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ABSTRACT
The position of an access point (AP) in aWiFi network has consider-

able influence on the performance of the network. In this work, we

consider the problem of a WiFi AP self-positioning itself adaptively

based on the network conditions to deliver improved network per-

formance. Through extensive experimental evaluation, we show

that there are indeed significant performance benefits to be attained

by allowing the AP to move intelligently. We also rely on theoretical

analysis, simulations, and experimental studies to show that the

AP optimal location search problem can be split into two parts: a

macro-search problem to minimize average path loss between AP

and clients, and a micro-search problem to tackle real-time mul-

tipath fading effects. We then present Hermes, a self-positioning
WiFi AP system that relies on a suite of algorithms to compute

and then move to an optimal location within the network. Using a

prototype implementation, we show that Hermes can perform up

to 117% better than WiFi with no AP mobility, and up to 73% better

than related work that allows for AP mobility.
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1 INTRODUCTION
The position of an AP in a WiFi network has considerable influ-

ence on the performance of the network. Historically, the design

of algorithms and protocols for wireless networks has been based

on the assumption that the clients are mobile and the AP is static.

The client mobility, furthermore, is driven by user needs and be-

havior as opposed to optimizing the network performance. In this

work, we consider the problem of an AP positioning itself dynami-

cally based on the network conditions to deliver improved network

performance. Recent and significant advances in domains such as

wireless communications and robotics have made it possible to

meaningfully and practically devise a solution for a self-positioning

AP system.
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An obvious question to ask before developing such a solution

is the following: are the benefits of AP self-positioning significant
enough to warrant the potential overheads and complexities? Through
a detailed experimental analysis, we identify that even movements

as small as a few centimeters can result in network performance

improvements up to 116%. However, designing and developing a

solution to leverage the possible benefits is a non-trivial problem.

First, the optimal location of the AP within the physical space that

maximizes performance for the network as a whole has to be first

deduced. Second, the physical mobility problem of reaching the AP

to the deduced location has to be solved. Further, there is also the

condition of whether the theoretically optimal location is reachable

in the first place, and what needs to be done if the answer is no.

This is not the first paper to identify or leverage the benefits of

AP mobility. Most recently, in [1], the authors present a simple, but

effective solution wherein the AP moves within a 4ft.
2
region, and

uses an optimal stopping theory (OST) strategy to find the location

within that region that would maximize the aggregate throughput

performance of the network. They show that the solution can de-

liver average performance improvements of 70%. In [2], the authors

study an approach that improves throughput performance by up

to 80% by simply adapting the AP’s antenna and base orientations.

The approach in [2] has a reduced movement complexity while

achieving meaningful performance improvement. Other somewhat

related works include [3] where robotic APs make adjustments to

their positions to converge to an optimum position where client-

specific bandwidth requirements can be satisfied, and [4] where

positions of antenna elements in a multi-element array are adapted

to improve link capacity (with network performance improvements

of 98%).

At a high level, the key contribution of this paper is the sys-

tematic study of the self-positioning problem when the AP has

both large-scale and small-scale mobility. When the scope of AP

mobility is expanded, there is a search space complexity problem

that has to be handled. In other words, if a 2D search space is R
square units, and the possible granularity of mobility is r units, the

number of potential search locations is (R0.5

r + 1)2. For a typical
room of 16m

2
size, the number of search locations could vary from

50, 000 to 250, 000 depending for search granularities of 5cm and

1cm respectively. We address the search complexity problem by

showing that it can be split into a macro-search problem to optimize

network performance based on the path loss phenomenon, and a

micro-search problem to further optimize network performance

based on themultipath phenomenon. This significantly reduces the

complexity of search and makes AP self-positioning solvable.

The specific contributions we make are as follows:

• We first use an extensive set of experimental results to show

the benefits of AP self-positioning under a variety of conditions

spanning from different environmental characteristics to differ-

ent network configurations. We use these results to show that AP
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Figure 1: A self-positioning AP system
self-positioning is an attractive strategy to achieve performance

improvements within WiFi networks.

• We rely on systematic experimental analysis using WiFi APs,

WiFi clients, an anechoic chamber, a Tolomatic Programmable
linear actuator, and an iRobot Create 2 and theoretical analysis to

show that the AP location search problem can be split into two

sub-problems: a macro-search problem to tackle path loss and a

micro-search problem to tackle multipath.

• We then present Hermes, a self-positioning WiFi AP system that

relies on a suite of algorithms to compute and move to an optimal

location of the network. Based on the location of clients, we

introduce the notion of a communication centroid (CC) that
is akin to the geometric median but adapted for the path loss

exponent. Hermes relies on the CC to solve the macro-position

problem
1
. It then relies on a brute-force search algorithm at

the CC to perform fine-grained adaptation to solve the micro-

search problem. Then, we utilize ns-3 and MATLAB simulations

to further analyze the algorithm performance of Hermes.
• Using a prototype implementation, we show that, on average,

the proposed suite of algorithms can perform up to 117% better

than default WiFi with no AP mobility, and up to 73% better than

related work that allows for AP mobility.

In the rest of this paper, Section 2 presents the possible perfor-

mance improvement that can be achieved with AP position diversity
in various scenarios. In Section 3, the key concepts of the proposed

algorithms are introduced. Section 4 and 5 present and analyze the

algorithms of Hermes. The system is evaluated in Section 6. Section

7 discusses the related work, and Section 8 concludes the paper.

2 THE CASE FOR A SELF-POSITIONING AP
In this section, we provide experimental analysis results to illustrate

the potential benefits of AP position diversity. We conduct 7 sets

of experiments to investigate the benefits of self-positioning AP

under various network conditions.

