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ABSTRACT

The load on wireless cellular networks is not uniformly dis-

tributed through the day, and is significantly higher dur-

ing peak periods. In this context, we present 𝑀𝐴𝑁𝑇𝐼𝑆 , a
time-shifted prefetching solution that prefetches content

during off-peak periods of network connectivity. We specifi-

cally focus on YouTube given that it represents a significant

portion of overall wireless data-usage. We make the follow-

ing contributions: first, we collect and analyze a real-life

dataset of YouTube watch history from 206 users comprised

of over 1.8 million videos spanning over a 1-year period

and present insights on a typical user’s viewing behavior;

second, we develop an accurate prediction algorithm using

a K-nearest neighbor classifier approach; third, we evalu-

ate the prefetching algorithm on two different datasets and

show that𝑀𝐴𝑁𝑇𝐼𝑆 is able to reduce the traffic during peak
periods by 34%; and finally, we develop a proof-of-concept

prototype for𝑀𝐴𝑁𝑇𝐼𝑆 and perform a user study.

CCS CONCEPTS

• Networks → Mobile networks; • Computing method-

ologies→Classification and regression trees;
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1 INTRODUCTION

Wireless spectrum is expensive. The federal communications

commission’s AWS-3 auction (in 1700MHz and 2100MHz

blocks) netted approximately $45B for 65MHz of spectrum

(at $2.71 per MHz-POP1), with AT&T being the highest bid-

der at $18.2B followed by Verizon at $10.2B. Wireless service

providers upgrade their infrastructure and add spectrum in

reaction to load characteristics on their networks. It is typi-

cal for upgrades to be triggered when there is a reasonably

sustained peak usage that exceeds 80% of capacity [1].

Several strategies can be used to address the peak load

conditions and hence defer consequent upgrades. Examples

of these strategies include reducing the load using compres-

sion and deduplication algorithms, improving the efficiency

of the communication through protocol optimization, and

disincentivizing users from imposing such peak loads by

enforcing penalties [2–4]. In this paper we consider the strat-

egy of time-shifted prefetching. Specifically, we explore the

problem of prefetching content during off-peak periods of

the cellular network2 even when such periods are substan-

tially separated from the actual usage-time. Prefetching is

not a new strategy, and has been extensively considered in

prior related work [5–7]. What is unique about the focus

of this work is the substantially time-shifted nature of the

prefetching done with the specific goal of shifting peak load

to off-peak periods.

We restrict the focus of this paper to a specific application -

𝑌𝑜𝑢𝑇𝑢𝑏𝑒 , and explore the time-shifted prefetching of videos
to the mobile device so that the videos do not have to be

1MHz passing one person.
2While our contributions can be extended to the scenario of prefetching

over “cheaper” WiFi networks, we only focus on cellular networks in this

paper.
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fetched when watched during peak periods. YouTube videos

reportedly account for 38% of a mobile user’s cellular data

usage [8]. This represents the largest share of the cellular

bandwidth usage among all applications on themobile device.

Given such a dominant portion of wireless bandwidth usage,

strategies to prefetch YouTube videos during off-peak periods

can have a meaningful impact on the overall peak usage of

the cellular network. At the same time, focusing on a single

application allows for specifically tailored efficient solutions

to be developed as we show in the rest of the paper.

Thus, the key question we answer in this paper is the

following: For a given wireless user, can YouTube videos be

prefetched during off-peak periods so that the actual cost of

fetching videos during the peak periods is reduced? The key

contributions made in the paper are summarized as:

• User dataset analysis: We collect a dataset of YouTube

watch history from 206 users. The dataset comprises of

1,798,132 videos spanning a 1-year period. We use the

dataset to study whether YouTube watch behavior is pre-

dictable, especially up to 24 hours ahead. We show that

a significant percentage of the watch behavior (> 40%) is

indeed predictable by relying on the past watch history of

that user. To overcome any biases in our collected dataset,

we also verify this conclusion using an independent dataset

collected by Park et al. [9].

• Prefetching algorithm: We design and develop a machine

learning algorithm for prefetching that is trained on a

user’s watch history and predicts the user’s likely video

watch behavior over the next 24 hours. We show that

the algorithm performs well for four different metrics:

prefetch accuracy (how many of the predictable videos

does the algorithm successfully select), prefetch efficiency

(how many of the videos prefetching are actually watched

by the user), prefetch selectivity (what is the ratio of the

number of videos selected for prefetching to the number

of videos in the candidate set), and overall accuracy (how

well the classification algorithm is able to classify videos).

• Prototype and user study: Finally, we implement the pro-

posed prefetching algorithm using a simple strategy of a

control application for the YouTube app on mobile devices.

The implementation relies on YouTube’s offline mode and

stores prefetched videos directly into YouTube’s offline

folder. We recruit 10 volunteers and evaluate the results

of MANTIS using the prototype over a 2-week period; we

show the overall performance of MANTIS and the subse-

quent reduction in peak-time YouTube traffic across the

users.We also show that the implementation is lightweight

in terms of CPU, memory, and network consumption.

The rest of the paper is organized as follows: In Section 2

we provide a primer on YouTube and its usage, show the

network load imbalance present throughout the day, discuss

the related work on prefetching, and present the problem

definition we focus on. In Section 3, we describe the YouTube

watch history dataset that we collect, associated statistics,

and the key motivational results that show that a significant

portion of YouTube’s watch behavior is indeed predictable. In

Section 4, we present the design and details of the prefetching

algorithm for YouTube and also discuss the system design

for the implementation. In Section 5, we evaluate both the

algorithm and the implementation. Finally, in Section 6, we

discuss some open research issues not addressed by this work

and in Section 7 we present our conclusions.

2 BACKGROUND & MOTIVATION
2.1 Peak vs. off-peak performance

Traffic load onmobile networks is significantly higher during

peak periods. To exemplify this, we performed a bandwidth

probe with a Google Pixel smartphone (with Android Pie)

and measured the available bandwidth (BW) over a T-Mobile

cellular network at different times during a day. The probe

was done by running a speedtest that downloads a small

file from a web server to the mobile device, and using the

download time to estimate the throughput. The speedtest

was conducted every 30 minutes on the Android device for 5

consecutive days, while the device was connected to a cellu-

lar network; Fig. 1 shows the average of the measurements

across 5 days. We observe an increase in the available BW

between 2 AM to 5 AM , and a subsequent decrease from 6

AM to 8:30 PM and a gradual increase from 8:30 PM. This

indicates that the traffic load varies through the course of

the day i.e. low available BW correspond to high traffic, and

vice-versa. Similar trends have also been shown in other

cellular traffic distribution studies [10, 11]. Using Fig. 1 as a

reference, the off-peak period is defined as 2am to 5am, and

the peak period is defined as 5am to 12am, and 12am to 2am.

There is thus potential to utilize the available bandwidth

during off-peak periods for prefetching video content.

