
nanoNS3: A Network Simulator for Bacterial Nanonetworks
based on Molecular Communication I

Yubing Jian a, Bhuvana Krishnaswamy a, Caitlin M. Austin b

A. Ozan Bicen a, Arash Einolghozati a, Jorge E. Perdomo b, Sagar C. Patel b

Faramarz Fekri a Ian F. Akyildiz a, Craig R. Forest b and Raghupathy Sivakumar a

a School of Electrical and Computer Engineering
b George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology, Atlanta, GA, USA

Abstract

We present nanoNS3, a network simulator for modeling Bacterial Molecular Communication (BMC) networks. nanoNS3 is built
atop the Network Simulator 3 (ns-3). nanoNS3 is designed to achieve the following goals: 1) accurately and realistically model the
real world BMC, 2) maintain high computational efficiency, 3) allow newly designed protocols to be implemented easily. nanoNS3
incorporates the channel, physical (PHY) and medium access control (MAC) layers of the network stack. The simulator has models
that accurately represent receiver response, microfluidic channel loss, transfer rate and error analysis, modulation, and amplitude
addressing designed specifically for BMC networks. We outline the design and architecture of nanoNS3, and then validate the
aforementioned features through simulation and experimental results.

Keywords: BMC Simulator, ns-3, Diffusion-based Molecular Communication, Experimental-based Simulator

1. Introduction

Molecular communication is an emerging field of communi-
cation between nodes using chemical molecules. It is a mul-
tidisciplinary field with concepts from biology, chemistry, in-
formation theory and communication used in tandem to de-
velop molecular communication systems. The communica-
tion between nodes can, in turn, trigger the development of
sophisticated practical applications that require cooperation.
The medium for the molecular communication and hence the
transceivers differ based on the applications, environment, sig-
nals to be sensed, etc. In recent years, bacteria have emerged as
a promising candidate for molecular communication nodes or
transceivers for biological applications. Engineered bacteria is
used in toxicology to detect metals[1] and arsenic pollution[2].
In this work, we focus on molecular communication with bac-
teria as transmitter and receiver nodes.

There exist many works focusing on the theoretical analy-
sis of BMC. [3] analyzes theoretical limits of information rate
and [4, 5, 6] propose mathematical models for the channel and
transceiver of BMC. Protocols and algorithms that are designed
to improve the throughput performance of BMC have been
studied in [7, 8]. BMC is a super-slow communication mech-
anism [8] as it takes 10x to 100x of minutes per signal for the
receiver response. Thus, using experimental analysis to vali-
date the performance of each state-of-the-art algorithm is ex-

IThis work was supported in part by the National Science Foundation under
grant CNS-1110947.

tremely time-consuming. Also, exactly replicating the experi-
mental setup for different algorithms is difficult. Thus, building
a computer-based BMC simulator to analyze the performance
of different BMC algorithms is an important problem. In this
work, we focus on building a network simulator atop ns-3, so
that different algorithms can be implemented in the simulator
and the performance of those algorithms can be analyzed and
compared with each other. The easy-to-use layered approach of
ns-3 has resulted in it becoming one of the most popular net-
work simulators.

There have been other attempts to build molecular commu-
nication simulators [9, 10, 11, 12, 13, 14, 15, 16]. Accurate
modeling of receiver response is a key factor in the simulator.
Existing simulators use a simplified approximation of the re-
ceiver response thus affecting the accuracy of the simulation. A
detailed analysis of related work is presented in Section 2. The
major contributions of this work are thus the following:

1) An accurate bacterial receiver response module is built in
nanoNS3. The bacterial receiver response model is vali-
dated using experimental results.

2) A microfluidic channel loss model is implemented in
nanoNS3 with user-defined geometries and properties.

3) A bit-level communication with On-Off Keying (OOK)
modulation scheme is implemented in nanoNS3.

4) In nanoNS3, new attributes are added to a new node class
in ns-3 to define a bacterial transmitter, a bacterial receiver

1



and channel parameters.

5) An amplitude addressing mechanism is built in nanoNS3.

6) A channel capacity and an error rate analysis models are
built in nanoNS3.

Based on the current features in nanoNS3, it is easy to
extend the functionality of nanoNS3 to incorporate other re-
lated BMC research. The current version of nanoNS3 is avail-
able to be downloaded at: http://gnan.ece.gatech.edu/

ns-allinone-3.24.zip1.
The rest of the paper is organized as follows. In Section 2,

we discuss challenges in building a network simulator for BMC
networks and review existing molecular communication simu-
lators. In Section 3, we describe the architecture of nanoNS3
and in Section 4, we explain briefly the protocols implemented
in nanoNS3. Finally, in Section 5, we present performance re-
sults for nanoNS3, and in Section 6 we present some conclu-
sions.

2. Background and Related Work

Experimental analysis and verification of BMC networks are
time-consuming [8]. Fig. 3b in Section 5 presents the response
of a receiver bacteria to an input rectangular pulse of AHL sig-
nal with concentration 15µM and a pulse width of 50 minutes.
It can be observed from Fig. 3b that it takes the receiver bacte-
ria few hundred minutes to generate a GFP response and ready
to receive next signal. Due to such high processing time and
transmission delays, experimental verification of different algo-
rithms is extremely time inefficient. Also, since the receiver
nodes are live bacteria, it is difficult to replicate parameters
across different experiments. Due to the complexity of exper-
imental setup and the time involved, it is difficult to vary dif-
ferent parameters like channel characteristics or characteristics
of the transmitted signal. A computer-based BMC simulator
is thus necessary to analyze the performance of the existing or
state-of-the-art algorithms of BMC. The objective of nanoNS3
is thus to simulate a BMC network with genetically engineered
bacterial transceivers in a microfluidic environment. Based on
the extensible property of nanoNS3, customized BMC related
features can also be implemented in nanoNS3.

Implementing a molecular communication simulator with
bacteria as transceivers has the following challenges.