2.1 System Overview
Fig. 1 shows a self-positioning AP system, with an AP and a laptop

mounted on a robotic platform. Themain components of this system

are as follows: 1) Netgear AC 2350 AP, 2) iRobot Create 2 robotic

platform [6], and 3) Lenovo Y410P controller. iRobot Create 2 carries
both the AP and the controller, in order to enable the movement

capability of the AP. A MATLAB toolbox provided by [6] is used by

the controller to control the movement of the robot through serial

1
Although [5] identifies the macro-search problem, it simply searches for the opti-

mum position (maximum throughput) and does not specify how to systematically or

theoretically derive the optimal macro position.

Table 1: Default Experimental Settings

Default Settings

AP Netgear AC 2350

Client Lenovo Y700

Client Number 1

Traffic Direction Downlink

Transport Protocol UDP

Experimental Scenario Apartment

WiFi Spectrum 5GHz

communications. To monitor the AP’s performance, the controller

is connected to the AP via an Ethernet cable.

2.2 Methodology
The major goal of this section is to identify the gain of AP position
diversity under the following 7 sets of experiments: 1) 2D Locations,

2) Spectrum, 3) 2D vs. 3D Locations, 4) Traffic Direction, 5) Multiple

Clients, 6) Wireless Backhaul, and 7) Anechoic Chamber.

Metrics: The main metric we focus on is the aggregate through-
put between AP and clients. The traffic and corresponding through-

put is controlled and measured by Iperf3 [7]. The throughput is

measured over a period of 20s, and an average result is obtained

over three 20-second periods. We present the gain based on the

following formula:

Averaдe Gain =
Max(throuдhputi )∑x
i=1 throuдhputi/x

(1)

where, i represents AP located at position i , and x is the total

number of tested AP locations. More specifically, for every single set

of experiment, the maximum throughput represents the achievable

optimum throughput as a result of the advantages brought by AP
position diversity.
Experimental Settings: We categorize the AP’s location into the

following two types: 1) Standard location: AP is located at the cor-

ners or the center of a room; 2) Intelligent bad location: If obstacles
(with a minimum size of 0.2625m3

and a minimum penetration loss

of ~15dBm) prevent Line-of-sight (LoS) condition between AP and

its clients, we define the corresponding AP location as an intelligent

bad position.

To validate the benefits of AP position diversity in different in-

door scenarios, three different environments are chosen; namely,

a research lab (58.5m2
), an apartment (62.5m2

), and a classroom

(119m2
). Since these scenarios are presented in uncontrolled envi-

ronments, the experiments are predominantly performed during

the night and over the weekends so as to avoid dynamic channel

conditions caused by dynamic environments or interference (e.g.

unpredictable neighboring WiFi traffic and people moving around).

For each set of experiment, we test the throughput performance at

5 intelligent bad locations and 5 standard locations (4 corners and
1 center of the room). For all the experiments, clients are placed

within 10m away w.r.t. the AP. The default experimental parameters

are listed in Table 1. If not otherwise mentioned, the experimen-

tal settings follow Table 1. In the interest of brevity, we present

only a subset of all the experimental results and focus on the most

important conclusions.
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2.3 Evaluation Results
2D Locations: Here, we vary the AP’s location to identify its im-

pact on the network performance. To vary the AP’s location, we

follow the AP location categories identified in Section 2.2. The AP is

placed at 5 standard and 5 intelligent bad locations. The throughput

between the AP and its client is measured at the 10 AP locations.

Fig. 2 illustrates the Average Gain as the AP is located at the

aforementioned 10 locations. It can be observed that the ideal AP

location provides Average Gain of almost 2x. More specifically, the

average throughput is 159Mbps, and the optimal throughput is

320Mbps. Also, 2D AP position diversity can achieve more than

1.7x Average Gain in all three environments, which validates the

fact that the location of the AP does have a large impact on the

network performance. We can also identify that the throughput

improvement brought by AP position diversity is very site-specific.

This experiment indicates AP position diversity promises significant
benefits, as the AP moves in a 2D plane.
Spectrum: Here, we investigate the performance benefits of AP po-
sition diversity when WiFi carrier frequency varies among 2.4GHz,

5GHz and 60GHz. The experimental methodology is the same as

the 2D locations experiment methodology. For 2.4GHz and 5GHz

bands, we follow the default devices configurations given in Table

1. For the 60GHz experiment, we utilize a TP LINK AD7200 as AP,
and an Acer TravelMate P648-M-59KW laptop as client.

Fig. 3 shows 2x, 2x, and 5.3x Average Gain as a result of AP
position diversity for 2.4GHz, 5GHz, and 60GHz, respectively. There
is no difference between the Average Gain of 2.4GHz and 5GHz.

Since 2.4GHz and 5GHz spectrum are close to each other, there

is no significant difference in signal propagation characteristics.

However, AP position diversity is able to provide 5.3x performance

improvement for 60GHz (mmWave spectrum). The major reason

is that both propagation loss and penetration loss of mmWave

signals are significantly higher than that of 2.4GHz and 5GHz [8].

It reveals the fact that location (especially, LoS condition) matters

substantially for mmWave. The key observation here is AP position

diversity is a significantly promising application for mmWave.
2D vs. 3D Locations: From the 2D locations experiments, it can

be seen that AP position diversity can bring significant network

performance improvement. Here, we additionally study the impact

on network performance while moving the AP in a 3D space. We

construct the experiment using a 3-layer platform with size 1 ∗
1.25 ∗ 1.75m3

. The AP can be placed on any layer of this platform,

where AP is in LoS or Non-LoS (NLoS) with its client on layer

3 or layer 1 and 2, respectively. The AP is placed at 9 different

positions on each layer. The gain of 3D locations is defined as the

maximum throughput identified from all 3 layers divided by the

lowest average throughput among 3 layers. The similar concept is

applied for the gain of 2D locations, where maximum and lowest

throughput is constrained within a specific layer. Fig. 4 presents

the comparison results as the AP location varies in a 2D plane or

a 3D space; the performance improvement ranges from 1.22x to

1.33x. Even though moving the AP in a 3D space can provide LoS

conditions in this set of experiment, the 3D movement does not

achieve significant improvement as compared with 2D movement.