2.2 On YouTube usage

YouTube content currently dominates mobile data traffic and

is reported to account for 38% of all mobile traffic [8]. Fur-

thermore, YouTube’s data traffic usage is the highest among

all other mobile apps. As reported by Cisco, the average

mobile data traffic consumed per smartphone per month is

2.3 GB, and the average usage for PC/tablets is 3.3 GB per

month [12]. The dominance of Youtube’s data traffic extends

to wireline platforms with Youtube accounting for 58% of the

overall downstream traffic. YouTube makes up the largest

traffic share in Europe, the Middle East, and Africa.

To further validate the data usage associatedwith YouTube,

we perform a separate study of YouTube cellular data usage,

using Amazon Mechanical Turk (a crowd-sourcing platform

which allows users to complete tasks for a fee). This effort
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collected data from 90 users across the world and was specif-

ically focused on understanding what percentage of cellular

usage was attributable to YouTube. Users in the study were

required to send in screenshots of their YouTube mobile app

usage, for 1 full month, for both cellular andWiFi data. A box-
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Figure 2: Usage over

Cellular and WiFi

networks for 90 users

plot showing the percentage of YouTube’s data consumption

while connected to a cellular network, and also while con-

nected to a WiFi network is shown in Fig. 2. We found that

on average, users watched YouTube videos while connected

to a cellular network 38% of the time. For these users, the

YouTube mobile app consumed 10.2 GB of data in a month.

2.3 Related Works

Prefetching content has extensively been used to reduce

user-perceived latency when loading web pages across the

internet [13, 14]. These strategies anticipate the content a

user is likely to consume, download the content ahead of

time, and make the content available at the time of consump-

tion. Time-shifted prefetching, as opposed to just-in-time

prefetching, requires that content be prefetched well in ad-

vance (potentially a few hours). There have been several

solutions that focus on prefetching suitable content based on

user’s prior interactions with web pages [5–7]. In this paper,

we focus on the time-shifted prefetching of YouTube videos.

Edge prefetching: To deal with heavy traffic inside core

networks, several works prefetch content at edge devices,

such as edge servers, routers andmobile devices [15]. [16] uti-

lizes edge servers to prefetch content for image recognition

applications. [17] proposes a selective data object prefetch-

ing strategy for mobile apps, and [18] performs prefetching

for social media multimedia content to mobile devices.

The motivation for prefetching video stems from one of

two reasons: 1) to reduce network usage during peak times,

and 2) to enable high video viewing QoE by prefetching

content to avoid unstable network connections.

Prefetching for load shaping: A related work with the

goal of reducing peak traffic, was presented in [19] where

the authors propose a YouTube video prefetching scheme

based only on user channel preferences. While we propose

a prefetching scheme that also considers the user channel

preferences, it is only one of the several factors affecting

prefetching. [20] proposes prefetching episodes from on-

demand television series to WiFi access points with the goal

of shifting traffic away from peak periods. While this simple

scheme works for sequential videos like television series,

the problem of prefetching shorter video content (such as

YouTube videos) is still unsolved.

Prefetching for QoE: [21] tackles the second problem of

maintaining high QoE during unstable network conditions

by proposing two prefetching algorithms; one that is based

on what the users search for, and the other on recommended

videos. Both these schemes perform just-in-time prefetching,

and consider only the current session. [22] developed CPSys,

a mobile video prefetching system that determines other

similar users and prefetches content that these users are

watching. CPSys requires a central predictor to form a user

similarity graph. However, it does not consider any of the

user’s preferences in the prediction.

2.4 Problem definition and goals

The problem we address in this paper is how to shift cellular

network load, specifically YouTube videos from peak to off-

peak periods. The following performance metrics, which are

mathematically defined in section 5, are used to evaluate the

proposed solution: (i) Prefetch Accuracy (PA) is the fraction

of watched videos that have been prefetched, over the total

number of watched videos; (ii) Prefetch Efficiency (PE) is the

fraction of watched videos among the prefetched videos; (iii)

Prefetch Selectivity (PS) is the fraction of prefetched videos

among the candidate set of videos; and (iv) Overall accuracy

(OA) is the fraction of correctly classified videos among the

entire candidate set. The goals of the proposed prefetching

solution are as follows:

• Decrease the peak-period mobile data traffic consumed by

the end-user by ensuring the prediction algorithm has a

high PA and PE, with low PS.

• Ensure that the user’s real-time video viewing experience

is not negatively impacted.

• Be light-weight, and not burden the resource-constrained

mobile device’s power and storage consumption.

3 QUANTITATIVE ANALYSIS OF
YOUTUBE USAGE

3.1 Methodology

3.1.1 Dataset collection: To collect the dataset, we rely

on Amazon Mechanical Turk (mTurk) to gather anonymized

watch history from the users [23]. The mTurk platform al-

lows a task to be posted for a fee, which in turn can be com-

pleted by users known as mTurkers. Previous studies have

shown that mTurk samples can be accurate when studying

technology use in the broader population [24]. The task we

posted required mTurkers to navigate to Google’s Takeout
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Table 1: User statistics

Attribute Mean Std Dev. Min Max

Videos/day 15.01 6.24 0 48

Categories 4.2 0.7 3 13

Playlists 1.4 5.8 0 24

Subscriptions 10.9 12.8 0 57

Table 2: Videos statistics

Attribute Mean Std Dev. Min Max

Duration (min.) 7.8 45.2 0.02 222

Views (×106) 3.2 26.9 3 560

Likes (×103) 20.6 124.3 0 30,079

Dislikes (×103) 1.4 16.9 0 9,518

Comments (×103) 1.9 13.2 0 52,639

page and download their YouTube related data. The mTurker

would then extract the archive file and select the files related

to their watch-history, playlists and subscriptions data; these

files were then anonymously uploaded via a dropbox link 3.

The archived file that is uploaded contained the following

files: watch-history.html, a JSON file for each playlist created

by the user, and subscriptions.json. The watch-history.html

file contains a list of all video titles, where the title of the

video is a hyperlink to the video URL, viewed by the mTurker,

and the associated time it was viewed. This data was col-

lected from 206 mTurkers.

3.1.2 Independently collected dataset: To further over-

come any biases in the mTurk dataset, we also show perfor-

mance results for an independently collected dataset used

by Park et al. [9]. The authors in this paper performed a

data-driven study of the view duration of YouTube videos

by collecting data from 158 users over several weeks (by

monitoring their YouTube activity via a plugin that needed

to be installed by the user). The video IDs, along with the

watch-date, appear in the dataset for each user.

3.2 Data Highlights

3.2.1 Users dataset: A high-level overview of the sta-

tistics of the per-user watch-history data is presented in

Table 1. In the collected dataset, there are 1, 798, 132 videos
watched by 206 users. The videos watched per user per day

(videos/day), the number of categories the user has watched

videos from (categories), the number of playlists the user has

created (playlists), and the number of channels the user has

subscribed to (subscriptions), is reported in the table.

3.2.2 Videos dataset: The total number of unique videos

watched by the users is 1, 116, 271 videos. Table 2 summa-
rizes the metrics associated with the videos watched by the

users. Further insights were obtained by analyzing the day

of week and time of day that videos were viewed across the

206 viewers for their entire watch-history. The percentage of

3We were advised by the IRB that IRB approval was not required as no

private or personally identifiable information was collected.

