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ABSTRACT
APIfication of web applications to expose their functionalities
for the benefit of secondary services is a trend that is now
popular. Of the strategies available to apify applications, a
front-end only approach based on intelligent screen scraping
is particularly attractive as it can APIfy a host of applica-
tions without any support from the applications themselves.
Front-end strategies, however, rely on being able to accurately
and reliably identify UI elements within the application. In
this paper, we show that simple approaches which rely on
graphical coordinates or the position of an element with re-
spect to a fixed anchor in the application layout are not robust
enough for APIfication. In this context, we present Trackr, an
algorithm that relies on the notion of quorum fingerprinting
to track elements. We then discuss several optimizations to
this baseline version. We show through analysis of changes
to real-world web-applications that Trackr has considerable
benefits.

1 INTRODUCTION
A relatively recent trend in the domain of web applications is
to APIfy applications so that evolutionary secondary services
may be built upon them seamlessly. A simple example of API-
fication of web applications is Google Maps. While Google
Maps is itself a popular application used by users to obtain
navigation information, other applications can also leverage
the API exposed by Google Maps such as those for directions,
distance, elevation, geolocation, roads, and time zones. The
APIs can be used by any application over HTTP, allowing
for faster integration of mapping and navigation intelligence
into those applications. Well known applications such as
AirBnb, Expedia, Allstate Goodhome, NYTimes, 7-Eleven,
and Runstatic all rely on Google Maps APIs [1]. Most popu-
lar web-based applications such as Gmail, Salesforce, Twitter,
etc., have their own APIs that other applications can leverage.

While applications can indeed be built ground up to sup-
port APIs, an interesting problem is how web applications
not built in such manner can still be retroactively APIfied.
Such a scenario occurs under two different conditions: (i) the
applications are legacy applications that pre-date the APIfy
movement, but still command considerable usage wherein
APIfication will have tremendous value; and (ii) the applica-
tions are built by a vendor who does not have any explicit busi-
ness or technology motivation to expose APIs to third party
developers (even if they do exist on the backend). The second
issue is more pertinent as exposing APIs for a web applica-
tion does come with its own costs such as ensuring security,

incurring maintenance overheads, facilitating monitoring and
monetizing, and provisioning for scalability. A more nuanced
version of the aforementioned problem is when a third-party
developer needs a certain functionality offered by the web
application but not exposed through an API. One approach
to APIfy is to rewrite the underlying software for the web
application to expose APIs. However, such a strategy incurs
the burden of both the redevelopment of the software, and the
redeployment of the application. Hence, the rebuilding-based
strategy is an expensive process and is quite undesirable.

A different strategy to APIfying a web application relies on
front-end only techniques to create APIs. Using a combina-
tion of automated navigation, intelligent acting, and content
scraping, front-end APIfying techniques create APIs without
requiring any changes whatsoever to the application backend.
Consider the simple example of a thermostat web application
(that could control a smart thermostat inside a home) that
requires the current temperature for a zip code. Regardless
of the APIs supported by a service such as weather.com, a
front-end APIfying approach can create APIs for weather.com
that will provide the current temperature for a zip code purely
by navigating to weather.com, entering the zip code in the
search bar, and scraping the temperature information from the
resultant view. The salient advantage of this strategy is the
non-dependence on backend changes. This is certainly less
expensive. More importantly, APIfying an application is no
longer dependent on the vendor who created the application.
Third party developers can as easily create APIs for it.

It is such front-end based APIfy strategies that we consider
in this paper. Specifically, such strategies rely on a fundamen-
tal building block - the ability to uniquely identify and track
front-end UI elements on the web application. For example,
in the smart thermostat use-case, consider that the tempera-
ture UI element is uniquely identified on the resultant view
on weather.com. The thermostat application will now rely
on an API that reads the temperature from that specific UI
element on weather.com. What happens if the weather.com
changes in a manner that impacts the temperature UI element?
There are indeed changes that should break the API a good
example would be if weather.com removes the temperature
UI element. However, there are a variety of changes including
the temperature UI element moving to a different location,
new UI elements introduced on the page, other (non-relevant)
UI elements removed from the page, attributes of UI elements
such as color, size and labels change, etc., that should not
break the API. This challenge is the focus of this paper.