The first reason is that 3D movement (allowing an additional z-axis

change for AP position) does not significantly change the distance

between the AP and the client. Thus, the 3D movement does not

have a notable impact on the path loss. Another reason is that

multipath can be mitigated with either 2D or 3D movement of

an AP. This experiment indicates that the AP’s 3D movement does
not provide considerable benefits over AP’s 2D movement regarding
reducing path loss or mitigating the multipath effect.
Traffic Direction: Here, we investigate the benefits of AP posi-
tion diversity, when the traffic direction varies among uplink (UL),

downlink (DL), and hybrid of UL and DL.

Fig. 5 presents the Average Gain for the various traffic directions.

Intuitively, it would be expected that the Average Gain for DL and

UL traffic condition is similar due to channel reciprocity. However,

in the experimental results, the Average Gain for DL traffic is much

higher than the Average Gain of UL. The reasons are: 1) different

features of network interface controller (NIC) of AP and client (e.g.,

transmission power), 2) different multipath characteristics of UL

and DL, and 3) different interference characteristics (e.g., hidden

terminals). This experiment implies that channel reciprocity cannot
be assumed for WiFi networks.
Multiple Clients: In this section, we will identify the Average Gain
as the number of clients varies from 1 to 3 (clients selection priority:

Lenovo Y700 > Dell E6520 > MacBook Air).
In Fig. 6, the Average Gain is more than 1.6x, as the client num-

ber varies from 1 to 3. We can also observe that the performance

improvement decreases as the number of client increases. When

the AP is located at a standard location, the overall network perfor-

mance of multiple clients scenario is likely to perform better than

the single client scenario. The major reason is that there is a higher

probability that the AP will have good channel condition between

itself and any of the clients, which in turn leads to slightly higher

overall performance at standard locations for multiple clients sce-

nario. For multiple clients scenario, it is not trivial to identify the

optimum position for AP. It indicates the necessity for developing

an intelligent AP self-positioning algorithm. This experiment indi-
cates there can also be significant performance improvement of AP
position diversity for multiple clients scenario.
Wireless Backhaul: The key advantages of wireless backhaul

are to eliminate the Ethernet cable physical constraints of a self-

positioning AP, and to extend the boundaries of the AP’s transmis-

sion and movement range. A specific application case is embedding
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the self-positioning functionality in household robots to improve

corresponding network performance.

To conduct this experiment, we utilize a Dell E6250 to mimic

wireless backhaul and a Lenovo Y700 as a client. The minimum

throughput of the link from wireless backhaul to AP and the link

from AP to the client is defined as the performance metric for wire-

less backhaul. We utilize the performance of wired backhaul AP

as the baseline. The position of AP is varied among the aforemen-

tioned 10 locations (with a fixed client and the wireless backhaul

in this set of the experiment).

From Fig. 7, it can be observed that AP position diversity can

provide around 2x throughput improvement for both wireless and

wired backhaul. Here, AP position diversity can provide significant

Average Gain improvement for both wireless and wired backhaul.

The Average Gain of wireless backhaul is slightly higher than that

of wired backhaul. Theoretically, AP position diversitymatters more

in wireless backhaul scenario, since both links are impacted by the

location of AP. Either of the links with bad channel condition can

limit the performance of wireless backhaul. The results from this
experiment indicate that the benefits of AP position diversity can also
be attained in wireless backhaul scenarios.
Anechoic Chamber: In an effort to have a fully controlled en-

vironment, the following experiments were performed in a 4m2

anechoic chamber. The anechoic chamber is equipped with 90dBm

attenuation walls which are used to eliminate any outside inter-

ference. Also, the inside of the anechoic chamber is fully covered

with radio absorption materials to eliminate multipath. Thus, this

chamber provides an ideal environment with no dynamic channel

conditions or multipath effects.

Multipath effect investigation: The AP movement of even a few

centimeters can appreciably increase the received signal quality due

to multipath [5, 9]. More specifically, for WiFi networks, multipath

can have a large impact when the signal quality change resulted by

multipath leads to the change of modulation and coding rate due to

signal quality achieving various minimum sensitivity requirements.

Here, our methodology is to put various numbers of metallic ob-

jects (with a minimum size of 0.005m3
) in the chamber to simulate

scenarios with different multipath conditions. Fig. 8 illustrates how

networks are impacted by different multipath conditions. As can be

seen from Fig. 8, when no object is in the chamber, the throughput

is at its maximum. As the number of objects inside the chamber is

increased, the throughput varies significantly. E.g., for five objects,

throughput drops to 60% of the maximum throughput. It can conclu-
sively be seen that the multipath has a large impact on the network
performance.

Micro-mobility investigation: Here, the number of objects in the

anechoic chamber is fixed as 4. The micro-positioning is achieved

by changing the position of the AP with an interval granularity of

2cm. As can be seen from Fig. 9, micro-positioning can introduce

significant performance impact for throughput performance in

an ideal environment, which further indicates interference is not

the major reason which leads to performance variance for all the

experiments. Here, we observe that micro mobility of AP has a large
impact on the network performance.
Summary:We investigated how AP position diversity can improve

Average Gain in various network scenarios. It was found that AP po-
sition diversity provides significant network performance improve-

ment, ranging from 1.22x to 5.3x on an average. It is also worth to

notice that spectrum efficiency is also improved as Average Gain
increases. Additionally, the maximum throughput improvement

observed is up to 52.8x. Thus, the results clearly motivate further

investigation on how to utilize the benefits brought by AP position
diversity. The experiments presented in this section are conser-

vative (tested with a limited number of locations), and hence the

optimum network performance can be even higher.

2.4 Problem Statement and Scope
The problem addressed in this paper is to determine the optimal

location for a self-positioning AP system where the network per-

formance is optimized, and how to practically reach the optimal

location. For the initial study of a self-positioning AP system, the

scope of the problem investigated is the following: (i) Non-mmWave

spectrum (e.g., 5GHz) is considered. (ii) A single AP scenario is con-

sidered.