V
id

eo
s w

at
ch

ed
 (%

)

10
11
12
13
14
15
16
17

Day of Week

M Tu W Th F Sa Su

Figure 3: Percentage of

videos watched by day

across all users

V
id

eo
s w

at
ch

ed
 (%

)

1

2
3

4
5

6

Hour of Day

0 3 6 9 12 15 18 21

Figure 4: Percentage of

videos watched by hour

across all users

videos watched is shown across the days of the week in Fig.

3 and across hour of day in Fig. 4. We observe that there is a

slight increase in vieweing activity from Friday to Sunday.

The plot showing the level of viewing activity across hour of

day indicates that there is a lull period from 2 AM to 8 AM.

There is a fairly constant level of viewing for the rest of the

day (as can be seen from 12 PM to 11 PM).

3.2.3 User preferences: Additionally, with regard to

user-preferences, on average users watch 95% of their videos

from 3 of their most preferred categories. As for channel

preferences, on average, 38% of all videos watched by a user

are uploaded by their 10 most preferred channels, and 63%

are watched from their 30 most preferred channels. The pref-

erence of a user’s channel and category is indicated through

the number of videos that are watched belonging to the par-

ticular category or channel i.e. the most number of videos

watched by a user belonging to a certain channel, over their

watch-history, will be deemed as their most preferred chan-

nel; it is similarly computed for their category preference.

For playlists preference, we computed on average what per-

centage of videos are viewed by a user that belongs in user-

created playlists; we observed that less than 3% of videos

were watched from the user-created playlists. Similarly, for

user subscribed channels, it was found that around 10% of

videos watched were watched from subscribed channels.

3.3 Prefetching Strategies and Potential

Successful prefetching of YouTube videos requires the ability

to predict what videos the user is likely to watch in the future.

In order to study the feasibility of prefetching, we perform

an analysis on a dataset comprised of YouTube usage history

collected from 206 users. Note that the intent of this section

is only to show that successful prefetching has potential. We

focus on how the prefetching should be done in the next section.

3.3.1 Simple history: A simple approach for prefetch-

ingwould be to prefetch videos from the user’s watch-history

(similar to typical web-caching; YouTube currently does not

employ such a cache on the mobile device). Such an ap-

proach would work if there is repetition in the user’s watch

behavior. In other words, how often does a user watch the
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same video again? To explore the feasibility of this approach,
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for each user in the dataset, we compute the percentage of

videos that are watched more than once by the user. The

summary of the repeated viewings is shown as a box-plot

in Fig. 5. We also calculate the time difference between sub-

sequent watches of the same video. We find that, on av-

erage, 13% of videos are re-watched by the user, and the

time difference between subsequent watches is on average

3.2 months, ranging from 1 minute to 0.8 years. Based on

this preliminary analysis, the following can be concluded:

The potential for effective prefetching of videos simply based

on what a user has previously watched is low, with only 13%

of videos being re-watched on average.

3.3.2 Collaborative filtering: Another approach for time-

shifted pre-fetching is to use collaborative filtering in a time-

shifted manner. In other words, we explore if there are pat-

terns in the watch-behavior of different users. If users have

similar watch patterns, what one user watches could be used

to inform the prefetching decision of the other matching

users. We call these users that have similar watch-patterns

as user clones. If two users who are clones are in different time-

zones (eg. GMT and PST) we can predict what the user in the

PST zone will watch based on what has been watched by the

user in the GMT zone. To find these user clones, we compute

a watch-profile similarity score across the 206 users, where

for every user, this score is computed as the percentage of

its videos the user has in common with every other user.

Across the 206 users, we found that the highest similarity

score was 26.2% between any two users; the median similar-

ity score across all users was only 7.6%. This is shown in Fig. 6.

Due to the low similarity of videos watched across users,

there is minimal scope for utilizing the watch-behavior of

other users for prediction in a time-shifted manner.

3.3.3 Recommended Videos: YouTube’s recommenda-

tion engine uses sophisticated algorithms to understand user

preferences and suggest videos that the user is likely towatch.

YouTube’s recommendation engine consists of two neural

networks that are the candidate generation network and the

ranking network. The candidate generation network takes

into account the users’ watch-history and applies collabora-

tive filtering to obtain videos, and then the ranking network

prioritizes and suggests these videos using live A/B testing,

to the user. Due to the recommendation engine being depen-

dent on the user’s live actions and the prioritization of fresh

and popular content, there is no simple approach to obtain

the recommended videos set for a user.

To emulate the recommendation engine’s behavior for a

user, we create a test YouTube account (account that had

no prior watch-history) and programmatically re-played the

user’s watch-history between June 2016 and May 2017 (for

the full video length). Using this account populated with

the user’s history for the past year, we compute, for every

video watched between June 2017 and May 2018, the frac-

tion of future videos watched by the user that was in the

set of recommended videos shown on the right pane of the

video that is currently being watched on the YouTube web-

site (39 recommended videos were scraped for each video

that was being replayed during the testing). It is important

to note that these recommended videos will not be an exact

match of what the user would have seen since the recommen-

dation engine will include videos that have been uploaded

to YouTube recently but were not available when the user

watched the videos in the history. However, despite these

differences, we see that across 10 randomly selected users, a

relatively large fraction, 67%, of their future video watches

have previously appeared as a recommendation. This is con-

sistent with other reports that approximately 70% of YouTube

views are driven by YouTube’s recommendation system [25].

Using recommended videos as the candidate set from which

to prefetch videos is a promising solution. Approximately

70% of a user’s watch behavior is represented by the videos

suggested in the recommended set of videos.

4 THE MANTIS PREFETCHING
SOLUTION

4.1 Overview

In the previous section, we established that the recommended

videos based on the user’s watch-history is a promising can-

didate set for a prefetching algorithm to operate on. That

is, videos that are likely to be watched by the user in the

future, can be determined from the recommended videos of

videos the user has previously seen. However, several funda-

mental challenges need to be addressed by the prefetching

algorithm. One of the key challenges is that even with the

focus on recommended videos, the size of the candidate set

is likely to be large enough to prohibit prefetching the entire

set.With this core insight, we propose an intelligent prefetching

algorithm,MANTIS, that accurately predicts videos a user will

watch from her candidate videos set, while ensuring an accept-

able prefetching efficiency. In the proceeding sections, we
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present MANTIS in three stages: 1) generating the candidate

set, 2) selecting features for the algorithm and 3) designing

the classifier. We also present the system design forMANTIS.

4.2 Candidate Set Generation

When the candidate set of videos is populated by all the

recommended videos of videos the user has previously seen

(over the past year), we found that 67% of their future watch

behavior is predictable. For the average user that watches

15 videos per day, the size of the candidate set increases by

585 videos for each day in the past we use to populate the

candidate set; it is thus infeasible and inefficient to prefetch

the full candidate set. We thus need to be able to intelligently

select videos to prefetch, and for this, being able to accu-

rately capture the user’s viewing patterns and preferences

regarding the videos they have watched from the candidate

set is imperative. As YouTube’s recommendation engine can-

not exactly be emulated (owing largely to live A/B testing),

we cannot obtain precise results regarding which of the rec-

ommended videos were watched by the user. As a result, a

major caveat with utilizing the recommended videos set is

that the classifier cannot operate until the training period

is complete i.e. we cannot use the user’s past watch-history

to understand their interaction with the recommendation

engine, but would instead need to monitor their behavior for

the entire training period. To address the issue, we explore

an alternative set of videos for the candidate set, which can

act as a close proxy for the recommended videos set.