1) Due to the dynamic nature of the system, algorithms de-
veloped for BMC networks differ from traditional commu-
nication algorithms significantly. Implementing state-of-
the-art protocols is important and is not a trivial extension
of the traditional communication modules. Transceivers in
a BMC network have high processing time and transmis-
sion delays, so BMC networks are hence called super-slow
networks [8]. Protocols to improve efficiency of such slow

1The coding style of nanoNS3 follows ns-3 coding style, e.g., the code lay-
out of nanoNS3 follows the GNU coding standard layout for C and extends it
to C++, and name encoding in nanoNS3 follows the CamelCase convention.

networks differ from traditional communication protocols
in terms of frame structure, dimensions used, and algo-
rithms.

2) The response of a bacterial receiver to chemical molecules
involves multiple processes [6] and is non-linear. Accu-
rate modeling of the receiver response is important to sim-
ulate a molecular communication network with bacterial
transceivers. The model in use must be specific to the
transceiver considered. In this work, we focus on the bac-
terial communication network and hence an accurate mod-
eling of the response of receiver bacteria to an input chem-
ical must be used in the simulator.

3) The simulator should have high computational efficiency
in simulating large BMC networks and long packet sizes.

In this context, we have developed nanoNS3 that addresses
the challenges identified in building a BMC network simula-
tor. nanoNS3 is developed and validated based on experiments
performed using genetically engineered bacteria in microfluidic
environment. nanoNS3 is built on top of ns-3, which is a dis-
crete event based simulator. A discrete event based simulator is
best suited for simulating processes with long delays. It tracks
the change in state of events and not the absolute time. Simu-
lating absolute time is expensive for super-slow networks like
BMC and therefore, event-based simulations are faster and scal-
able. Later in this section, we present simulation time complex-
ity of time-based simulator that takes very long time to simulate
a molecular communication system.

BMC networks are super-slow networks with very long
transmission delays. Thus, using ns-3 helps nanoNS3 to be
time efficient. ns-3 borrows concepts from [17] focusing on
building a scalable network simulator, so ns-3 is also equipped
with good scalability performance. Therefore, we choose to de-
velop our BMC network simulator on top of ns-3 allowing us
to address one of the challenges viz., simulation time efficiency
and simulating large networks. Some of the advantages of us-
ing ns-3 are: 1) maintaining good computational efficiency for
large networks with high payloads, 2) open source and ease of
extensibility which enable users to implement state-of-the-art
algorithms based on users’ demands, 3) with supporting tools
from ns-3 that can be utilized directly (e.g. ns-3 logging and
tracing systems).

Fig. 1 presents the time to run a simulation for an input sig-
nal with pulse duration as x-axis when using molecular com-
munication simulators NanoNS, N3Sim and nanoNS32. Y-axis,
plotted in logarithmic scale, plots the time for a simulation
to run in an OPTIPLEX 9020 desktop computer running In-
tel(R) Core(TM) i7-4770 CPU at 3.40GHz and 24GB RAM.
The background processes are shut down and we use time com-
mand of Linux to calculate the CPU time to run the simulation.
We explain in details for some of the existing simulators later
in the section. We implemented OOK in N3Sim and NanoNS.
N3Sim is a time-based simulation framework developed to sim-
ulate diffusion based molecular communication networks. We

2Details of simulators comparison with nanoNS3 is presented in Table 1.

2

http://gnan.ece.gatech.edu/ns-allinone-3.24.zip
http://gnan.ece.gatech.edu/ns-allinone-3.24.zip


0.1

1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5

Si
m
ua
lti
on

	ti
m
e	
(s
ec
on

d)

Input	Pulse	Width	(second)

N3Sim

NanoNS

nanoNS3

Figure 1: Simulation Time Comparison

use the default setting of the simulator for amplitude, position
of the transmitter and receiver, the radius of an emitter and re-
ceiver, and diffusion coefficient. We change the pulse width of
the input signal from 100 milliseconds to 5 seconds. N3Sim
simulations for a pulse width 1 second takes close to 20 hours
to finish the simulation. Therefore, we extrapolate the results to
5 second. We repeat the simulation for NanoNS to compare the
overall simulation time when individual molecules are simu-
lated. NanoNS is a molecular communication simulator built on
top of ns-2, an event based network simulator. We set the am-
plitude, radius of transmitter and receiver and distance between
transmitter and receiver and diffusion coefficient to be the same
as that used in our aforementioned N3Sim simulations. We vary
the pulse width of the input signal and observe the simulation
time for increasing pulse width. It can be observed from Fig. 1
that NanoNS is faster than N3Sim. This is because, NanoNS is
an event based simulator and does not wait for absolute time to
perform simulations. Both NanoNS and N3Sim assume pulse
widths of few nanoseconds to milliseconds in their simulations.

As presented in Fig. 3b, a bacterial receiver requires a pulse
width of 50 minutes to generate a response. Therefore, a molec-
ular communication network simulator must be able to simulate
long pulse widths accurately without increasing simulation time
significantly. Simulating each individual molecule in the chan-
nel to improve the accuracy is not a scalable method for super
slow networks.

Existing molecular communication network simulators fo-
cus on the physical transmission and reception of molecules
by simulating the interaction between and propagation of each
individual molecule, leading to time inefficient simulation.
nanoNS3 simulates bit-level transmission and reception, instead
of molecular level transmission and reception, which leads to
higher computational efficiency. nanoNS3 is able to simulate
how transmitted bits are modulated to pulses at the transmit-
ter side, and how the concentration of molecules is propagated
and attenuated through a microfluidic channel. At the receiver
side, the biological response of how N-Acyl homoserine lactone
(AHL) diffuses through the biofilm material and subsequently
across the bacteria membrane is simulated (Physical Layer).

Then, the receiver can identify the ID of the transmitter based
on the received concentration (MAC Layer). Afterward, the re-
ceiver can demodulate the received concentration to recover the
transmitted information.