3 DESIGN BASICS
3.1 A Case for Hierarchical Mobility
The key argument that we make in this paper is that the impact of

the AP location on the network performance is actually related to

a juxtaposition of two different phenomena - path loss and multi-

path. We posit that the search complexity problem can be tackled by
decoupling the two phenomena, and solving them independently. The
first step is to find the optimal macro-position of the AP so that

the average path loss between AP and client is minimized. Upon

reaching the optimal macro-position, the second step involves per-

forming a brute force search to find the optimal micro-position. We

now theoretically and quantitatively validate our argument.

Macro-mobility: Path loss in a network is the attenuation of a

transmitted signal as it propagates through a medium. While it

happens because of a variety of factors such as penetration loss, ab-

sorption, and propagation loss, it is strongly inversely proportional

to the distance between the transmitter and receiver. The goal of

this part is to establish that adapting AP based on path loss phenom-

enon through macro-mobility will improve network performance.

To model the path loss between AP and clients, we utilize a widely

accepted log-distance based path loss model as shown in Equation
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2 (the impact of shadow fading on the self-positioning system will

be discussed in Section 5). Traditional log normal shadowing model

and, more recently, advanced practical indoor path loss model [10]

are based on the log-distance path loss model. Path loss exponent

is a key parameter in this model, which can be roughly estimated

based on scenario type or accurately calibrated using the Cayley-

Menger determinant based algorithm [11].

Path Loss = PL0 + 10ni loд
di
d0

(2)

where, di , PL0, and ni is the distance between AP and client i ,
the path loss at the reference distance d0, and path loss exponent

between AP and client i , respectively.
Here, we intend to minimize average path loss between AP and

clients which can maximize average link quality. Average link qual-

ity is an important metric for WiFi networks because any link

in WiFi networks with low-quality consumes extra transmission

resources (e.g., time) due to its low modulation and coding rate.

Utilizing low modulation and coding rate will not impact the dis-

tributed coordination function MAC algorithm of WiFi networks.

Thus, from the MAC perspective, low-quality WiFi links have the

same transmission opportunity as high-quality WiFi links. Also,

considering DL transmission in WiFi networks, low-quality links

may even need to retransmit due to transmission failure. In such

case, AP increases its contention window and waits extra time to

complete the transmission which leads to even worse spectrum

efficiency (while other high-quality links also need to wait for the

completion of the retransmission). Based on the above discussion,

we intend to minimize the average path loss between AP and clients

to maximize average link quality. To minimize average path loss, we

use a simplifiedmetric - path loss distance metric (PLDM) (Σdi
ni /k),

where k is the total number of clients. Average path loss between

AP and clients are minimized when PLDM is minimized since PL0
and d0 in Equation 2 are constant parameters.

In the macro-mobility experiment, 3 clients are located on the

arc of a circle with 10m radius in the lab scenario. The clients are

placed equidistant on the circle. We change the position of the AP

from the center of the circle to positions along concentric circles

with different radii - 2.5m, 5m, 7.5m, and 10m (3 different AP lo-

cations on each concentric circle are tested). The experiment also

follows the experimental methodology of Section 2. From Fig. 10, it

can be identified that as the AP moves away from the center, the

network exhibits lower performance. The macro optimal location

is the center of the circle, and at that point, the PLDM is also min-

imized (with the path loss exponent ni is estimated as 4 for each

client). The results indicate the macro-position has a significant

impact on the overall network performance, and specifically, mini-

mizing PLDM improves network performance. Fig. 11 shows how

the PLDM changes across with different path loss exponent for the

3 clients scenario. It can be observed that there is a strong inverse

relationship between the PLDM and throughput, thus further mo-

tivating the idea of minimizing the average path loss between AP

and clients.

Micro-mobility: In an effort to encompass micro-mobility of a

self-positioning AP system, the granularity by which the AP moves

needs to be determined in the first place. Identifying a desired micro

search granularity interval is important for reducing the search

cost and complexity. Any practical self-position AP would need

to find an optimal solution in reasonable time while still ensuring

satisfactory network performance improvement.

Related works have suggested that multipath will have an impact

if the movement distance is greater than 1/4 to 1/2 of the wave-

length of the transmitted signal [12, 13]. In particular, [13] states

that when the distance between two locations is greater than 1/4

wavelength, the phase difference between the responses on the two

locations changes by π /2, which causes a significant change in the

overall received signal strength. This implies that movement of the

AP between 1/4 to 1/2 of the wavelength is sufficient to mitigate

multipath. For a 5GHz signal, the movement of an AP between 1/4

to 1/2 of the wavelength translates to movement between 1.5cm to

3cm. To validate this claim, we perform experiments that involved

moving the AP by small intervals and measuring throughput be-

tween the client and AP. The AP was moved by the granularities of

0.5cm, 1cm, 2cm and 3cm using the Tolomatic Programmable linear
actuator. The actuator system allows mobility along the x, y, and

z axes, and ensures micro-mobility with an accuracy of 3.175µm.

The throughput at each point was evaluated for movements of up

to 10cm in x and y axes, and 6cm along the z axis (with a physical

limitation of 6cm along the z-axis).

In this granularity experiment, a single client scenario is con-

sidered with 5 different client location settings. A 0.5cm interval

movement means that the AP moves with an interval of 0.5cm in

the x, y and z directions in a 2.5 ∗ 2.5 ∗ 2.5cm3
cube, which equates

to 216 points. Similarly, for 1cm, the AP moves in a 5∗5∗5cm3
cube

with 216 points. To fairly compare the performance for the different

intervals, a rectangular prism with dimensions 16 ∗ 10 ∗ 6cm3
for

the 2cm interval, and 24 ∗ 21 ∗ 6cm3
for the 3cm was evaluated by

moving the actuator. This ensures that there are 216 points in the

cube at which measurements can be made for various granularity.

The standard deviation, range, as well as maximum and average

changes between adjacent points, are shown for the different inter-

vals of movement in Fig. 12. The maximum and average changes

as shown in Fig. 12 are obtained by calculating the difference in

throughput for each point in space and all adjacent points near it.