4.2.1 Related Videos as the candidate set: YouTube

algorithmically determines videos that are related to one

another using the video’s meta-data, and also collaborative

filteringmethods- these videos are used as input to YouTube’s

recommendation engine’s candidate generation network.

The related videos are independent of the particular user

and their watch history. We thus explore utilizing related

videos as the set of videos from which to prefetch, and use

YouTube API’s relatedToVideoId endpoint to retrieve a list of

videos which is related to a particular video.

For a particular user, we fetch 50 related videos of every

video that has been watched by the user, and then see if any

of the related videos were watched later. We perform this

analysis for all the users in our collected data set for their 1

year of watch-history, and found that 59% (with a standard

deviation of 16%) of all videos watched by the user were in

the related videos set. To see if the related videos set can

serve as an effective proxy of the recommended videos set,

we perform a similar analysis for the videos that are shown

as recommended videos to a currently watched video. We

see that the percentage of videos watched from the recom-

mended videos, for 10 randomly selected users, is on average

only 4% higher than the percentage of videos watched from

the related videos set, as shown in Fig. 7. Thus the related

videos can act as a close proxy to the recommended videos

set, while avoiding the idle training period that would be

required when utilizing the recommended videos as the can-

didate set.
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4.2.2 Candidate set generation period. MANTIS gen-

erates the candidate set by adding 50 videos that are related

to videos previously watched by the user over a certain fixed

period in the past; we term this period as the candidate set

generation period. To determine the optimal generation period

for the candidate set, for each day of the user’s watch history,

we compute the fraction of videos that are watched that day

which appear in the candidate set (hit ratio) generated over

varying generation periods. Figure 8 shows the average hit

ratio for 206 users, over their entire watch-history, while

varying the generation period from 1 day to 4 weeks. The

hit ratio increases from 0.19 to 0.41, when the generation

period is increased from 1 day to 2 weeks. Increasing the

generation period to more than 2 weeks only exhibits a slight

increase on the hit ratio, but considerably impacts the size

of the candidate set. Thus, the generation period is set to 2

weeks for MANTIS.

4.3 Feature Design

For the average user who watches 15 videos every day,MAN-

TIS needs to be able to accurately identify 15 videos the user

is likely to watch the next day from 10,500 potentially dis-

tinct videos (from the related videos the user has watched

over the last 2 weeks). To obtain this precision, being able

to effectively encapsulate the user’s viewing behavior is per-

tinent. Thus the features that are used for the classification

algorithm are of great significance.

4.3.1 Feature selection: The features that we select,

which are associated with every video in the candidate set,

are shown in Table 3. The features are selected to capture

the user’s preferences (retrieval date, channel ID, category

ID, subscribed, repeats, playlist, and tags) and also features

that are associated with the inherent nature of the video

(time-difference, views, likes, dislikes, comments, subscribers,

uploads, and duration).
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Table 3: Features description
Feature Description

Retrieval

date

Date of when the video from which the related

videos are obtained, was watched

Time differ-

ence

Time difference between video upload date and

prefetching day

Views No. of views of video

Likes No. of likes of video

Dislikes No. of dislikes of video

Comments No. of comments of video

Channel ID ID of the channel which uploaded video

Category ID ID of the category of video

Subscribers No. of subscribers video’s channel

Uploads No. of videos uploaded by video’s channel

Subscribed A boolean flag that is set if the user has sub-

scribed to the video’s channel

Repeats No. of times the video has been viewed

Duration Duration of the video

Playlist A boolean flag that is set if the video appears in

a user’s created playlists

Tags Tags associated with the video
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Figure 9: Correlation Matrix

4.3.2 Dimensionality reduction: For the numeric fea-

tures, the Pearson’s correlation coefficient, is computed be-

tween each feature pair. Figure 9 shows the Pearson corre-

lation matrix containing correlations between every pair of

features from Table 3. The coefficients shown are averaged

across the watch history of 206 users, made up of 1,116,271

unique videos. We can observe from the correlation matrix

that there is a strong relationship between four features for

a video - the number of views, likes, dislikes and number

of comments. This demonstrates that there is considerable

redundancy present in the features.

Given that there is a sizeable amount of data to be consid-

ered for accurate prediction of videos a user maywatch in the

future, utilizing all the features is computationally expensive.

MANTIS eliminates this redundancy with the application

of principal component analysis (PCA) [26]. PCA is a sta-

tistical technique that uses an orthogonal transformation

to convert a set of features into a set of linearly uncorre-

lated variables called principal components. The principal

components are computed in such a way, that the greatest

variance by some projection of the original features, lies on

the first coordinate (called the first principal component),

the second greatest variance on the second coordinate, and

so forth. The details of the algorithm can be found in [26].

Fig. 10 shows the cumulative variance contributed by each

of the components for the 1,116,271 videos. We can observe

that approximately 95% of the variance is captured within

the first 11 principal components. We can thus reduce the

number of dimensions from 15 to 11, thereby reducing the

computational complexity associated with large datasets,

while still capturing significant variance within the dataset.

The 11 principal components containing 95% of the variance

are used by MANTIS to classify which videos to prefetch.

Figure 10: Cumulative Variance PCA

4.4 Classifier Design

There are two facets to MANTIS’s classification algorithm:

training, and prediction. These are described as follows:

Training: MANTIS’s training algorithm involves populat-

ing the training set which will be used during the prediction

phase, and is shown as Algorithm 1. For each user in the

mTurk dataset, and for each day in the training period, the

following steps are performed:

1) Populate candidate set: A list of related videos of all videos

watched in the candidate set generation period, is obtained

through the appropriate YouTube API call (line 8). The meta-

data for each related video is fetched, either from the videos

database (which stores the video’s metadata, line 11) or

through the appropriate YouTube API call (line 13).

2) Prune candidate set: These videos are further filtered to

reduce the candidate set by only selecting videos within the

user’s preferred channels and category (line 15). This is mo-

tivated by the insight that (see section 3.2) users watch 95%

of their videos from their 3 most preferred categories, and

63% of the videos from their 30 most preferred channels.

3) Set classification attribute: Once the candidate set has been

populated for the generation period, a class attribute for the

video, that indicates whether this video was indeed watched

by the user on the day, is set to chosen if it is found in the

candidate set, otherwise it remains as discarded (lines 23-25).
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This set is then added to the training data for the classifier

(line 27). Once the training data has been obtained, PCA is

applied (line 29), and this data is loaded into the classifier

(line 30), after which the prediction will commence.