There are several existing works focusing on simulating
Molecular Communication (MC) [9, 10, 11, 12, 13, 14, 15, 16].
Table 1 lists the properties of some of the aforementioned simu-
lators focusing on the MC network. These approaches validate
their respective simulators using numerical analysis or purely
simplified theoretical models. Thus, the simulators are not ver-
ified against real-life behaviors. We discuss in detail some of
the MC network simulators. NanoNS is built on top of Network
Simulator 2 (ns-2), and it provides various nanoscale commu-
nication paradigms based on a diffusive MC channel [9]. This
work only presents the details of the channel layer, and it sim-
ulates the diffusion and reception process using a single equa-
tion, which may not be accurate in the practical situation. This
work simulates MC using molecules based approach, which is
time-consuming as the molecule scales (for practical cases, the
size of molecules is immense). Also, this work is based on ns-
2 which is computationally inefficient with regards to memory
usage and CPU utilization. Currently, ns-2 is not actively main-
tained, and the most recent version of ns-2 was released in 2011.
dMCS developed in [15] proposes a simulation framework for
the general case of diffusion-based MC, and it is developed
using a customized simulator. Using customized simulator is
likely to lose the advantages of dedicated network simulators
like ns-3 (e.g. scalability and computational efficiency). Again,
[15] is also modeling MC network using molecules based ap-
proach, which incurs large time complexity as the number of
molecules scales and no higher layer protocol is implemented
in this work.

In [10], N3Sim is developed based on the diffusion propa-
gation channel to model MC networks. Similar to [15], [10] is
built on a customized simulator and those network layers higher
than PHY is absent in this work. N3Sim allows us to configure
the network using a configuration file on the front end making
it easy to use the simulator. N3Sim does not follow layered
architecture in simulating the network. It focuses primarily on
the physical layer diffusive channel. Therefore, we cannot use
N3Sim to simulate, compare and analyze the performance of
MC network for upper layer algorithms. Nano-Sim developed
in [11] is also built on top of ns-3, and it provides functions to
model Electromagnetic (EM) wave based nanonetworks. Sim-
ilar to our work, Nano-Sim utilizes the framework and advan-
tages of ns-3 to build EM-based nano simulator. The transmis-
sion/reception scheme in Nano-Sim is orthogonal to our work
in this paper. Thus, it is feasible to combine nanoNS3 with
Nano-Sim, since they are both implemented atop ns-3. Other
than aforementioned MC simulators, [14] proposes a simula-
tion framework that is adaptable to any kind of nano bearer
and the simulator is also validated using experimental analy-
sis in [18], but it is developed using a customized simulator.
Thus, it is likely to lose the advantages of dedicated network
simulators. To the best of our knowledge, nanoNS3 is the first
BMC network simulator validated using experimental analysis
that achieves a demodulation accuracy greater than 92.5%.

3



Table 1: Simulators Comparison

Features/Simulator NanoNS N3Sim Nano-Sim nanoNS3

Physical
Layer/Channel

Model

Diffusive channel,
Gillespie model for
stochastic reaction

process

Baraff’s algorithm
simulating collision

Spectrum channel
model

Bacterial receiver
model and channel

loss model

Protocols
Implemented

Molecular node
emitting molecules

Emitter types to
generate molecules

pulse trains

Selective and
Random routing,
TransparentMAC,
SmartMAC, Time

spread OOK

OOK, Source
addressing, Error

analysis and transfer
rate analysis model,

ns-3 application
layer

Validation Numerical analysis
of models used N/A N/A Experimental

evaluation
Compatibility of

Network Simulator ns-2 N/A ns-3 ns-3

Programming
language used Tcl, C++ Java C++ C++

Modularity of
Network

Architecture

Higher layer
protocols of ns-2 can

be integrated with
the physical layer

Does not have
provision to

implement higher
layer protocols

Higher layer
protocols of ns-3

Higher layer
protocols of ns-3

3. Network Architecture

nanoNS3 is developed atop ns-3 [19]. ns-3 is a discrete event,
open source and widely used network simulator for internet sys-
tems, targeted primarily for research and educational use (ns-3
is developed in C++ and python). ns-3 is developed based on
modules, and each individual module represents a protocol (e.g.
AODV), a technology (e.g. WiFi) or an attribute of networks
(e.g. mobility). It enables the easy and convenient upgrade of
source code and triggers the ease of extensibility in ns-3 by this
modular implementation method. ns-3 is actively maintained
and it is free software and licensed under GNU GPLv2 license.
ns-3 has the best overall performance compared with other pop-
ular network simulators [20]. E.g. ns-3 has the least memory
usage for large-scale network simulations compared with ns-2,
OMNeT++, JiST and SimPy. Implementing nanoNS3 in ns-
3 has the following major advantages: 1) open sourced avail-
ability and ease of implementation for new algorithms, 2) high
computational efficiency for large-scale networks, and 3) sup-
porting tools from ns-3 can be utilized directly (e.g. ns-3 log-
ging and tracing systems).

3.1. nanoNS3 Network Architecture
The high-level structure of nanoNS3 is shown in Fig. 2. The

name of seven important classes with the structure of the corre-
sponding network layers are given in Fig. 2. The functionality
of each class is discussed briefly below:

• NanoNetDevice: It is similar to the Network Interface
Card (NIC), and it can support different nano commu-
nication technologies (e.g. diffusive or EM wave based
nano communication schemes) and corresponding proto-
cols (e.g. amplitude addressing).

• NanoNode: It can be regarded as the physical device, and
different NanoNetDevices can be integrated with NanoN-
ode to provide corresponding communication technolo-
gies and protocols to enable NanoNode to communicate
with each other.

• PacketSocket: This class is a simple and original ns-3 ap-
plication class, which does not use IP addresses. It is used
to set up user defined applications for nano communica-
tions by controlling application-related parameters, e.g.,
packet arriving interval, the number of maximal transmis-
sion packets and packet size.

• NanoRouting: This class manages message forwarding by
each NanoNode.

• NanoMAC: This class manages channel access of different
NanoNodes, and it also manages MAC layer addressing
mechanism.

• NanoPHY: This class is used to simulate the process of
transmitters and receivers to transmit and receive the nano
signals. The corresponding functionality of this class in-
cludes modulation, demodulation, error analysis and trans-
fer rate analysis, and receiver response.