For example, if we imagine a 3D coordinate system, then at point

(1,1,1), all adjacent points with a granularity of 1cm is (0,1,1), (2,1,1),
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(1,0,1), (1,2,1), (1,1,0) and (1,1,2). The range is calculated as the max-

imum throughput value subtracted by the minimum throughput

value obtained within the entire search cube. From Fig. 12, the

standard deviation increases as the granularity increases. There

is, however, a significant increase in the standard deviation for a

granularity interval of 3cm, which indicates significant impact by

multipath can be observed for 3cm granularity. Also, the range met-

ric can achieve up to 33.6Mbps within a small searching cube. The

maximum and average change of the throughput between adjacent

points for the different intervals further seeks to verify the claim

that micro-mobility makes a notable impact on the network per-

formance. The results shown in Fig. 12 effectively substantiate that

moving the AP, by intervals of as small as 3cm, has a considerable

impact on the throughput performance.

It is obvious that the smaller the interval by which the AP is

moved, the larger the likelihood of finding the optimum position.

However, there is a trade-off between the time spent searching and

the highest throughput obtained. As shown in Fig. 12, a movement

of 3cm causes a large performance variation which may lead to

missing the optimal location. Therefore, movement intervals of

less than 3cm should be considered for 5GHz signal. Moving the

AP with intervals of 0.5cm, 1cm and 2cm yields the results shown

in Fig. 13 for 5 different client positions. The highest throughput

obtained is for a search space that is exhaustively searched for

an interval of 0.5cm. However, the optimum throughput value

obtained when searching with a granularity of 0.5cm, is on average

approximately 1.03% and 2.08% higher for granularities of 1cm and

2cm, respectively. This means that a micro-search with a granular

interval of 2cm reduces the search time by 75% while having a

minimal impact in identifying the optimal position. The interval

of 2cm is in line with the notion that the movement of the AP of

between 1/4 and 1/2 of the wavelength is sufficient for significant

impact through multipath.

3.2 CC and Brute-force Search
CC: For the macro-search problem, we consider optimizing the

path loss phenomenon for WiFi networks. We, therefore intend

to minimize the average path loss between an AP and clients. As

the average path loss is minimized, the average link quality is then

maximized. We term this optimal macro position as CC. The CC is

related to the geometric centroid in that the latter minimizes the

average distance to a given set of vertices. Here, CC is adapted with

the path loss exponent. This renders the computation of the optimal

location that minimizes average path loss between AP and all the

clients as a convex optimization problem which will be discussed

in Section 4.

Brute-force Search:Once the CC is determined in a particular

network, a brute-force micro-search approach can then be used to

search a finite number of points in the vicinity to further improve

the network performance to combat multipath.

3.3 Practical System Design and Discussion
To practically enablemobility of anAP,we propose a self-positioning

AP system with the following requirements and features: 1) Robotic
platform: any robotic system has floor movement capability; 2)

Power source of AP: the robotic platform or the controller can pro-

vide port to power the AP in order to eliminate power outlet (e.g.,

mini APs can be powered by any power sources with micro USB

port). 3) Wireless backhaul: wireless backhaul can be utilized to

eliminate the Ethernet cable. To maintain the performance of such

a system, the wireless backhaul communication channel should be

different from the front end communication channel. 4) Movement
range:we assume that the AP can only move in a limited area where

no obstacle exists in this region, and we also consider the limited

area as a convex set for simplicity, where, for every pair of points

within the region, every point on the straight line segment that

joins the pair of points is also within the previously defined region

(in such case, the path planning problem is simplified as moving

in the straight line); 5) Location calibration: the AP can utilize lo-

calization technique to measure its relative position w.r.t. wireless

backhaul to calibrate its position and strictly restrict the system to

move in the previously defined limited area.

4 HERMES — A SELF-POSITIONINGWIFI
ACCESS POINT

Based on the design insights of Section 3, we propose Hermes, a
self-positioning WiFi AP in this section. The following items are

the major components that constitute Hermes: 1) localization of

Clients; 2) computation of the macro-optimal CC based on clients’

positions; 3) brute force micro-search.

4.1 Localization of Clients
Localization techniques: Recently, many studies have been done

for WiFi-based indoor localization [14]. Specifically, [15] presents

SpotFi , which is an accurate indoor localization system that can

be deployed on off-the-shelf WiFi infrastructure. This system can

achieve a median accuracy of 40cm. SpotFi incorporates super-
resolution algorithms that can accurately compute the angle of

arrival (AoA) of multipath components and estimate the location

of the target by using the direct path AoA estimates and RSSI

measurements. As AP is equipped with comparatively large number

of antennas, [16] can be applied to Hermes, which utilizes multipath

suppression algorithm to achieve a median accuracy of 23cm.

Robotic Trilateration: Typically, localization techniques require

at least three receivers to localize clients’ position. Given the benefit

of movement capability of Hermes, localization techniques can be

applied to single AP Hermes. Trilateration is a process by which

the location of a transmitter can be determined by measuring the

distance between the transmitter and three different receivers with

known locations [17]. Although the target environment for Hermes
does not have three receivers with known locations, Hermes itself
has moving capability. Thus, we propose a technique called robotic
trilateration, in which Hermes moves to m number of positions

(withm ≥ 3) to measure the distance between itself and its clients

m times to estimate the clients’ positions. Also, given the mobility

advantage,Hermes can rotate in rn number of directions, and collect

average distance estimation to reduce measurement error. As m
and rn increase, the estimation accuracy increases, but the time

complexity also increases.