Algorithm 1: Prefetching training algorithm

1 INPUT: videos DB; preferred channels and categories

per user; training_period; generation_period

2 OUTPUT: trained classifier

3 PROCEDURE

4 for each day in training period

5 generation_period_start← day - generation_period

6 past_videos← videos watched

(generation_period_start to day)

7 for each video in past_videos

8 related_video_list← relatedToVideo(video)

9 for each rv in related_video_list

10 if rv is in videos DB

11 metadata← corresponding videos DB entry

12 else

13 metadata← videos_list_by_id(rv)

14 Add metadata to videos DB

15 end if

16 if rv’s channel or category is preferred

17 Add rv metadata to candidate set

18 end if

19 end for

20 end for

21 current_videos← videos watched on day

22 Set class to discarded for all videos in candidate set

23 for each video in cadidate set

24 if video in current_videos

25 class ← chosen

26 end if

27 end for

28 Add candidate set to training data for classifier

29 end for

30 Apply PCA to training data

31 Load training data into classifier

Prediction: For each prefetch day, MANTIS aims to pre-

dict what the user is likely to watch that day. It performs

this prediction by populating the candidate set over the gen-

eration period, as was done during the training phase (lines

8 to 13), and then prunes this candidate set (line 15). The

classifier intelligently selects, from this candidate set, the

videos that will be watched by the user.
4.4.1 Classifier selection: Once the candidate set has

been populated,MANTIS’s classifierwill predict which videos

from the candidate set will likely be watched by the user

on a particular day. From the data highlights, we found that

users tend to watch videos that are similar in nature (for

example, 95% of all videos watched by a user was from 3 of

their most preferred categories); a classifier that we hypoth-

esize will be well suited for data is the k-nearest neighbor

classifier (KNN). KNN is a supervised neighbors-based learn-

ing method that predicts the label for a sample based on the

labels of a predefined number of training samples (𝐾 ) closest
in Euclidean distance to the sample to be classified [27]. It

then assigns a class (chosen or discarded) to the video based

on the majority of classes present in the closest K points. As

the KNN classifier directly classifies data samples based on

feature similarity, it applies well to the prefetching problem.

To validate our hypothesis regarding the choice of the

classifier, we implement the aforementioned training and

prediction (after feature scaling), and using KNN (for the

default value of K=3) and compare it to 3 other popular

machine learning algorithms: Gaussian Naive Bayes (GNB),

linear support vector machine (SVM) and also random forests

(RF). 10-fold cross-validation is applied where the models are

trained on 90% of the data, and is tested on the remaining 10%;

we compute the classifier accuracy (how accurately it is able

to correctly predict which videos from the candidate set are

watched) and the area-under-curve (AUC) score (see Table

4). The AUC score provides an aggregate measure of how

well the classifier can distinguish between the 2 different

classes, and is especially useful for classifiers that are trained

on an imbalanced dataset, such as is characteristic with this

problem (there are significantly more videos that are not

watched from the candidate set than are watched) [28].

Table 4: Classifier comparison results

KNN GNB SVM RF

Accuracy (%) 77.6 38.1 57.6 69.1

AUC (%) 84.1 42.6 64.5 78.2

It can be seen that the KNN classifier does indeed perform

better than the other methods (with the AUC score being

41.5%, 19.6% and, 5.9% higher than GNB, SVM and also RF

respectively); for proceeding results, we thus utilize KNN as

the classifier for MANTIS.

4.4.2 Classifier parameter tuning: There are two im-

portant parameters for the KNN classier, namely the value

of K, the number of neighbors in the KNN algorithm, and

also the training period. The effect of varying the number

of neighbors used by the classifier (averaged across 10-fold

cross-validation), is shown in Fig. 11; the optimal value for

K is found to be 5. Training the classifier on the user’s en-

tire watch-history data can result in over-fitting and may

be computationally inefficient. Furthermore, we will not be

able to take into account the temporal variance of the data
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across 206 users

i.e. the way the user’s viewing behavior changes over time.

We thus evaluate the classifier when the training period is

selected as the period immediately preceding the test period.

To determine the optimal training period, we utilize the 30

most recent viewing days in their watch-history and vary

the value of the training period (see Fig. 12). It can be seen

that the classifier performance peaks at a training period of

approximately 90 days, after which there is a slight decrease.

We thus set the training period to be 90 days.

4.5 System design

In this subsection, we present a system architecture, as well

as the design for a prototype for MANTIS. The architecture

presented here requires the user to download and install

a prefetching app. In Section 6, we discuss an alternative

architecture that does not require user involvement.

4.5.1 Architecture: The architecture consists of aMAN-

TIS server and aMANTIS client, with the server residing on a

cloud infrastructure (either on a centralized cloud or a mobile

edge cloud), and the native client app on the user’s mobile

device. MANTIS is provided as service to which a user sub-

scribes to, from the MANTIS client app during the start-up

process. After the user has subscribed to theMANTIS service,

the MANTIS client performs in steady-state mode. Fig. 13 de-

picts a high-level overview of the system architecture for a

single server-client scenario. In this architecture, YouTube’s

offline download feature is utilized as means of prefetching

the videos. This offline feature is available only with YouTube

Premium subscriptions in the U.S.A, however, this feature

is freely available in 125 other countries [29]. This feature

enables seamless injection of the prefetched video content

into the YouTube app’s native cache. TheMANTIS client app

interacts with the YouTube mobile app to fetch the videos

predicted by the MANTIS server.

The MANTIS server consists of a mobile sync module

that is used to interface with the users. It is responsible for

registering the user with MANTIS and instantiating the four

modules responsible for predicting the content to prefetch

for the user. These modules are (i) Data preprocessor module,

which is used for processing the user’s history; (ii) Training

module, which contains the KNN classifier used to train the

network with the user’s history; (iii) Classifier module that is

used for classifying related videos; (iv) the Prediction module,

which determines the videos to be prefetched by the client.

Figure 13: Primary system architecture

The prefetching server also consists of a global database

and user database. Each user subscribed to the MANTIS ser-

vice will have a specific instance of the user database. Unlike

the user database, there is only one global database from

which metadata related to videos are obtained for every user.

The global database contains a videos features table with

metadata about videos. The database also contains a users

table which is a list of the users, with each user identified

by a user ID. The user database contains details about the

user’s viewing behavior. The History table is used to store the

watch history for each user, along with whether the watched

video appears in one of their playlists and whether the user is

subscribed to the channel which uploaded the video. There

are also 2 other tables in this database - the subscriptions

table containing the list of channel IDs of the channels the

user is subscribed to and the playlist table containing the list

of video IDs from user-created playlists.

Note that this architecture places the burden on the user

for its deployment, as the user is required to install the app

on their phone. Cellular network providers can reduce this

burden by 1) implementing an incentive-model in which the

user is offered benefits for installing the application, or 2)

the network provider can bundle MANTIS with bloatware

(software installed on phones by network carriers).
4.5.2 Operatingmodes: MANTIS operates in twomodes

- the start-up mode and the steady-state mode. Start-up mode

occurs when the user first installs the client app and uses

it to start the MANTIS service. During this mode, there are

four main actions which occur:

1) Create user database and modules: This process involves in-

stantiating the prefetching modules and creating an instance

of the user database on the MANTIS server.