What makes the challenge non-trivial is that UI elements
within web-applications, organized in a DOM tree, do not



have distinct permanent identifiers that remain invariant
across application changes. Thus, only relative identifiers
(e.g. path from DOM tree root) can be relied upon to uniquely
identify UI elements. These relative identifiers are vulner-
able to even minor changes to the application that impacts
the DOM tree in some manner. In this context, we present
Trackr, a UI element tracking algorithm that improves the
robustness of APIs created atop web applications multi-fold.
At a high level, trackr uses the concept of quorum fingerprint-
ing that determines the identity of a target UI element based
on its relative paths from other nodes in the DOM tree that
have an attribute ID. We then argue why such an approach
by itself remains insufficient to handle the different types of
possible changes to the web application. We then present
multiple optimizations to the baseline quorum fingerprinting
including resilient path construction, progressive patching
of fingerprints, and localized fingerprints as fail safes. We
show using popular web applications such as Salesforce, a
PeopleSoft application, a SharePoint application, and a Sakai
application that Trackr can improve the identification of a tar-
get UI element multifold compared to standard mechanisms.
We then present three different use-cases that rely on APIfied
web applications and discuss how they benefit from Trackr.

The rest of the paper is organized as follows: Section 2
presents background and motivation for Trackr. Section 3 out-
lines the Trackr design. Section 4 presents evaluation results
and Section 5 discusses use-cases where Trackr can be used
to deliver better performance. Finally, Section 6 discusses a
few issues with Trackr and presents key conclusions.

2 BACKGROUND AND MOTIVATION
2.1 Application Mobilization
Application mobilization services allow enterprise employ-
ees to use their smartphones to complete the tasks that were
originally performed on a desktop. Among the different mo-
bilization strategies used today, mobilization with application
refactoring has minimum development and deployment costs.
This involves hosting the application as-is on a cloud and
presenting the users with an optimized native UI on their
smartphones. Any actions on the native UI are then executed
on the original UI in the cloud. Capriza [2], Powwow[3], [? ]
and StarMobile[? ] are some examples of refactoring based
mobilization services.

Refactoring based mobilization is typically achieved through
four stages: (i) Configuration: This stage involves the em-
ployees using a tool to configure various parameters related
to the mobilization process. The configuration tool allows
the users to specify the pages within the web application to
mobilize, the particular UI elements to include and any au-
thentication information related to the web application; (ii)
Tracking: Upon the selection of UI elements to be mobilized,

the next stage involves accurately tracking the UI elements
across different instances of the web application. The tracking
process should be able to identify the UI elements even as the
application layout changes either due to the developer modi-
fying the application source or any data related changes; (iii)
Transformation: The web UI elements are then transformed
into smartphone platform native versions for optimal user
experience and the corresponding transformation is noted in
a mapping table. Any actions performed by the user on the
transformed elements are mapped back to the tracked original
web elements; (iv) Presentation: Finally, the transformed
UI elements are arranged in a layout and presented on the
smartphone screen. The final layout can either be specified
by the user in the configuration step or generated on-the-fly
for the selected UI elements.

A critical step in refactoring is to map any actions from
the smartphone native UI to actions on the original applica-
tion UI. This requires reliable tracking of the UI elements in
the original application even as the application changes. If
the tracking is inaccurate, the mapped actions are possibly
performed on the wrong element leading to failures.

2.2 Web Applications and DOM Trees: A
Primer

A web application is a collection of web pages, most of which
are rendered on the browser as HTML documents. The under-
lying data structure for an HTML document is a tree called
the Document Object Model (DOM). Each tag from the doc-
ument is an element of this tree. The tree is rooted at the
<HTML> tag. Any nested tags within a particular tag are
children elements of that tag. Fig. 3 shows the DOM tree for
a simple HTML document in Fig. 4. All modern browsers
allow the DOM tree to be accessed through Javascript DOM
API[4].
UI Element Identifiers: A tag can have some HTML at-
tributes associated with it. For example, the tag <A href=“link1”>
has one attribute href. The attribute values need not be unique
for the tags. One exception to this rule is the attribute ID.
Therefore, the value of an HTML attribute ID is a globally
unique identifier for that element. While such an identifier is
highly desirable for an element, it is not always available. For
example, in the Salesforce web application, only 19% of all
elements have an ID declared. On the other hand, using the
attributes contained within the tags of an element, an attribute
based identifier can be constructed. However, this identifier
is not unique as it is not necessary for an element’s attributes
to be unique in a DOM tree. For example, in Salesforce, only
16% of elements have a unique set of attributes. Given that
the element’s own attributes will not help in its identification,
the next logical direction is to consider identifiers that are
relative to some property. When this property is relative to
the element’s local context within the DOM, the identifier
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<HTML><HEAD>
<TITLE>title</TITLE>
</HEAD><BODY>
<DIV ID=d1>
<A href=l1></A>
<A href=l2></A>
<A href=l3></A></DIV>
<DIV ID=d2>
<A href=l4></A>
<A href=l5></A>
</DIV></BODY></HTML>