• NanoChannel: This class is used to set up channel condi-
tions, and then the channel loss can be calculated to simu-
late how the transmitted signals are propagated and atten-
uated in the corresponding microfluidic channel.

Specifically, packet client, packet server, and packet address
are three classes related to packet socket class. The packet

4



Figure 2: nanoNS3 Architecture

client class defines how packets are transmitted from Tx ap-
plication layer, and the packet server class defines how pack-
ets are received from Rx application layer. The packet address
class defines how addresses of different nodes are set up. We
integrate the ns-3 original application class into nanoNS3, in or-
der to make it more convenient to integrate other original ns-3
classes with nanoNS3, e.g. transport layer protocol. In ns-3,
transport layer protocol is integrated with socket, so we inte-
grate packet socket into nanoNS3 to make it possible for trans-
port layer extension. The parameters for each aforementioned
class can be customized by users. Protocols implemented in
NanoMAC, NanoPHY , and NanoChannel will be discussed in
Section 4.

4. Protocols Implemented

nanoNS3 implements some of the basic protocols to simulate
bacterial molecular communication networks. The important
5 models implemented in nanoNS3 are: 1) Receiver response
model, 2) Channel loss model, 3) OOK model, 4) Amplitude
addressing model and 5) Transfer rate and error analysis model.

4.1. Receiver Response Model
As discussed in Section 2, accurate modeling of receiver re-

sponse is important to simulate BMC networks. nanoNS3 fo-
cuses on simulating BMC networks and hence modeling of the
response of bacteria to molecular signal is described in this sec-
tion. The bacterial receiver implemented in this simulator is a
population of genetically engineered E. coli bacteria that gen-
erates a Green Fluorescent Protein (GFP) on receiving AHL
molecules. The transceivers are located in a microfluidic device
connected by microfluidic pathways. The transmitter transmits
molecules that are transported to the receiver through microflu-
idic pathways and the receiver emits green fluorescence. The
relative fluorescence of the receiver bacteria indicates the sig-
nal received. [6] reviews the existing bacterial receiver models

in a microfluidic environment and proposes a new model. [6]
validates the model using experiments. In nanoNS3, we imple-
ment the following model proposed in [6].

dAHLi

dt
= kc(AHLe − AHLi) − k1AHLi

2LuxR2 + k1C1 (1)

dC1

dt
= k1AHLi

2LuxR2 − k1C1 − k2C2PLux (2)

dC2

dt
= k2C1PLux − k2C2 − ktrC2 (3)

dLuxR
dt

= kLc − 2C1 − 2C2 (4)

dGFPi

dt
= ktrC2 − kGmGFPi − kGdGFPi (5)

dGFPm

dt
= kGmG + i − kGdGFPm (6)

AHLe and AHLi are the external and internal concentra-
tions of molecules at the receiver. LuxR,C1,C2, and GFPi

represent internal parameters of the receiver bacteria. GFPm

represents the concentration of GFP which in turn repre-
sents the relative fluorescence at the receiver. Vector k =

[kc, k1, k2, kLc, ktr, kGd, kGm] represents rate constants of the pro-
cesses in the receiver. The equations and corresponding deriva-
tion are explained in detail in [6].

The above equations are used to model the channel and re-
ceiver response in nanoNS3. The transmitter module generates
bits and those bits are input to the modulator. Modulator im-
plemented in nanoNS3 is OOK and hence bits are mapped to
rectangular pulses. The rectangular pulses are input to these
equations to simulate the GFP response of the receiver. A nu-
merical inverse of these equations is used to sample and quan-
tize the received signal. The output of the sample and quantize
modules is then fed to the demodulator to process. This model
gives a bit level response at the receiver.

4.2. Channel Loss Model

Microfluidic channel loss model is an important component
for BMC simulators, which provides insights for how the con-
centration of signals are attenuated while propagating in mi-
crofluidic channel. [5] provides a comprehensive coverage of
the microfluidic channels with fluid flow for diffusion-based
Flow-induced Molecular Communication (FMC). In FMC, the
fluid is flowing through a microfluidic channel and it serves as a
communication channel to connect patches of molecular trans-
mitter and receiver, such as bacterial habitat. In [5], an analytic
study of the propagation of the molecules in the form of the
impulse response is performed incorporating the physical sys-
tem parameters. The goal of the propagation loss model is to
determine the channel loss effects caused on the molecular sig-
nal with respect to the distance, fluid flow parameters (pressure
drop, flow velocity, microfluidic channel geometry and fluid
type), and type of the molecule (diffusion constant). In [5],
channel loss models for the basic microfluidic channel shapes
(straight and turning) and cross-sections (rectangular, square,

5



elliptical, circular) are developed incorporating the character-
istics of the fluid flow and mass transport in the microfluidic
channels. In nanoNS3, we implement the models presented
in [5]. In the interest of brevity, we will illustrate rectangu-
lar cross-section microfluidic channel loss model in this sec-
tion, and evaluate the specific microfluidic channel loss model
in Section 5. The governing set of equations for the channel
loss in a rectangular microfluidic channel are given as [5].

Grect =
h3w
12µl

∗ (1 − 0.63
h
w

) (7)

urect = Grect ∗ 4p (8)

τrect = l/urect (9)

T Frect = e−(k2D+ jkurect)∗τrect (10)

where Grect, urect are the hydraulic conductance of the mi-
crofluidic channel and area-averaged flow rate, respectively.
Grect is a function of channel cross-section shape, dimensions,
and viscosity of the fluid (µ). urect is a function of pressure drop
(4p) and Grect. τrect and T Frect are the delay and attenuation
of channel, respectively. h and w represent the channel height
and width. l and D are the lengths of the straight channel and
Taylor dispersion-adjusted diffusion constant. The detailed ex-
planations for all microfluidic channel loss models are given in
[5].