2) Fetch user’s data: The MANTIS client on the user’s mobile

device retrieves the user’s watch-history, as well as their

current channel subscriptions and videos that appear in their

playlists. This information is securely sent to the server over
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an encrypted channel.

3) Populate databases: The current channels to which the user

is subscribed to, and video IDs appearing in their playlists,

are used to populate the subscriptions table and playlist table,

respectively. The received watch-history file, is also used to

populate the history table which has fields corresponding to

the features described in Table 3. Furthermore, the global

video database is populated with the video IDs received in

the watch-history, and metadata is obtained.

4) Train KNN classifier: The KNN classifier is trained on the

user’s watch-history using Algorithm 1.

Once the start-up mode is complete, the steady-state mode

begins during the off-peak period, and will continue daily

until the user decides to stop the service. These actions take

place during the steady-state mode:

1) Fetch user’s data: As in start-up mode, the history from

the previous day, subscriptions and playlists are retrieved

and securely sent to the server.

2) Populate databases: This is the same as with start-up mode,

with the respective databases on the MANTIS server being

updated with the received information.

3) Train KNN classifier: The KNN classifier is trained with

the user’s history, using Algorithm 1.

4) Predict videos: Using the trained KNN classifier, the video

titles of the predicted videos are retrieved using the algo-

rithm described in Section 4.4. These titles are communicated

to the client securely.

5) Download predicted videos: Utilizing YouTube’s offline

download feature, the client app interacts with the YouTube

mobile app and downloads the videos sent by the server.

5 PERFORMANCE ANALYSIS

We begin this section by defining the following metrics for

evaluating MANTIS:

• 𝑇𝑃= Number videos that are prefetched and watched by
the user (true positives)

• 𝐹𝑃= Number of videos that are prefetched but not watched
by the user (false positives)

• 𝑇𝑁= Number of videos that are not prefetched and also
not watched by the user (true negatives)

• 𝐹𝑁= Number of videos that are not prefetched but are

watched by the user (false negatives)

• Prefetch Accuracy PA= TP/(TP+FN): the ratio of videos cor-

rectly classified and watched by the user, to the total num-

ber of videos watched by the user from the candidate set;

indicates how accurately the prefetching algorithm pre-

dicts what a user will watch in the near future.

• Prefetch Efficiency PE= TP/(TP+FP): the ratio of videos cor-

rectly classified and watched by the user, to the total num-

ber of videos prefetched from the candidate set; indicates

how efficient the prefetching algorithm is in prefetching

content that is actually consumed by the user.

• Prefetch Selectivity PS= (TP+FP)/(TP+FP+TN+FN): the ratio

of videos prefetched to the total number of videos in the

candidate set (after the related videos set been pruned);

indicates how effectively the algorithm selects videos from

the candidate set.

• Overall Accuracy OA= (TP+TN)/(TP+FP+TN+FN): the ratio

of videos correctly classified, to the total number of videos

in the candidate set; indicates how well the prediction

algorithm can classify a video as going to be watched by

the user, or not.

Evaluationmethodology: To evaluateMANTIS, the user’s

data obtained through mTurk, is first parsed and stored, in a

Postgres PSQL database with the tables described in section

3.1. The MANTIS algorithm was implemented on a macOS

Mojave system with a 2.5 GHz Intel Core i7. The parameter

values used for evaluating MANTIS are: K= 5, number of

users= 206, and prefetching time= 4 am, generation period=

2 weeks unless stated otherwise. The training period was

empirically determined for each user as described in section

4.4.2.MANTIS was evaluated for 30 continuous viewing days

for each user in the dataset.

5.1 Macroscopic performance of MANTIS

5.1.1 Bandwidth implications: The impact of MAN-

TIS can be shown in terms of the bandwidth (BW) consump-

tion for the users. WhenMANTIS is implemented, and videos

are prefetched during off-peak hours, there is a decrease in

the BW consumed by the users during peak periods. This

decrease corresponds to a smoothening of the network traffic

demand curve. We compute the BW required to download

the videos for each user for their test period. The BW reduc-

tion per user during peak periods is shown in Fig. 14; this

is shown as a function of the number of videos watched by

the user over their test period. On average, a BW saving of

3.3 GB across the 206 users is observed (this is computed

based on prefetching and watching videos at 480p quality)

Fig. 15 summarizes the per-user BW consumption for peak

and off-peak periods, with and without the use of MANTIS,

across all users. We see that MANTIS is able to achieve a

peak-time BW reduction of 34% while increasing the overall

BW consumption by 12% (from 10.6 Gb to 11.9 Gb).

Furthermore, during the off-peak hours, the average amount

of YouTube data downloaded is about half the data down-

loaded during peak periods. As we saw in Fig. 1, there is

on average four-times more available BW during off-peak

periods than during peak-periods, making the off-period

prefetching feasible without causing an unmanageable bur-

den on the network providers. Also, we found that with

MANTIS, 180 MB of video data, on average, is downloaded

per person, per day during off-peak periods. Thus, it will

only take 90 seconds to prefetch 180 MB data at 16 Mbps

(typical LTE data-rate [30]), which is well within the chosen
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Figure 17: Performance of

MANTIS on dataset in [9]

3-hour off-peak period. As the videos are evicted and re-

placed after each day from the cache, there is on average 180

MB of video data at 480p quality (at 720p it would be 318 MB,

and at 1080p it would be 438 MB) that is stored on the user’s

mobile device; with mobile devices currently having 16-256

GB available for storage, even at full HD quality, less than

3% of the device’s storage is dedicated for storing prefetched

videos.

5.1.2 Prefetching performance: In terms of the per-

formance metrics, the results of MANTIS, averaged over the

30 day testing period, for all 206 users are shown in Fig.16.

We see that MANTIS is able to accurately select 79.3% of the

predictable videos from the candidate set, and of the videos

that are prefetched, 79.1% of the videos are watched by the

user. In, addition the average PS is 29.3%, which means that

the algorithm is able to fetch 29.3% from the candidate set;

the PE from the entire unfiltered dataset is less than 0.001%.

Furthermore, MANTIS is able to correctly classify 83.2% of

the videos in the filtered candidate set. The distribution of

the metrics for each user across the 30 days is shown as

box-plots in Fig. 16.

MANTIS is also evaluated on data that was collected by

Park et al. [9]. For the 158 users in this dataset, the duration

over which the user’s history was monitored for, is not con-

sistent and varies from 2 weeks to 14 weeks. MANTIS can

only be applied to 57 users for whom the required watch-

history for the training period was available. For these users,

MANTISwas used to predict videos for 1 week. Fig. 17 shows

the evaluation metrics for the dataset collected in [9]. MAN-

TIS performs well for this dataset with PA= 76.2%, PE= 74.2%,

OA= 83.1% and PS of 26.7%.

5.2 Prototype Results

We developed a proof-of-concept prototype of MANTIS for

Android devices. The prototype uses Macrodroid [31] to

schedule and sequence the various tasks on MANTIS client

during the steady-state mode 4. The MANTIS server was im-

plemented on a macOS Mojave system with a 2.5 GHz Intel

Core i7; the client device and the server exchange informa-

tion over a wireless FTP.