Figure 4: HTML Source
again is not unique. For example, a local identifier consisting
of an element’s parent, immediate siblings and children is
only unique for 13% of the elements on Salesforce. On the
other hand, identifiers that describe an element relative to a
unique global property within the DOM are unique. Some
examples of such IDs are - Path from the root, Path from all
elements with IDs, Coordinates from the top left corner of
a page, Path from the body element, etc. Such an identifier
can be constructed for every element within the DOM. Also,
given an identifier and any DOM tree, at most only one ele-
ment can be found with the same identifier.
On the nature of changes: While an element’s global rela-
tive identifiers can uniquely identify it given a DOM tree, it is
not necessary that they remain constant even when the DOM
tree changes. For example, when the dashboard of Salesforce
application is reconfigured to add a new ‘messages’ section,
all the elements that immediately follow this section (e.g.,
recently viewed) will have their global relative identifiers
changed i.e. the paths to these elements in the DOM tree get
altered. DOM trees not only change due to the developer mod-
ifying the application, but also because of user interactions[5].
A web application can undergo several types of changes such
as layout modifications, content updates, appearance changes
(either by the style attributes of elements or when a UI library
is updated) and code changes. These changes affect the under-
lying DOM structure in one of the following ways (see Fig. 2):
(i) Local changes: These are the changes wherein only at-
tributes within an element are changed leaving the DOM tree
intact. For example, the change in color of a link after a user
clicks on it; (ii) Insertions: These are changes wherein a new
element is inserted into the DOM tree. For example, when a
user creates a new task and it is added to the list of all tasks;
(iii) Deletions: These are the changes wherein an element
is deleted from the DOM tree. Any children of this element
are inserted at the element’s position before deletion. For
example, when container DIV is deleted and all its children
are moved back into the parent DIV; (iv) Migrations: These
occur when an element (and any descendants) moves to any
other position in the tree. For example, when a user decides
to reorganize a dashboard, say by moving the list of tasks to
another location within the dashboard; Consider an example

wherein a simplistic DOM tree shown in Fig. 3 changes to
the tree shown in Fig. 5. The change in attribute ID value
of element d1 to d3 is a local change, the addition of p1 is an
insertion, absence of a3 and a4 are two deletions, and move-
ment of a2 is a migration. All other changes can be expressed
as a combination of these categories.

2.3 Problem Definition, Scope, and Goals
In this paper, we target the problem of developing an al-
gorithm to reliably track UI elements of a web application
across several instances of the application. Note that web-
applications innately do not need to have distinct permanent
identifiers for the UI elements. Hence, UI elements can be
identified only by a relative identifier constructed based on
some property of the underlying DOM tree. Hence, the prob-
lem involves creating a unique identity (called the fingerprint)
for the UI elements that remains robust even as the application
changes.

We only consider web applications that are rendered as
HTML documents on the client browser due to their domi-
nance in the web application ecosystem[6]. In this paper, we
treat web elements as containers of content, and not as con-
tent itself. For example, in a list of recently viewed headlines,
when a particular headline content originally at the top of the
list moves to a different position, the web element correspond-
ing to the top position in the list hasn’t moved but the content
it carries changed. On the other hand, if the list of headlines
as a whole is moved to a different location on the page, we
assume that the web elements have moved.

The problem considered in the paper can be formally stated
as - Given a web application A with a DOM tree τ , how can a
unique fingerprint for any given web element e ∈ τ be created,
such that the fingerprint can effectively be used to identify the
element e in a different instance of the DOM tree τ ′.

Furthermore, any algorithm for tracking UI elements should
satisfy the following goals: (i) The algorithm should be ro-
bust and withstand a wide range of changes within the DOM
structure; (ii) It should be able to track elements with only
the information available from a typical web-application and
make no assumptions about any additional resources from the
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web-applications, especially from the application developers;
and (iii) Finally, it should be application agnostic.