4.3. On-Off Keying (OOK) Model
Modulation is the process of varying the properties of a sig-

nal to convey the information. Modulation determines the rate
of transmission. ns-3 is a packet-level simulator and hence al-
lows users to change modulation by changing the transmission
rate. In nanoNS3, we implement bit level simulation and hence
implement a module for modulation that maps each input bit to
a signal to be transmitted. OOK is one of the simplest modula-
tion techniques and majority of works on BMC assume OOK as
the modulation technique. OOK transmits a rectangular pulse
of amplitude/concentration A for a duration of T1 time units to
send bit 1 and no signal for T2 time units to send bit 0. OOK
module in nanoNS3 generates a rectangular pulse of a given
amplitude and a given duration. Then, the generated rectangu-
lar pulse is fed to the channel model.

4.4. Transfer Rate and Error Analysis Model
Based on the framework of nanoNS3, a theoretical analysis

model [3] is implemented in nanoNS3, which is designed to es-
timate the theoretical limits of the information transfer rate and
corresponding error probabilities of bacterial molecular com-
munication based on the uncertainty of communications, i.e.,
transmission, propagation and reception. In [3], this work con-
siders a molecular communication setting in which the diffu-
sion channel inputs and outputs are OOK with the binary set

{
0,

1
}
. The effects of uncertainty in the production of molecules,

channel parameters and reception process on the overall noise
of the communication are considered. This model can be used
to study the theoretical limits of the information transfer rate
in terms of the number of bacteria per node, noise level and

maximum molecule production levels. Also, it can be utilized
to analyze the achievable rates and the error probabilities of M-
ary schemes.3 In nanoNS3, we implement the models presented
in [3]. In the interest of brevity, we will not present the descrip-
tion of the transmission, propagation and reception model and
corresponding formula proofing.

4.5. Amplitude Addressing Model
The models mentioned above (receiver response, channel

loss, transfer rate and error analysis and OOK) model the chan-
nel and physical layer of BMC networks. A MAC protocol
is required in a network with multiple sources to achieve fair-
ness and reduce collisions. MAC protocols used in wired or
wireless networks as implemented in ns-3 increase the delay
and decrease the throughput in a super-slow network like the
BMC network. [7] considers a multiple sources and single re-
ceiver topology and proposes a MAC protocol to improve the
BMC network throughput. Multiple sources transmitting to a
single receiver is a typical sensing network scenario. [7] pro-
poses a local addressing mechanism which implicitly performs
MAC, and it is implemented in nanoNS3. [7] analyzes the ad-
vantages and disadvantages of various addressing mechanisms
and proposes Amplitude Addressing for BMC networks. Am-
plitude Addressing assigns distinct amplitudes to each user in a
BMC network and each user uses the assigned amplitude with
OOK to transmit information. The receiver receives the sum of
the transmitted amplitudes which are then resolved to identify
the individual amplitude thus solving addressing and MAC in
the local network. We further implement two different receivers
viz., load-aware and load-unaware. Load-aware receiver has an
estimate of input load of the transmitter. Therefore, the decod-
ing table (decoding table is used to decode the transmitter ID
based on the received signal) is a function of the input load of
the transmitter. On the other hand, load-unaware receiver as-
sumes that the input is uniformly distributed for the transmitter
and the decoding table is fixed. We present the results for both
the receivers in the next section. A global address is required
to map local address to the source. nanoNS3 does not have a
global addressing module, but MAC address of ns-3 nodes can
be used as a global address module in simulations

5. Results

In this section, we present the evaluation results of nanoNS3
using both simulation-based and experimental-based validation
for the 5 models mentioned in Section 4. nanoNS3 provides two
examples of scenario setup: 1) single Tx and single Rx, and 2)
multiple Txs and single Rx.

5.1. Methodology
In this section, we validate nanoNS3 with protocols men-

tioned in Section 4. For the receiver response model, we vali-
date the simulation results of nanoNS3 with results from MAT-
LAB analytic model used in [6] and experiments. For amplitude

3Although nanoNS3 only supports OOK, it can be utilized to study the the-
oretical limits of transfer rate and error probability for M-ary schemes.

6



addressing model, we validate nanoNS3 with python simulator
used in [7]. For channel loss model, we validate nanoNS3 with
MATLAB analytical model used in [5]. For transfer rate and
error analysis model, we validate nanoNS3 with MATLAB an-
alytical model used in [3]. Unless otherwise mentioned, the
transceivers used are bacteria and the carrier signal is a molec-
ular signal. To validate the performance of the aforementioned
models in nanoNS3, the following scenarios are used:

• Single Tx and single Rx scenario: It is a single link sce-
nario where one transmitter sends signals to one receiver.
The default transmitted molecular concentration is set as
15 µM.

• Multiple Txs and single Rx scenario4: Multiple transmit-
ters send signals to a single receiver in this scenario. The
amplitude assigned to each transmitter is based on the
mechanisms shown in [7], and two examples will be given
in Section 5.5.

5.2. Receiver Response

We implement the receiver response model derived in [6].
The set of differential equations presented in [6] defines the
GFP response of the receiver bacteria to a given concentration
of molecules. We built an Inverse model of the receiver re-
sponse at the receiver to estimate the molecules received from
the receiver GFP response.

We validate nanoNS3 receiver response in two steps. First,
we verify the numerical inverse response using simulations.
A transmitter sends information using OOK, i.e. rectangular
pulses of a fixed amplitude and a fixed duration for bit 1 and
no signal for bit 0. The rectangular pulses are input to Forward
response generating receiver GFP response which is then fed to
Inverse response derived numerically that estimates the signal
transmitted based on the GFP response. Second, we compare
the forward receiver response obtained from simulator with the
response from experiments. We also input the receiver response
from experiments to the Inverse model and compare the esti-
mated signal with the actual transmitted signal.

5.2.1. Receiver response : simulation validation
In this section, we validate the inverse receiver response

model using OOK. Fig. 3a and Fig. 3b present the transmitted
and received rectangular pulses for the input bits and forward
receiver response, respectively. The corresponding simulation
parameters are shown in Table 2. As we can see from Fig. 3a,
the transmitted rectangular pulses exactly match the received
rectangular pulses. This result illustrates that the receiver can
recover the transmitted pulses in nanoNS3. The corresponding
forward receiver response for the transmitted rectangular pulses
is given in Fig. 3b.