[17] proposes an enhanced trilateration algorithm that simplifies

the trilateration problem by limiting the receivers locations. Based

on the proposed algorithm, by solving quadratic equations, the
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number of solutions for quadratic equations is reduced to 2. Utilizing

the same methodology, we let Hermes move to three specific types

of coordinates to measure the distance between itself and a client: 1)

A1(0,0,0), A2(x2,0,0), and A3(x3,y3,0), where A1, A2, and A3 are non-

collinear. Hermes relies on a virtual coordinate system where the

initial position of the AP is defined as the origin with coordinates

(0,0,0), and the initial direction that the AP faces to is defined as

the x positive direction. The unit length in the coordinate system

should be less than the granularity of micro-positioning. Hermes
measures the distance between the AP and a given client at the

initial position (A1). Then, the AP moves to A2 (x2,0,0) and A3

(x3,y3,0). Then, the following quadratic equations can be formed:

r2
1
= x2 + y2 + z2 (3)

r2
2
= (x − x2)2 + y2 + z2 (4)

r2
3
= (x − x3)2 + (y − y3)2 + z2 (5)

Where, r1, r2, and r3 are distances measured from positions A1,

A2, and A3. x, y, z are the coordinates of the client of interest. The

following equations are then used to calculate the location of the

client of interest for that set of positions:

x =
r2
1
− r2

2
+ x2

2

2x2
(6)

y =
r2
1
− r2

3
+ x2

3
+ y2

3
− 2x3x

2y3
(7)

z =
√
r2
1
− x2 − y2 (8)

Note that, if m > 3, the above equations can be formed for

each unique combination of positions of the form A1, A2, A3. For

example, ifm is 5, and say each coordinate type A1/A2/A3 has 1/2/2

positions, the number of equation sets becomes 4. For each equation

set, a corresponding client location can be calculated. The average

of all possible client locations is then computed to improve the

location estimation accuracy. As can be seen from Equation 8, z can

be either positive or negative. For a 2D robotic platform, there is no

need to calculate the unique client coordinate, since both negative

or positive z solution will let the robotic platform converge to the

same CC. For a 3D robotic platform, as the robotic platform can

move in z direction, the distance between the AP and its client

can be utilized to identify unique client location. Specifically, if the

robotic platform moves in the positive z direction, and the distance

between the robotic platform and its client decreases, it means that

the client location has a positive z coordinate.
Monitoring System: In order to adapt for dynamic client sce-

nario, in Hermes, we propose the following monitoring system

to constantly monitor the clients’ mobility status using the local-

ization methods discussed in this section. We categorize clients

mobility as 4 types: 1) Fixed: client with no change in position,

2) micro-movement: client with movement less thanmr meter, 3)

macro-movement: with movement larger than mr meter , and 4)

constantly moving: client does not stay still. More specifically, a

client will be categorized in each type, when the client is monitored

as the specific type formt seconds. The tradeoff to set lowmr or
mt is higher optimized network performance but more frequent AP

movement. The default ofmr andmt are set as 50x of wavelength
and 20s.

4.2 Computing CC
Given the algorithm to identify locations of the clients, the next

step is to identify the CC within the predefined movement range.

CC is the position with minimum average path loss between AP

and its clients. Thus, we intend to minimize the following equation

as discussed in 3:

sumk
i=1wi | ®po − ®pi |ni

k
(9)

where k is the total number of clients.wi is the weight for the

link between AP and client i which is in the range of [0,1] (the

higher the weight is, the higher the QoS is given to client i). ®po
and ®pi are the coordinates of the optimum AP position and the

coordinates of client i , and ni is the path loss exponent. If a client is

identified as a constantly moving client, a weight 0 is given to such

client. We intend to show that this is a convex optimization problem.

The mathematical objective is to prove the following statement:

sumk
i=1wi | ®po− ®pi |ni

k is a convex f unction

The first step is to show that the n
th

power of a non-negative

convex function, as the distance is non-negative, is still a convex

function, where n is always larger than 1. The second step is to

show that the sum of convex functions is still a convex function,

and the third step is to show the convex function divided by a non-

zero constant is still a convex function. The proof for the second

and third steps are trivial and can be found in [18]. The convex

function definition is given in Equation 10, where c(x) is the convex

function and x1/x2 are arbitrary variables of c(x). Then, important

proof steps are given below for the first step, where f(x) follows the

definition of a convex function.

∀t ∈ [0, 1], c(tx1 + (1 − t)x2) <= tc(x1) + (1 − t)c(x2) (10)

Proof. Assume f(x) = h(g(x)), where h(z) = z
n
and g(x) is a non-

negative convex function.

Since д(x) is non − neдative :

[д(tx1 + (1 − t)x2)]n <= [tд(x1) + (1 − t)д(x2)]n
Since n > 1 and z is non − neдative :

h′′(z) = ni (n − 1)zni−2 > 0

Since h(z) is convex :

h(tz1 + (1 − t)z2) <= th(z1) + (1 − t)h(z2)
By substitution : f (tx + (1 − t)x) <= f (x) + (1 − t)f (x)

□
Assume the locations of all clients are given. Algorithm 1 can

be utilized to identify the location of the CC. The initial position

of the AP is defined in line 1. The sum of n
th

power of distances

between initial AP position and all its clients is calculated in line 2.

We define Step as the pace to search in line 3. If Step is larger than

the movement granularity of Hermes, defined as gran, continue
the search in line 4. Search in 6 different directions, and if the

sum of nth power of distance between the new AP position and

all clients are smaller, replace AP’s coordinate with the new AP’s

position as shown in line 5-line 8. Step becomes half of the previous

value in each loop (loop is formed in line 4 to line 11) as shown in

line 10. Finally, the CC is identified with the minimum average of

ni
th

power of the distance between the new AP position and all

clients in line 12. When a new client joins the network or a client

is detected with macro-movement using the monitoring system,

or if an existing client either becomes active or deactivate, the

macro-search will commence once again.
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Algorithm 1 Computing CC

1: AP = (cx , cy)
2: Ave =

∑
wi |AP − clients |ni /k

3: Step = InitialStep
4: while Step > дran do
5: Chanдe AP with ± Step for x, y and z

6: NewAve =
∑
wi |NewAP − clients |ni /k

7: if NewAve < Ave then
8: AP = NewAP
9: End if
10: Step = Step/2
11: End while
12: CC = AP

