeToNextBeacon, we arrive at
Fig. 10 which represents the realistic case since, in general, TCP
transmissions are expected to happen at any timeToNextBeacon. We
observe that PSM is lower bounded by LP-dPSM, LP2-dPSM, and
LTS-PSM. However, we note that LP-dPSM represents a more mean-
ingful limit since it can be construed as the case when PSM enters
SLEEP_BUFFER only for RTT instead of ⌈𝑅𝑇𝑇 ⌉𝐵𝐶𝑁 . In addition, we
observe that LP-dPSM and LP2-dPSM serve as lower bounds for
dPSM as the ACTIVE current consumption approaches SLEEP and
SLEEP_BUFFER, respectively.

Optimal strategy for known RTT: For a module with the
hardware/software modifications that enable all five strategies, the
power consumption model can be used to optimally choose power
profiles depending upon network RTT conditions. For instance,
between PSM and dPSM, it is power efficient to operate with dPSM
when network RTT is < 18𝑚𝑠 . Similarly, it is power efficient to use
LP2-dPSM (or LP-dPSM) over LTS-PSM when RTT is < 10𝑚𝑠 . We
observe that LTS-PSM is the overall optimal strategy for 𝑅𝑇𝑇 >

15𝑚𝑠 (with LP2-dPSM having comparable power consumption).



Figure 10: Averaging timeToNextBeacon Figure 11: At RTT = 10𝑚𝑠 Figure 12: Normalized average current
across RTT

PSM and its relation to timeToNextBeacon: Fig. 11 shows the
average current consumption for RTT of 10𝑚𝑠 . We observe that
the average current of PSM varies between 1.85𝑚𝐴 and 2.85𝑚𝐴
depending on timeToNextBeacon while that of other strategies re-
mains relatively constant. The least current consumption occurs at
the minimum positive value of

𝑡𝑖𝑚𝑒𝑇𝑜𝑁𝑒𝑥𝑡𝐵𝑒𝑎𝑐𝑜𝑛 = 𝑅𝑇𝑇 − (𝐾 ×𝑇𝐵𝐶𝑁 ) + 𝜏, (2)

where 𝐾 = 0, 1, 2, ... and 𝜏 is a small time interval accounting for
delays in frame transmission, AP processing, etc. This is verified
in Fig. 12 which shows the plot of normalized average current
within each RTT value against timeToNextBeacon. Note that the
minimum positive value of (2) is the optimal timeToNextBeacon
value for transmitting a TCP segment.

6 CROSS-LAYER OPTIMIZATION FOR SPARSE
IOT TCP UPLINK TRAFFIC WITH PSM

The simulation results from Sec. 5 show that it is most power-
efficient to operate the IoT module in LTS-PSM and LP2-dPSM
optimization strategies because of the independence of power con-
sumption of RTT and TCP transmission timing. Compared with
PSM, LP-dPSM is favorable because of its lower average current and
independence of TCP transmission timing. However, to realize the
attractive power efficiency performance of LTS-PSM, LP-dPSM, and
LP2-dPSM, hardware/firmware changes are necessary. In addition,
the power saving using these strategies depends upon the particular
device of interest. In this section, we develop a cross-layer power
saving optimization that utilizes PSM for single-user sparse uplink
IoT TCP traffic by optimally timing TCP segment transmissions
with reference to beacons and evaluate it through simulations.

6.1 Algorithm Description
We consider an IoT client with sparse periodic uplink TCP traffic
transmitting one TCP segment at a time and focus on the case where
the time period between TCP segments 𝑇𝑑𝑎𝑡𝑎 is sufficiently long
such that there is at most one unacknowledged TCP segment at any
time instant to demonstrate and evaluate the algorithm (𝑇𝑑𝑎𝑡𝑎 >

𝑅𝑇𝑇𝑒 𝑓 𝑓 ). When we assume constant RTT network conditions, the
optimal time to transmit a TCP segment can be estimated by the
minimum positive value of (2). For this scheme, we utilize the

beacon timer (𝑡𝑖𝑚𝑒𝑟𝐵𝐶𝑁 ) which counts down from 𝑇𝐵𝐶𝑁 to zero
between beacon receptions.

Algorithm 1: Optimal sparse TCP uplink transmission
Input : 𝜇𝑅𝑇𝑇 , 𝜎𝑅𝑇𝑇 , 𝑇𝐵𝐶𝑁 , 𝑡𝑖𝑚𝑒𝑟𝐵𝐶𝑁 , Υ, 𝜒 , 𝜏

1 𝑅𝑇𝑇Υ = 𝜇𝑅𝑇𝑇 + 𝜎𝑅𝑇𝑇 ×
√
2 erf−1 (2Υ − 1)

2 while true do
3 while No TCP segment to transmit do
4 wait()

5 K = 0
6 while [𝑅𝑇𝑇Υ − (𝐾 ×𝑇𝐵𝐶𝑁 ) + 𝜏] > 0 do
7 𝐾 = 𝐾 + 1
8 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 𝑅𝑇𝑇Υ − (𝐾 − 1) ×𝑇𝐵𝐶𝑁 + 𝜏
9 if 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 < 𝑡𝑖𝑚𝑒𝑟𝐵𝐶𝑁 then
10 wait(𝑡𝑖𝑚𝑒𝑟𝐵𝐶𝑁 - 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 )
11 else
12 wait(𝑡𝑖𝑚𝑒𝑟𝐵𝐶𝑁 + 𝑇𝐵𝐶𝑁 - 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 )
13 transmit(TCP segment)
14 wait(𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 + (𝐾 − 1) ×𝑇𝐵𝐶𝑁 + 𝜒)
15 if TCP Segment Unacknowledged then
16 transmit(PS-POLL frame)