4Only amplitude addressing model is validated using the multiple Txs and
single Rx scenario.

0 500 1000 1500
0
2
4
68

10
1214
16
18

Time (minute)

Con
cen

trat
ion

 (μM
) Transmitted rectangular pulses

Received rectangular pulses

(a) Tx/Rx pulses comparison

0 500 1000 1500
0
5

10
15
20
25
30

Time (minute)

Rel
ativ

e flu
ore

sen
ce (

UA)
(b) Forward receiver response

Figure 3: Simulation Validation

Table 2: Simulation Parameters for Receiver Response

Parameters Default Settings
Tx sequence 1000100010
Modulation OOK

Tx pulses amplitude 15 µM
Tx pulses width 50min

threshld 7.5µM
kc 254/60

kGm 1.8/60
kGd 39/60
ktr 1334/60
kLc 1200/60
k1 20/60
k2 200/60

5.2.2. Receiver response : experimental validation
In this section, we validate the receiver response model us-

ing experimental results. Experimental setup used to obtain
these results are the same as explained in [6]. We compare the
receiver response obtained from experiments and simulations.
We also verify the inverse of receiver response. The receiver
response from experiments is input to the inverse model and we
compare the estimated transmitted signal with the actual trans-
mitted signal.

Forward receiver response validation
Fig. 4a presents the transmitted rectangular pulses. Fig. 4b

shows the simulation results and experimental results of the for-
ward receiver response. It can be observed that the simulation
and experimental results have the similar trends (peaks of each
pulse in experimental results can be exactly captured by simula-

7



0
5

10
15
20

0 500 1000 1500

Con
sen

trat
ion

 (μM
)

Time (minute)

(a) Experimental Tx pulses

0
5

10
15
20
25
30

0 500 1000 1500

Rel
ativ

e flu
ore

sen
ce (

AU)

Time (minute)

Experimental validation
Simulation

(b) Forward receiver response

Figure 4: Experimental Validation

tion). Four different Tx sequences with 10 bits in each sequence
are set as Tx sequence in the experimental apparatus, and each
of them shows the similar trend as the presented results.

Inverse receiver response validation
Based on the experimental results of forward receiver re-

sponse, we validated the inverse of the receiver response. From
Fig. 4b, it is clear that experimental results of forward receiver
response are not as smooth as the simulation results of forward
receiver response. In order to get rid of noises and system er-
rors, we use Loess smooth function (with 10% span) in MAT-
LAB to smooth the experimental results. The corresponding
experimental results are shown in Fig. 5a. Then, we input
those smoothed experimental results to the inverse of receiver
response model in nanoNS3, and we succeeded to recover the
transmitted bits at the receiver side. From Fig. 5b, it can be ob-
served that the peaks of transmitted and received pulses match
with each other. In order to demodulate the received pulses,
we calculate the average concentration for the pulse duration of
each bit, where average concentration for bit i is represented as
Avei. We set a threshold to determine the bit level, where the
threshold is set as half of transmitted concentration. Received
bit is determined by the following equation:

Received bit =

1 if Avei >= threshold
0 if Avei < threshold

Utilizing this method, we can achieve 100% of demodulation
rate for the presented case of experimental results. The average
demodulation rate of four sets of experimental results achieves
92.5%.

0
5

10
15
20
25
30

0 500 1000 1500

Rel
ativ

e flu
ore

sen
ce (

AU)

Time (minute)

Experimental validation
Simulation

(a) Processed experimental results

0
5

10
15
20

0 500 1000 1500

Con
sen

trat
ion

 (μM
)

Time (minute)

Transmitted rectangular pulses
Received rectangular pulses

(b) Processed experimental results validation

Figure 5: Experimental Validation

To conclude, nanoNS3 provides an experimental-based re-
ceiver response model:

For the receiver response model, the simulation re-
sults of nanoNS3 match the simulation results of
MATLAB analytic model. The implemented model en-
ables higher layer protocols in nanoNS3 to achieve
high accuracy of their simulation performance.

5.3. Channel Loss

In this section, we compare the channel loss model in single
Tx and single Rx scenario. We compare the results obtained
by nanoNS3 with respect to the MATLAB using the described
analytic channel loss model in Section 4.2. The objective is to
show that the numerical results of nanoNS3 match the numeri-
cal results from MATLAB for the analytic model channel loss
model. The details of the default parameter settings are shown
in Table 3.

Fig. 6a and 6b illustrate how the impulse response attenua-
tion of straight and turning channel varies with frequency (ra-
dians per meter), respectively. We observe that the channel loss
module implemented in nanoNS3 provides the exactly same re-
sults with the analytic model evaluation in MATLAB for both
Fig. 6a and 6b.

To conclude, nanoNS3 provides a microfluidic channel loss
model:

The simulation results of nanoNS3 match the simula-
tion results of MATLAB analytic model. More channel
properties and other channel loss model can be easily
implemented in nanoNS3 based on the implemented
channel loss model.

8



Table 3: Simulation Parameters for Channel Loss

Parameters Default Settings
Channel shape rectangular
Turning angle 30 degree

viscosity 10−3Pa*s
D 10 ∗ 10−10m2/s
4p 500 pa
l 10mm
h 6µm
w 25µm

0
0.2
0.4
0.6
0.8

1

0 5000 10000 15000

Atte
nua

tion

k (radians per meter)

nanoNS3
Matlab analytic model

(a) Straight rectangular channel

0
0.2
0.4
0.6
0.8

1

0 5000 10000 15000 20000 25000

Atte
nua

tion

k (radians per meter)

nanoNS3
Matlab analytic model

(b) Turning rectangular channel

Figure 6: Channel loss validation

Table 4: Simulation Parameters for Capacity and Error Analysis

Parameters Default Settings
Number of bacterial 100

Number of ligand receptors 50
Square of combined noise variance 0.1

M-ary scheme 16

5.4. Transfer Rate and Error Analysis

In this section, we compare the transfer rate and error anal-
ysis model in single Tx and single Rx scenario. We compare
the results obtained by nanoNS3 with respect to the MATLAB
analytic model used in [3]. The objective is to show that the
numerical results of nanoNS3 match the numerical results from
MATLAB analytic model. The details of the default parameter
settings are shown in Table 4.