2.4 Problem Relevance and Significance
Given the rising popularity of web applications, there are
several secondary web services available that extend the func-
tionalities provided by the (primary) applications. A common
goal among these secondary services is to observe some vari-
ables from the web application(s) and act on the them to
provide the necessary functions. To explain the relevance of
the problem considered in the paper, we discuss three such
secondary service use-cases that rely on accurate and reliable
tracking of UI elements within a web application.
(i) Automation: Automation services like Selenium[7] help
users programmatically perform a sequence of tasks within
a web application, so to eliminate the task burden of per-
forming them manually. To automate a particular action on
a web element using Selenium, a user has to write a script
that declares how to access the web element using simple
Javascript DOM access methods and specifies the type of
action to be performed. However, as the application and the
corresponding DOM tree change, it is possible that the access
methods mentioned in the automation scripts fail to access the
correct element. In this case, the user has to manually rewrite
the automation scripts to access the elements in the modified
DOM. This can be burdensome. An accurate element tracking
algorithm can effectively eliminate this burden.
(ii) Macro-Creation: With services like IFTTT (If this then
that) [8] users can create macros to observe certain variables
within a web application, create triggers when the variables
satisfy some conditions and perform specific actions on a
different web service. For example, a user can create a macro
that tracks a package and emails a public transit schedule to
reach home in time to collect the package. IFTTT relies on
APIs provided by the web applications to create triggers and
perform actions on their data. However, given that a vast
majority of applications do not expose a compatible API, the
users are restricted to using only a limited number of web
applications. With the availability of an accurate tracking
algorithm, third-party services like IFTTT can reliably access
application data from their DOM structure, independent of
any support from the application itself.
(iii) Application Mobilization: Application mobilization
services allow the employees to use their smartphones to
complete the tasks that were originally performed on a desk-
top. Of all mobilization strategies, application refactoring has
minimum development and deployment costs. This involves
hosting the application as-is on a cloud and presenting the
users with an optimized native UI on their smartphones. Any
actions on the native UI are then executed on the original UI
in the cloud. Capriza [2] is an example of a refactoring based
mobilization service. A critical step in refactoring is to map

any actions from the smartphone native UI to actions on the
original application UI. This requires reliable tracking of the
UI elements in the original application even as the application
changes. If the tracking is inaccurate, the mapped actions are
possibly performed on the wrong element leading to failures.

2.5 Related Approaches and Performance
Analysis

When the services relying on the application’s front-end (such
as the three examples above) fail due to a change in the appli-
cation, they have to be reconfigured again. This can lead to
increased task burden and more costs.
Prior work: The problem of reliably fingerprinting UI ele-
ments within a web application has been explored in the past
in different contexts. XPath[9] is a widely adopted standard
with syntax to describe elements within an XML/DOM tree.
Using XPath syntax, a path for traversal within a DOM tree
can be specified between two elements. However, XPath
only provides a syntax and it is upto the developer to create a
fingerprint with it. Several optimizations[10, 11] have been
proposed to interpret XPath. In [12], an element’s path from
the root of the DOM tree is used as one of its features, but in
the context of enhancing mining. [13] uses the shortest path
from the nearest ancestor in the DOM tree with an HTML
attribute ID as a fingerprint. Here, the context is to record
user actions. [14] uses path from the root in conjunction with
parent and immediate siblings to identify an element for infor-
mation extraction. In [15], the authors propose using subtree
information for each element in a DOM path. We later show
that these single-path based fingerprints do not perform well
in dynamic scenarios. [16, 17], use visual features of the
page to learn and extract templates for elements. However,
generating fingerprints based on visual features is not feasible
for a majority of secondary services as it not only requires a
large amount of annotated training data but also takes a lot of
time.
Performance of related approaches: We evaluate the per-
formance of three fingerprint candidates explored in prior
work - Graphical Coordinates of the UI element, Path From
Root to the UI element and Path from the nearest ancestor
with an attribute ID on four web applications - Sakai, Share-
point, Peoplesoft and Salesforce. We first randomly select 30
elements from the DOM to track and introduce changes to the
DOM (each element has a 0.5% chance of changing). We then
find these elements in the modified DOM tree using the three
fingerprint candidates. More details on this experimental
setup are explained later in Section 4. Fig. 1 shows the ratio
of elements whose fingerprint fails to find the elements within
the modified tree. On an average, the error rates are 0.73, 0.44
and 0.11, for Graphical Coordinates, Path From Root and
Path From ID, respectively. These experiments lead us to a
few key insights: (i) DOM based fingerprints that leverage the
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Figure 5: Changed DOM
Tree Figure 6: Quorum Tree of a5