5.2.1 Steady-state operation: The steady-state opera-

tions are given as follows.

1) Client fetches watch-history: The client fetches the watch-

history at 4 AM each day as a background process. This

is performed through a pre-determined sequence of UI in-

teractions with the YouTube App - launching the YouTube

app and navigating to the "Manage all activity" page which

contains the entire watch-history of the user. This HTML

page is downloaded and sent to the MANTIS server via FTP.

As the page is pulled from the app, there is no request for

credentials. The current subscriptions are then fetched by

navigating to the subscriptions page, invoking the onClick

event associated with the "All" keyword. The playlists are

similarly obtained. The HTML history file, subscriptions, and

the playlist video titles are sent to the server via FTP.

2) Server makes prediction: The various databases are hosted

on a PSQL database server in the MANTIS server. Upon re-

ception of the data from the client, the server processes the

HTML files and appropriately populates the database. The

KNN classifier is trained and predictions are made according

to the algorithm in section 4.4. Finally, a list of the predicted

video titles is sent to the client through FTP.

3) Client receives predictions: The client actively listens for

messages from the server on the incoming FTP port. If the

client receives video title strings from the server, it will loop

through the video titles and perform the following steps: (i)

launch the YouTube App; (ii) enter title into the search bar;

and (iii) prefetch appropriate video by selecting the “down-

load” option from the contextual menu.

Table 5: Prototype Results

Metric Value

Memory Usage 64 MB

Data usage overhead 65 KB

Average CPU usage 14%

Battery usage 3%

5.2.2 Results: The proof-of-concept prototypewas eval-

uated for prefetching an average of 6 videos for 10 randomly

selected users, for 5 days. Results are shown for the app’s

memory and CPU usage (when the client is interacting with

the YouTube app), data usage overhead (the overhead in-

curred when uploading data to the server and downloading

4iOS devices can use workflow [32] for this purpose
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video titles), and also the battery consumption (taken as the

difference between battery percentage before the prefetching

service starts, until after it has downloaded videos), and is

summarized in table 5.

5.3 User Study

For the user study, we recruited 12 volunteers from 4 dif-

ferent countries ranging from 16 to 56 years and deployed

the MANTIS prototype as described in section 4.5. Each vol-

unteer was required to install the prefetching app on their

Android device and was told to remain logged into their

YouTube account on their mobile device for a period of 2

weeks. The MANTIS server was hosted on a macOS Catalina

system with a 2.5 GHz Intel Core i7. Prior to the installation

of MANTIS app on each user’s device, we obtained 3 months

of their watch-history to train the KNN classifier so that

the prediction and subsequent prefetching can occur from

4 AM the next day, and continue so for 13 more days. The

average number of videos watched per day by the users is

13.1 (similar to the users in the mTurk dataset). Fig. 18 shows

the results for each of the 10 volunteers over 2 weeks.

0
25
50
75

100

Volunteer #

1 2 3 4 5 6 7 8 9 10

PA (%) PE (%) 

Figure 18: PA and PE across 10 volunteers over 2weeks

The average PA and PE is 71.5% and 69.7% respectively; this

is comparable to results achieved across the mTurk dataset

(PA= 76.2% and PE= 74.2%). We also found that nearly 48%

of peak video traffic was shifted to off-peak periods with

the use of MANTIS, which is considerably higher than the

34% obtained across the mTurk dataset. This increase can be

attributed to the fact that 69% of all future videos watched

appeared in the candidate set. A potential reason for this

difference could be that the candidate set is populated at the

time of prefetching as opposed to ahead of time (which was

done in the case of mTurk dataset in simulating MANTIS).

6 ISSUES & DISCUSSION

System design: The system architecture presented earlier

in the paper requires that the user have a YouTube premium

subscription (if used in a country that does not offer offline

download as a free feature [29]). To bypass the requirement

of a YouTube premium account, a possible alternative archi-

tecture for MANTIS is to place a transparent HTTPs caching

proxy between the MANTIS client and the YouTube server,

residing on the client device. The MANTIS server’s opera-

tions are the same as section 4.5.1. All the client actions are

performed and prefetched by the proxy.

Expanding candidate set: In this paper, we use only the

related videos set as the candidate set from which to perform

the prefetching. This places an upper bound on the overall

prefetching hit ratio (of about 40%) that can be achieved.

Other sources of videos can be considered to go beyond this

bound. Such sources can include the user’s social media net-

work and videos within YouTube’s recommendation list.

WiFi offloading: Although this paper has focused on shift-

ing network traffic from peak to off-peak for cellular net-

works, WiFi networks can also be used for prefetching con-

tent. There are 2 ways in which this can take place: 1) the

WiFi network is used to prefetch content during off-peak

hours, or 2)MANTIS can be configured to trigger the prefetch-

ing when a change in connection is detected- content can be

prefetched when the user moves to a WiFi network from a

cellular network, or if network connectivity is predictable

when the user is likely to leave a WiFi network.

User quality of experience (QoE) implications: There

are several user-related QoE benefits through the employ-

ment of MANTIS such as improved video quality and re-

duction in buffer events during peak-time hours when they

would otherwise experience network outages or throttling.

User privacy: With the current system architecture, the

user’s watch-history is sent over a secure channel to a server

in the cloud; however, this can be prevented if the prediction

module and history databases are locally placed on the mo-

bile device itself, which means that the user’s data will not be

shared with any other service. We leave this consideration

for future work.

7 CONCLUSIONS

We address the problem of high peak cellular traffic, through

a time-shifted prefetching strategy for YouTube content. A

dataset containing the watch-history of 206 users was used to

study YouTube watch behavior, and aid in the development

of the prefetching strategy that relies on prefetching videos

related to content that has been previously consumed by the

user. MANTIS generates the candidate set, selects features to

appropriately encapsulate the user’s past behavior, and uses

a tuned KNN classifier to select videos from the candidate set.

MANTIS was evaluated across the users, and also compared

to data collected by different authors. We also presented

and tested a proof-of-concept prototype for the proposed

prefetching solution. We found that an overall reduction, of

34%, in traffic during peak periods was achieved through the

employment of this algorithm, while increasing the overall

BW consumption by 12%.

123



MANTIS: Time-Shifted Prefetching of YouTube Videos MMSys’20, June 8–11, 2020, Istanbul, Turkey

ACKNOWLEDGMENTS

This work was supported in part by the Wayne J. Holman

Endowed Chair and the National Science Foundation under

grant CNS-1813242.

REFERENCES
[1] (2019) 4 ways service providers can improve capacity fore-

casts. [Online]. Available: https://www.sevone.com/white-paper/

4-ways-service-providers-can-improve-capacity-forecasts

[2] F. Fusco, M. P. Stoecklin, and M. Vlachos, “Net-fli: On-the-fly

compression, archiving and indexing of streaming network traffic,”

Proc. VLDB Endow., vol. 3, no. 1-2, pp. 1382–1393, Sep. 2010. [Online].