4.3 Brute-force Search
After identifying the CC, the next step in Hermes is to utilize a brute
force search to identify the optimal micro-location. Specifically,Her-
mes considers CC as the center of searching space.At each position,

AP and clients perform both UL or DL throughput measurement,

due to the channel asymmetric issue discussed in Section 2.3. The

tradeoff of measurement duration is that long duration leads to

high reliability but also high time complexity. The throughput mea-

surements from clients are reported to AP. AP utilizes the following

T metric to identify the optimal micro position:

T =
k∑
i=1

(wl ∗ThrouдhputU Li + (1 −wl ) ∗ThrouдhputDLi ) (11)

where, the weighed factorwl (in the range of [0,1]) and 1−wl is

used to assign weights for DL and UL measurement. AP identifies

the position with maximum T as optimum position. The micro-

search will be performed at the initial stage and the measurement at

the p micro-positions will be recorded as history data, in particular,

the lowest value of T obtained over the p positions will also be

noted. Once the AP is moved to the optimal micro position, the

AP will only move to a new micro position when the measured T
metric drops to less than half of the sum of optimum and lowest T .
The brute force search will then commence once again.

5 HERMES ANALYSIS
In this section, we utilize simulation-based analysis to study: 1) Im-

pact of dynamic Shadow fading: the impact of obstacles on channel

quality while Hermes computes CC, and 2) CC vs. Optimal Location:

the performance gap of CC versus optimal location.

5.1 Impact of Dynamic Shadow Fading
Shadowing effect is an important phenomenon to be considered

in the path loss model. For indoor scenarios, there is a very high

probability that the link between AP and client is impacted by shad-

owing and leads to NLoS channel condition. In Hermes, to compute

CC, the shadowing parameter is not considered in Equation 2. The

reason will be explained herein.

In Hermes, as the system will constantly move, the number of

obstacle between AP and each client may change. Thus, to accu-

rately identify CC, the exact location, size, and even the material

of each obstacle need to be known by the AP, which incurs very

Table 2: MATLAB Simulation Configurations

Settings

Number of Obstacle 33

Minimum Obstacle Size (m) (0.75, 0.25, 0.1)

Maximum Obstacle Size (m) (1.75, 1.25, 1.75)

Average Obstacle Size (m) (1.24, 0.59, 0.47)

Standard Deviation of Obstacle Size (m) (0.36, 0.32, 0.45)

Size of Room (m) (9, 6.5, 3)

Table 3: ns-3 Simulation Configurations

Settings

Client Number 3

Distance between AP and client 10m

Traffic Direction Dl

Transport Protocol UDP

WiFi Spectrum 5GHz

Experimental Duration 20s

high complexity for the AP to collect these parameters. To quan-

titatively analyze the impact of shadowing effect on Hermes, we
utilize MATLAB simulations to identify how likely the number of

obstacle between AP and each client changes as Hermes moves.

The simulation parameters are summarized in Table 2. The ob-

stacle information is collected based on the obstacle layout in the

lab scenario (only obstacles with large size or high penetration loss

are considered). We have run 10 sets of simulations with different

obstacle configurations with obstacle size follows the distribution

with average and standard deviation obstacle size shown in Table

2, and the size is limited by max and min of obstacle size. In each

scenario, the movement range (with the center located at the center

of the floor) of AP is configured as 2.25m2
, 9m2

, and 20.25m2
. For

each scenario, 1000 clients are simulated. As AP moves in each pre-

defined area, we intend to identify the number of obstacle change

between AP and each client. In fig. 14, the results show how the

number of obstacle changes while the AP moves. To be noticed,

the higher the number of obstacle change is, the larger the impact

it has on the CC computing algorithm. We categorize the number

of change of obstacle of 0, 1, and 2 or above as no impact, low im-
pact and high impact cases, respectively. As the movement range

changes between 2.25m2
, 9m2

, and 20.25m2
, the high impact cases

appears in 1%, 1.4% and 4.4% of overall cases, respectively. Thus,

it can be seen that the high impact cases rarely happen. Thus, we

conclude that the impact of shadowing effect on computing CC

algorithm is very limited. Also, due to the extremely high complex-

ity and cost to consider shadowing effect in Hermes, we intend to

eliminate the shadowing parameter in CC computing algorithms.

5.2 CC vs. Optimal Location
In this work, CC is defined as the position with minimized average

path loss (to maximize average link quality), which does not directly

lead to maximal throughput performance. Here, we utilize ns-3 [19]

simulations to study the performance gap of CC versus optimal

location. The simulation scenario is configured as shown in Table 3.

Each client is randomly distributed around the AP. The default log-

distance path loss model is utilized (without modeling the multipath

effect).
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Figure 17: Throughput Distribution

We have run the simulation 10 times with random clients loca-

tion configurations. As shown in Fig. 15, the normalized aggregate

throughput performance of CC ranges from 0.97 to 1 compared

with optimal location. This further validates that minimizing av-

erage path loss can almost achieve optimal network performance.

To further illustrate the performance of CC, fig. 16 and 17 show

the average path loss distribution and aggregate throughput perfor-

mance distribution of a specific scenario, where AP is located at (0,

0), and three clients are located at (9.8, 0), (-5, 8.5) and (-4.8, -8.8). In

this example, the CC is located at (0, 0). The normalized aggregate

throughout performance within 10m of AP ranges from [0.33, 1].

As the AP is located at any location where the link quality of a

specific link has bad channel quality, the aggregate performance

of the network becomes extremely bad due to the bad quality link

consuming extra transmission resources. More specifically, as AP

is located at (10, 0), the aggregate performance is 0.48 (each client

contributes 0.18, 0.16, and 0.14). In this example, it is clear that

even one of the client has extremely good link quality, it only per-

forms 0.18, since it has to share the channel with the other two

low-quality links. If modulation, coding, and transmission success

rate of each link can be predicted at each AP location, the network

performance can be further improved.