application layout perform better than pixel based graphical
coordinates; (ii) Path From ID has a much lower error rate
compared to Path From Root. This can be attributed to the
shorter length of Path From ID as shorter paths have a lower
probability of being affected by changes; (iii) Even though
Path From ID performs much better than other fingerprints,
the error rate is still very high and unacceptable.

3 TRACKR: RELIABLE TRACKING OF
UI ELEMENTS WITHIN WEB
APPLICATIONS

3.1 Architecture Overview
We design Trackr as a passive browser extension that sec-
ondary web services can rely on to track any number of
UI elements from a web application. Trackr extension ex-
poses two key functions - Trackr.track(element, tname) and
Trackr.find(tname). Any web service can use the track() func-
tion to track a certain element by passing the element’s current
handle (Javascript DOM object) - element and a name for
the tracker - tname. Trackr then extracts a unique identity
(fingerprint) for the element and adds it to a database stored
in the browser’s persistent storage. The fingerprints in the
database are indexed by the URL of the web page from which
the fingerprint was extracted and the name given to the tracker
(tname). At every subsequent visit to the page, Trackr updates
the fingerprint to reflect any changes within the DOM since
the last time the fingerprint was computed. Using Trackr’s
f ind() function and the tracker name tname, the service can
request a current handle to the tracked element. Trackr then
retrieves the fingerprint from the database and uses it to find
the element within the DOM tree.

3.2 Quorum Fingerprinting
In Section 2, we evaluated the performance of three simple
fingerprints and observed that single-path fingerprints are
insufficient to reliably track elements in dynamic web appli-
cations. Also, recall that the fingerprinting algorithm cannot
assume any other information from the web applications ex-
cept it’s DOM structure and elements can only be identified
relative to some other property of the DOM tree. Therefore,
instead of just considering the position of the node in the
DOM tree w.r.t. one other element (root or node with an ID),

Trackr adds redundancy into the fingerprint by considering
the position of the node with respect to all elements with an
attribute ID. The key insight is that even if some portion of the
DOM tree changes between two instances, a majority of the
tree remains intact. Therefore, by considering position w.r.t.
several anchors and using a simple majority rule to identify
the element that matches most of these positions in a modified
tree, Trackr creates a robust fingerprint. We call this principle
quorum fingerprinting.

To construct a quorum fingerprint Q .FP() for an element
e in a DOM tree τ , Trackr reshapes the DOM tree so that it
is now rooted at e (quorum tree). Reshaping is done by first
inverting the shortest path from the element e to the HTML
root, so that e is now at the root position of the new tree.
Trackr then appends all the other elements as children to their
respective parent nodes from the old tree. Fig. 6 shows the
quorum tree for the node a5 from the example shown in Fig. 3.

Using the quorum tree, Trackr computes the shortest path
from all elements with an attribute ID to the root of the quo-
rum tree. Therefore,Q .FP(e) = (ID(a), SP(a, e))∀a ∈ τand a has an attribute ID.,
where ID(a) is the value of attribute ID for a and SP(a, e) is
the shortest path between a and e in the quorum tree. Short-
est path SP(a, e) is computed by traversing the quorum tree
upwards from the element with ID until its root is reached.
For each element encountered in the traversal, the element’s
name along with the index w.r.t. to its siblings (in the original
tree ) is recorded, i.e. given an element e, and it’s quorum tree
Q(τ , e), SP(a, e) = [(name(e ′), index(e ′))∀e ′encountered in the traversal to e ],
where index(e ′) is the index of e ′ w.r.t it’s siblings in the orig-
inal tree τ . For example, the element a5 has a quorum finger-
printQ .FP(a5) = (d1, [(BODY , 2), (DIV , 2), (A, 2)]), (d2, [(A, 2)]).