Available: http://dx.doi.org/10.14778/1920841.1921011

[3] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with tradi-

tional ip routing protocols,” IEEE Communications Magazine, vol. 40,

no. 10, pp. 118–124, Oct 2002.

[4] J. Malone, A. Nevo, and J. Williams, “The tragedy of the

last mile: Congestion externalities in broadband networks,” NET

Institute, Working Papers 16-20, 2016. [Online]. Available: https:

//EconPapers.repec.org/RePEc:net:wpaper:1620

[5] K. Lau and Y.-K. Ng, “A client-based web prefetching management

system based on detection theory,” inWeb Content Caching and Distri-

bution, C.-H. Chi, M. van Steen, and C. Wills, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004, pp. 129–143.

[6] S. Sanadhya, U. P. Moravapalle, K.-H. Kim, and R. Sivakumar,

“Precog: Action-based time-shifted prefetching for web applications

on mobile devices,” in Proceedings of the Fifth ACM/IEEE Workshop

on Hot Topics in Web Systems and Technologies, ser. HotWeb ’17.

New York, NY, USA: ACM, 2017, pp. 1:1–1:6. [Online]. Available:

http://doi.acm.org/10.1145/3132465.3132473

[7] J. Han, X. Li, T. Jung, J. Zhao, and Z. Zhao, “Network agile preference-

based prefetching for mobile devices,” in 2014 IEEE 33rd International

Performance Computing and Communications Conference (IPCCC), Dec

2014, pp. 1–8.

[8] (2019) 2019 mobile internet phenomena. [Online]. Available: https:

//www.sandvine.com/2019-mobile-internet-phenomena-report

[9] M. Park, M. Naaman, and J. Berger, “A data-driven study of view

duration on youtube,” in ICWSM, 2016.

[10] (2016) 2016 global internet phenomena. [Online]. Avail-

able: https://www.sandvine.com/hubfs/downloads/archive/

2016-global-internet-phenomena-report-latin-america-and-north-america.

pdf

[11] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile

traffic patterns of large scale cellular towers in urban environment,”

IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1147–1161, Apr. 2017.

[Online]. Available: https://doi.org/10.1109/TNET.2016.2623950

[12] (2019) Cisco visual networking index: Global mobile data

traffic forecast update, 2017-2022. [Online]. Available: https:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.pdf

[13] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching

to improve world wide web latency,” SIGCOMM Comput. Commun.

Rev., vol. 26, no. 3, pp. 22–36, Jul. 1996. [Online]. Available:

http://doi.acm.org/10.1145/235160.235164

[14] C.-Y. Chang and M.-S. Chen, “A new cache replacement algorithm for

the integration of web caching and prefectching,” in Proceedings of

the Eleventh International Conference on Information and Knowledge

Management, ser. CIKM ’02. New York, NY, USA: ACM, 2002, pp. 632–

634. [Online]. Available: http://doi.acm.org/10.1145/584792.584903

[15] G. Li, Q. Shen, Y. Liu, H. Cao, Z. Han, F. Li, and J. Li, “Data-driven

approaches to edge caching,” in Proceedings of the 2018 Workshop on

Networking for Emerging Applications and Technologies, ser. NEAT

’18. New York, NY, USA: ACM, 2018, pp. 8–14. [Online]. Available:

http://doi.acm.org/10.1145/3229574.3229582

[16] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Pefetching for image

recognition applications at the edge,” in Proceedings of the Second

ACM/IEEE Symposium on Edge Computing, ser. SEC ’17. New

York, NY, USA: ACM, 2017, pp. 17:1–17:13. [Online]. Available:

http://doi.acm.org/10.1145/3132211.3134456

[17] P. Baumann and S. Santini, “Every byte counts: Selective prefetching

for mobile applications,” Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol., vol. 1, no. 2, pp. 6:1–6:29, Jun. 2017. [Online]. Available:

http://doi.acm.org/10.1145/3090052

[18] Y. Zhao, N. Do, S.-T. Wang, C.-H. Hsu, and N. Venkatasubramanian,

“O2sm: Enabling efficient offline access to online social media and

social networks,” in Middleware 2013, D. Eyers and K. Schwan, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 445–465.

[19] C. Koch, B. Lins, A. Rizk, R. Steinmetz, and D. Hausheer, “vfetch: Video

prefetching using pseudo subscriptions and user channel affinity in

youtube,” in 2017 13th International Conference on Network and Service

Management (CNSM), Nov 2017, pp. 1–6.

[20] W. Hu, Y. Jin, Y. Wen, Z. Wang, and L. Sun, “Towards wi-

fi ap-assisted content prefetching for on-demand TV series: A

reinforcement learning approach,” CoRR, vol. abs/1703.03530, 2017.

[Online]. Available: http://arxiv.org/abs/1703.03530

[21] S. Khemmarat, R. Zhou, D. Krishnappa, L. Gao, and M. Zink,

“Watching user generated videos with prefetching,” Signal Processing:

Image Communication, vol. 27, no. 4, pp. 343 – 359, 2012, modern

Media Transport - Dynamic Adaptive Streaming over HTTP (DASH).

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0923596511001342

[22] A. Gouta, D. Hausheer, A. Kermarrec, C. Koch, Y. Lelouedec, and

J. Rückert, “Cpsys: A system for mobile video prefetching,” in 2015 IEEE

23rd International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, Oct 2015, pp. 188–197.

[23] (2019) Amazon mechanical turk. [Online]. Available: https://www.

mturk.com

[24] F. R. Bentley, N. Daskalova, and B. White, “Comparing the reliability

of amazon mechanical turk and survey monkey to traditional market

research surveys,” in Proceedings of the 2017 CHI Conference Extended

Abstracts on Human Factors in Computing Systems, ser. CHI EA ’17.

New York, NY, USA: ACM, 2017, pp. 1092–1099. [Online]. Available:

http://doi.acm.org/10.1145/3027063.3053335

[25] (2018) Youtube’s ai is the puppet master over most of

what you watch. [Online]. Available: https://www.cnet.com/news/

youtube-ces-2018-neal-mohan/

[26] H. Abdi and L. J. Williams, “Principal component analysis,” WIREs

Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010. [Online]. Available:

https://doi.org/10.1002/wics.101

[27] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural

Computation, vol. 4, no. 6, pp. 888–900, 1992. [Online]. Available:

https://doi.org/10.1162/neco.1992.4.6.888

[28] A. P. Bradley, “The use of the area under the roc curve in the

evaluation of machine learning algorithms,” Pattern Recognition,

vol. 30, no. 7, pp. 1145 – 1159, 1997. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0031320396001422

[29] (2019) Watch videos offline on mobile in select countries. [Online].

Available: https://support.google.com/youtube/answer/6141269?co=

GENIE.Platform%3DAndroid&hl=en

[30] (2018) The state of lte. [Online]. Available: https://www.opensignal.

com/reports/2018/02/state-of-lte

124



MMSys’20, June 8–11, 2020, Istanbul, Turkey S.Lall, et al.

[31] (2019) Macrodroid. [Online]. Available: http://www.macrodroid.co.uk

[32] (2019) Workflow. [Online]. Available: https://workflow.is

125