Practical considerations: While the assumption of constant
network RTT may hold true to some extent within some local area
networks, it is generally not true in the case of the Internet [1]. To
account for the variability in RTT, we assume a normal distribution:

𝑅𝑇𝑇 ∼ N(𝜇𝑅𝑇𝑇 , 𝜎2𝑅𝑇𝑇 ), (3)
where 𝜇𝑅𝑇𝑇 and 𝜎𝑅𝑇𝑇 are the mean and standard deviation of the
RTT estimated by the IoT module. The RTT model parameters may
be updated periodically or through a threshold mechanism. We
introduce a design parameter Υ ∈ [0.5, 1) to determine the Υ𝑡ℎ

percentile 𝑅𝑇𝑇 (𝑅𝑇𝑇Υ) as:

𝑅𝑇𝑇Υ = 𝜇𝑅𝑇𝑇 + 𝜎𝑅𝑇𝑇 ×
√
2 erf−1 (2Υ − 1), (4)

where erf−1 is the inverse error function (which can be approxi-
mated with techniques such as [5]). 𝑅𝑇𝑇Υ will be used to determine
the time to transmit TCP segments with a probability 1 − Υ of trans-
mitting at the time instants later than the optimal time instant that
result in the IoT module waiting an additional 𝑇𝐵𝐶𝑁 for the TCP



ACK. Υ is lower bounded by 0.5 to avoid 𝑅𝑇𝑇Υ being negative or
less than 𝜇𝑅𝑇𝑇 since 𝑅𝑇𝑇Υ=0.5 = 𝜇𝑅𝑇𝑇 .

We also consider unsuccessful beacon receptions which can pos-
sibly lead to higher 𝑅𝑇𝑇𝑒 𝑓 𝑓 . This issue can be mitigated by sending
a PS-POLL frame regardless of beacon reception, anticipating a
buffered frame at the AP (as proposed in LT-PSM). With these two
enhancements, Algorithm 1 enables the power saving mechanism
to transmit TCP segments at the optimal time instant and to trans-
mit the PS-POLL frame after 𝑅𝑇𝑇𝑒 𝑓 𝑓 + 𝜒 where 𝜒 is a short time
interval to allow the arrival of TCPACK in case of successful beacon
reception. It should be noted that the case of 𝜎𝑅𝑇𝑇 = 0 corresponds
to a constant network RTT.

6.2 Evaluation
We evaluate the proposed optimization algorithm for different 𝜇𝑅𝑇𝑇
values with 𝜏 = 1𝑚𝑠 . The metric used for evaluation is the power
saving percentage which is defined as the percentage reduction
in average current consumption when using the algorithm with
a set of parameters in comparison with the average case (TCP
transmission at random times). 𝜎𝑅𝑇𝑇 is specified as a percentage of
𝜇𝑅𝑇𝑇 . Figs. 13a and 13b show the power saving for traffic profiles
with 1 (period = 1 s) and 5 (period = 200 ms) TCP segments per
second, respectively.

We observe the general trend that with higher RTT, the power
saving percentage decreases, demonstrating the higher effective-
ness of the algorithm for smaller RTT values. Accordingly, when
𝑇𝑑𝑎𝑡𝑎 is 200 ms, the power saving percentage is 39%, 31%, 26%, and
24% as 𝜇𝑅𝑇𝑇 is <1 ms, 5 ms, 10 ms, and 25 ms, respectively, with
𝜎𝑅𝑇𝑇 = 0, which imposes the higher bound on possible power
saving using this algorithm. As the variability of RTT increases,
we observe a drop in power saving (comparing 𝜎𝑅𝑇𝑇 = 10% and
𝜎𝑅𝑇𝑇 = 25% at Υ = {0.99, 0.75}). Similarly, as Υ decreases for a
given 𝜎𝑅𝑇𝑇 , a drop in power saving is observed. This may be at-
tributed to the overestimation of 𝑅𝑇𝑇Υ at higher 𝜎𝑅𝑇𝑇 values and
lower Υ values, resulting in earlier-than-optimal transmission of
TCP segments.

(a) 1 Segment per second (b) 5 Segments per second

Figure 13: Power saving percentage vs. mean RTT

7 CONCLUSION AND FUTUREWORK
This paper focuses on the low-power operation of Wi-Fi enabled
IoT client devices for the sparse uplink traffic scenario. To that end,
we present extensive experimental results with a state-of-the-art
IoT module to draw key insights. By developing a detailed power
consumption model, we present and analyze five strategies through
simulations and finally present a cross-layer algorithm to optimize

power consumption at IoT client devices compliant with IEEE 802.11
standards that can work with any WFA certified AP.

We plan to extend this work by calibrating the power consump-
tion model to other IoT modules and analyzing the effectiveness of
the proposed power saving optimization algorithm on multi-user
scenarios. The sensitivity of the proposed optimization algorithm
to mismatch between the modeled RTT distribution parameters
and network RTT conditions is also a subject for future study.
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