Fig. 7 illustrates how the channel capacity varies with the
maximum concentration of molecules. As M-ary scheme is uti-
lized, Fig. 8a and 8b illustrate how the channel capacity and
corresponding error rate varies with the maximum concentra-

0

1

2

3

4

5

6

7

0 200 400 600

C
ap

ac
it

y 
(b

it
/c

h
an

n
el

 u
se

)

Amax (nM)

Matlab analytic model

nanons3

Figure 7: Transfer Rate Analysis

0

1

2

3

4

5

0 100 200 300 400

In
fo

rm
at

io
n

 R
at

e 
(b

it
s/

sa
m

p
le

)

Amax (nM)

Matlab analytic model

nanoNS3

(a) Transfer Rate Analysis

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400

Er
ro

r 
P

ro
b

ab
ili

ty

Amax (nM)

Matlab analytic model

nanoNS3

(b) Error Rate Analysis

Figure 8: Transfer Rate and Error Rate Analysis for Corresponding Modulation

tion of molecules. We observe that the theoretical limits for
both capacity and error rate generated from nanoNS3 match the
results with the MATLAB analytic model from Fig. 7, Fig. 8a
and 8b.

To conclude, nanoNS3 provides a theoretical analysis model:

The simulation results of nanoNS3 match the simula-
tion results of the MATLAB analytic model. Based on
the implemented theoretical analysis model, transfer
rate and error probability with corresponding modu-
lations can be estimated.

5.5. Amplitude Addressing

In this section, we validate the amplitude addressing mech-
anism in multiple Txs and single Rx scenario. We compare
the performance of nanoNS3 versus the custom built python
simulator used in [7]. The objective is to show that the sim-
ulation results of nanoNS3 match the simulation results from
the aforementioned python simulator. The details of default pa-

9



Table 5: Simulation Parameters for Amplitude Addressing

Parameters Default Settings
Number of Tx bits 100

Amplitude assignment mechanism Integer/Binary
Tx pulses width 50mins

Tx pulses interval 20mins
pt 0.5

Max amplitude 15µM
Number of Tx users 5

rameter settings are shown in Table 5. Two examples of am-
plitude assignment mechanism will be briefly introduced. For
integer amplitude assignment mechanism, each user is assigned
with a unique amplitude based on the node ID. E.g. amplitudes
{1,2,3} are assigned to transmitters with ID {1,2,3} with one-to-
one correspondence. For binary amplitude assignment mecha-
nism, amplitudes {1,2,4,8} are assigned to transmitters with ID
{1,2,3,4} with one-to-one correspondence.

Fig. 9a plots the demodulation accuracy for load unaware ad-
dressing at the receiver for varying input load for integer ampli-
tude assignment. As we can see from Fig. 9a, the performance
of nanoNS3 is very close to that of the custom built python sim-
ulator used in [7]. Fig. 9b plots the decoding accuracy at the
receiver for varying input load using binary amplitude assign-
ment. It can be observed that the simulation results of nanoNS3
and the python simulator are very close to each other.

We also compare the performance of load aware and load
unaware receiver. Fig. 10 shows the correct demodulation rate
using load aware and load unaware receiver with binary ampli-
tude assignment. It can be observed that when the receiver is
aware of the load of the transmitter, correct demodulation rate
increases compared with load unaware receiver. The amplitude
sequences used for evaluation are described in detail in [7].

To conclude, nanoNS3 provides an amplitude addressing
mechanism:

The simulation results of nanoNS3 match the simu-
lation results of the python simulator. Based on the
implemented addressing model, the performance of
higher layer protocols can be explored (e.g. routing
mechanisms).

5.6. Simulator time complexity comparison
In Section 2, we presented the simulation time complexity of

three simulators NanoNS, N3Sim, and nanoNS3 for increasing
simulation input pulse width. We observed that a time-based
simulator like N3Sim that simulates molecular interaction is
not suitable for long simulations. The simulation time com-
plexity is in the order of hours for input signal duration of few
milliseconds and is not suitable for long simulations. NanoNS
improves simulation time by using an event-based simulator
like ns-2 and simplifying molecular interactions. Using sim-
ple equations to represent molecular interactions can affect the
accuracy of response of a receiver to an input signal. Simula-
tion time complexity of NanoNS increases exponentially with
input pulse width making it unsuitable for longer packet sizes.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

5 6 7 8 9 10 11 12

Cor
rec

t de
mo

dul
atio

n ra
te

Number of Tx users

python simulator
nanoNS3

(a) Integer Tx sequence

0
0.2
0.4
0.6
0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cor
rect

 dem
odu

lati
on 

rate

Probability of transmission bit 1 (Pt)

nanoNS3
python simulator

(b) Binary Tx sequence

Figure 9: Amplitude Addressing Validation

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
o

rr
ec

t 
d

em
o

d
u

la
ti

o
n

 r
at

e

Probability of transmitting bit 1 (Pt)

Load aware

Load unaware

Figure 10: Load unaware vs. load aware receiver

nanoNS3 uses experimentally verified physical layer models to
simulate the response of a receiver to an input signal without
compromising on the accuracy of the receiver. nanoNS3 is im-
plemented on top of ns-3, an event based, time efficient simula-
tor. We compare the simulation time performance of other ex-
isting simulators with that of nanoNS3. As expected, nanoNS3
has a constant time complexity for increasing pulse width as
it uses a bit-level model to simulate bit-level response of re-
ceiver bacteria. Constant simulation time complexity makes
nanoNS3 suitable for simulating large MC networks with long
pulse widths and long packet sizes.