6 HERMES EVALUATION
In this section, the performance of Hermes is experimentally eval-

uated in different environments with varying restrictions. The

throughput is measured over a period of 20s, and an average result

is obtained over three 20-second periods. Algorithms of Hermes fol-
low specifications in Section 4. For client localization, the distance

between the client and AP are assumed to be known to the AP. For

communication centroid, the number of positions Hermes moves

to,m, is chosen as 3, path loss exponent ni is chosen as 4 for each

client based on the scenario type, and weighted factor wi is set

as 1 for each client. To determine the micro-optimal position, the

brute force search technique is used in which, the possible number

of locations to search, p is chosen as 9. DL traffic is assumed for

the experiments, sowl is set as 1. For simplicity, a wired backhaul

system is configured for performance evaluation. Experimental

results are also compared with the iMob system proposed in [1].

The system in [1] searches for an optimal position in a 4ft.
2
region

using the OST to find the position of the AP such that the aggregate

throughput is maximized in real-time without having the AP to

retrace its path. In essence, if there are N total number of points

that the AP can be positioned within the 4ft.
2
plane, OST specifies

that the AP finds the maximum aggregate throughput in the first

N
e points. It further stipulates that the AP should stop at the first

point after the
N
e points that yields a greater aggregate throughput

than the maximum throughput found in the first
N
e points. In case

the OST is unable to find a point that yields a higher aggregate

throughput, the expectation is reduced in proportion to the number

of points it has already traversed. We utilize the actuator system as

the platform for the iMob system.

6.1 Number of Clients
In this experiment, the starting position of the AP is located in

the circle with 10m distance to the CC. The optimal aggregate

throughput obtained for 1, 2 and 3 clients of Hermes is compared to

the results obtained through the implementation of the iMob [1].
The aggregate throughput for 1, 2 and 3 clients over three differ-

ent configurations are shown in Fig. 18. As can be seen, there is a

significant aggregate throughput improvement of 66%, 17%, 20% of

Hermes compared with iMob for 1, 2 and 3 clients scenarios, respec-

tively. It reveals the benefit of the macro optimization algorithm of

Hermes. Furthermore, it is important to mention that there are on

average over 110 points that iMob needs to traverse before it stops

at a position that it considers optimal. For Hermes however, there
are on average 10 micro-position stops it makes before finding the

position that results in the highest aggregate network throughput.

6.2 Location of Clients
To further evaluate the performance of Hermes in a multi-client

scenario, the optimal positions obtained by Hermes and iMob are
analyzed for three different topology configurations where three

clients are randomly placed around a circle with a radius around

10m. For configurations 1 and 2, the starting position of the AP is

randomly located inside the circle. For configuration 3, the starting
position of the AP is located on the circle with 10m distance to CC.

In Fig. 19, the performance improvement of Hermes over iMob
is up to 73% for configuration 3. In configuration 3, the starting
position of the AP is on the circle along which the clients are

placed on. As Hermes performs both macro-positioning to identify

CC and micro-positioning to identify the optimal micro position,

Hermes can optimize both path loss and multipath phenomenon.

iMobmainly considers micro-positioning to benefit frommitigating

multipath but not from path loss phenomenon. Also, the efficient

micro-searching algorithm in Hermes at the CC reduces the search

complexity. The results further indicate the promising improvement

achieved by macro-mobility of Hermes. To be noticed, the perfor-
mance improvement of Hermes compared with iMob increases as
the distance between starting point and CC increases.

6.3 Constrained Mobility
In real-life environments, various constraints can limit the move-

ment of Hermes, and it needs to be taken into account. This can

prevent Hermes from moving towards the CC. Following the same
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experimental configurations of macro-mobility experiments in Sec-

tion 3.1, the impact on the aggregate network throughput of various

distances the AP is away from the CC is shown in fig. 20. It shows

the network throughput performance as the AP is away from CC

with distance ranging from 0m to 10m with a step size of 2.5m.

From fig. 20, the overall network performance is approximately

less than a half when it is placed as far as 10m from CC. It exhibits a

nearly linear relationship in terms of the overall network through-

put degradation as the AP is moved away from the CC. This implies

that if the AP is not able to precisely move to the CC due to barri-

ers, Hermes will still exhibit acceptable performance improvement

compared with an arbitrary starting position of the AP.

7 RELATEDWORK
With respect to device position, phenomena that impact network

performance are path loss and multipath effect. For indoor wireless

communication, recent works suggest that path loss prediction is

able to provide decent m. level accuracy [10]. On the other hand,

multipath has always been identified as an important contributor

to the unreliability of wireless links, due to the richness of the

multipath effect for wireless transmission for indoor scenario [9].

More specifically, the movement of a transmitter or a receiver of

even several centimeters can appreciably increase the received

signal quality [1, 5].

As intelligent robotics become well-performed and cost-effective,

self-positioning wireless systems become an attractive solution to

combat both multipath and path loss issue in both micro and macro

level. [1, 3, 4, 12] present promising results for self-positioning

mechanisms which can achieve significant network performance

improvement. Inspired by the previously mentioned works, Hermes
first considers both utilizing macro-positioning achieving CC to

minimize average path loss and maximize average link quality

between the AP and clients, and afterward utilizing micro-mobility

to combat multipath effect based on the brute force searching.

8 CONCLUSIONS
In this paper, we present a self-positioning AP system -Hermes.Her-
mes performs positioning by sequentially solving two related, but

independent problems which aim to improve network performance.

The first problem is to find the CC so that path loss phenomenon is

optimized from the network perspective. The second problem in-

volves finding an optimal micro position around the CC to optimize

the multipath phenomenon. In addition, the notions of finding a

CC and using brute force search can be directly applied to multi-

ple APs scenario, as long as the optimum pairing set of APs and

clients are given. Other than expanding the scope of this work, the

following are the most important future work to be considered: 1)

self-positioning time complexity analysis, 2) leveraging network

fairness utilizing AP mobility, and 3) mitigating interference utiliz-

ing AP mobility.
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