6. Conclusions

In this paper, we describe nanoNS3, a new network simula-
tor built atop ns-3 for BMC networks. The choice of the ns-3
simulator allows high computational efficiency for large-scale
networks and easy implementation of new algorithms. An accu-
rate model of the bacterial receiver response to chemical signals

10



modulated using OOK is implemented. A microfluidic channel
loss model that incorporates the physical system parameters is
implemented in nanoNS3. A source addressing protocol that
implicitly solves MAC issues is also implemented in nanoNS3.
nanoNS3 thus focuses on the channel, PHY and MAC layers
of the network protocol stack. Due to the lack of upper layer
protocols in BMC network, nanoNS3 only provides an original
ns-3 application layer model for upper layers. By making use
of the layered architecture of ns-3, it is possible to use exist-
ing IP, transport and application layer protocols in ns-3 to test
the performance of BMC networks. For future work, we plan
to improve the completeness of nanoNS3 by implementing new
features such as channel propagation delay model. Moreover,
we will explore merging nanoNS3 with other MC simulators
that are also implemented atop ns-3, in order to move closer to
the vision of a general purpose MC simulator.

References

[1] T. Charrier, C. Chapeau, L. Bendria, P. Picart, P. Daniel, G. Thouand, A
multi-channel bioluminescent bacterial biosensor for the on-line detection
of metals and toxicity. part ii: technical development and proof of concept
of the biosensor, Analytical and Bioanalytical Chemistry 400 (4) (2011)
1061–1070.

[2] J. Stocker, D. Balluch, M. Gsell, H. Harms, J. Feliciano, S. Daunert,
K. A. Malik, J. R. van der Meer, Development of a set of simple bac-
terial biosensors for quantitative and rapid measurements of arsenite and
arsenate in potable water, Environmental Science & Technology 37 (20)
(2003) 4743–4750.

[3] A. Einolghozati, M. Sardari, F. Fekri, Design and analysis of wireless
communication systems using diffusion-based molecular communication
among bacteria, IEEE Transactions on Wireless Communications 12 (12)
(2013) 6096–6105.

[4] M. Pierobon, I. F. Akyildiz, A statistical–physical model of interference
in diffusion-based molecular nanonetworks, IEEE Transactions on Com-
munications 62 (6) (2014) 2085–2095.

[5] A. O. Bicen, I. F. Akyildiz, System-theoretic analysis and least-squares
design of microfluidic channels for flow-induced molecular communica-
tion, IEEE Transactions on Signal Processing 61 (20) (2013) 5000–5013.

[6] C. M. Austin, W. Stoy, P. Su, M. C. Harber, J. P. Bardill, B. K. Hammer,
C. R. Forest, Modeling and validation of autoinducer-mediated bacte-
rial gene expression in microfluidic environments, Biomicrofluidics 8 (3)
(2014) art. no. 034116.

[7] B. Krishnaswamy, R. Sivakumar, Source addressing and medium access
control in bacterial communication networks, 2nd ACM Annual Interna-
tional Conference on Nanoscale Computing and Communication (2015)
1–6.

[8] B. Krishnaswamy, C. M. Austin, J. P. Bardill, D. Russakow, G. L. Holst,
B. K. Hammer, C. R. Forest, R. Sivakumar, Time-elapse communication:
Bacterial communication on a microfluidic chip, IEEE Transactions on
Communications 61 (12) (2013) 5139–5151.

[9] E. Gul, B. Atakan, O. B. Akan, Nanons: A nanoscale network simu-
lator framework for molecular communications, Nano Communication
Networks 1 (2) (2010) 138–156.

[10] I. Llatser, D. Demiray, A. Cabellos-Aparicio, D. T. Altilar, E. Alarcón,
N3sim: Simulation framework for diffusion-based molecular commu-
nication nanonetworks, Simulation Modelling Practice and Theory 42
(2014) 210–222.

[11] G. Piro, L. A. Grieco, G. Boggia, P. Camarda, Nano-sim: simulating
electromagnetic-based nanonetworks in the network simulator 3, 6th In-
ternational ICST Conference on Simulation Tools and Techniques (2013)
203–210.

[12] Calcomsim: https://sites.google.com/site/calcomsimulator/.
[13] Comsol-multiphysics: https://www.comsol.com/comsol-multiphysics.
[14] L. Felicetti, M. Femminella, G. Reali, A simulation tool for nanoscale

biological networks, Nano Communication Networks 3 (1) (2012) 2–18.

[15] A. Akkaya, T. Tugcu, dmcs: distributed molecular communication sim-
ulator, in: 8th ICST International Conference on Body Area Networks,
2013, pp. 468–471.

[16] Y. Jian, B. Krishnaswamy, C. M. Austin, A. O. Bicen, J. E. Perdomo,
S. C. Patel, I. F. Akyildiz, C. R. Forest, R. Sivakumar, nanons3: Simulat-
ing bacterial molecular communication based nanonetworks in network
simulator 3, 3rd ACM International Conference on Nanoscale Comput-
ing and Communication (2016) 17–23.

[17] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, G. F. Riley,
Large-scale network simulation: how big? how fast?, 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Com-
puter Telecommunications Systems (2003) 116–123.

[18] L. Felicetti, M. Femminella, G. Reali, P. Gresele, M. Malvestiti, J. N.
Daigle, Modeling cd40-based molecular communications in blood ves-
sels, IEEE Transactions on Nanobioscience 13 (3) (2014) 230–243.

[19] Network simulator 3 : https://www.nsnam.org/.
[20] E. Weingartner, H. Vom Lehn, K. Wehrle, A performance comparison of

recent network simulators, IEEE International Conference on Communi-
cations (2009) 1–5.

11


	Introduction
	Background and Related Work
	Network Architecture
	nanoNS3 Network Architecture

	Protocols Implemented
	Receiver Response Model
	Channel Loss Model
	On-Off Keying (OOK) Model
	Transfer Rate and Error Analysis Model
	Amplitude Addressing Model

	Results
	Methodology
	Receiver Response
	Receiver response : simulation validation
	Receiver response : experimental validation

	Channel Loss
	Transfer Rate and Error Analysis
	Amplitude Addressing
	Simulator time complexity comparison

	Conclusions