In order to find an element in another instance of the DOM
tree τ ′, Trackr compares Q .FP(e) to the quorum fingerprints
of all other elements of the same type (as e) in τ ′. For each
element e ′ of the same type in the modified tree, Trackr uses
Algorithm 1 to compute a score that reflects how many of
the paths in e’s fingerprint match with those of e ′. The el-
ement with the maximum non-zero score among all other
elements is e’s counterpart in τ ′. For example, element a1 can
be identified in the modified tree (Fig. 5) using the quorum
fingerprint computed from the tree in Fig. 3. Even though it’s
nearest anchor DIV d1’s ID has changed, the path from the
other anchor element d2 remains intact in the modified tree.

3.3 Fingerprinting Optimizations
Through the principle of quorum fingerprinting, Trackr in-
creases the immunity of the fingerprint to DOM changes.
We now describe five different optimizations that are pro-
gressively applied to the baseline algorithm to make it more
robust.
(i) Path Resiliency: Even though the baseline fingerprint
described earlier is robust to secluded changes in the DOM
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Algorithm 1 Baseline Algorithm

1: procedure match f inдerpr int (Q .F P (e), Q .F P (e′))
2: score ← 0
3: for id ∈ Q .F P (e) do
4: if id ∈ Q .F P (e′) then
5: P1 ← Path corresponding to id in Q .F P (e)
6: P2 ← Path corresponding to id in Q .F P (e′)
7: if P1 == P2 then score ← score + 1
8: end if
9: end if

10: end for
11: return score
12: end procedure

tree away from the element, the presence of many changes
in the vicinity of the element can still break the fingerprint.
For example, element a5’s quorum fingerprint is insufficient
to find it in the modified tree, as its index w.r.t to its siblings
has changed. To counter this problem, Trackr adds resiliency
to how paths are calculated. Instead of just using the name
of an element and the index (w.r.t. its siblings) to differen-
tiate it from its siblings, Trackr computes three parameters
from the original tree τ - (i) l : the number of siblings to the
left of the node, including the node; (ii) r : the number of
siblings to the right of the node, including the node; and (iii)
d: the number of children of the node. Each path is now
a list of 4-tuples - (name, l , r ,d). The computation of score
in line 7 of Algorithm 1 is now replaced with match paths
from Algorithm 2. Given an anchor element with ID, a path
to an element P1 computed on the old tree, and a path to an
element P2 computed on the modified tree, Trackr first checks
the names of all elements along these paths (line 3). For ith

element in P1 and P2, if both l and r indices match, then the
score is incremented by 2

|P1 | (lines 5-6). If only one of indices,
say l , matches and the number of children d match, then the
score is incremented by r (P1[i])

|P1 |(l (P1[i])+r (P1[i])) . Note that this in-
crement is less than the increment when both l and r match
i.e. there is a penalty if one of the indices doesn’t match. Also
note that, Trackr uses the number of children as an additional
matching criterion in the score computation to discourage any
false positives that may arise.

With this optimization in place, the fingerprint of a5 com-
puted from the old tree will now be sufficient to find it in the
modified tree, as one of it’s index (r ) in the path from DIV d2
and the number of children remain intact.
(ii) Weighted Path Matching: Assuming uniform distribu-
tion of changes across the DOM tree, longer paths have a
higher probability of breaking with time compared to shorter
paths (see discussion in Section II-D). Consider a case where
in there are two elements with IDs in a tree. Also consider an
element whose fingerprint has two paths P1, and P2 (from the
two elements with ID a1, and a2, respectively). In a modified
tree, it is possible that two different elements e1, and e2 have
the same match score from Algorithm 2. This can occur when

Algorithm 2 Score computation with path resiliency

1: procedure match paths(P1, P2)
2: score ← 0, i ← 0
3: if names(P1) = names(P2) then . names() returns a list of

names of all elements along the path
4: while i < |P1 | do
5: if l (P1[i]) = l (P2[i])&r (P1[i]) = r (P2[i]) then
6: score ← score + 2

|P1 |
7: else if l (P1[i]) , l (P2[i])&r (P1[i]) = r (P2[i])&c(P1[i]) =

c(P2[i]) then
8: score ← score + l (P1[i ])

|P1 |(l (P1[i ])+r (P1[i ]))
9: else if l (P1[i]) = l (P2[i])&r (P1[i]) , r (P2[i])&c(P1[i]) =

c(P2[i]) then
10: score ← score + r (P1[i ])

|P1 |(l (P1[i ])+r (P1[i ]))
11: else
12: return 0
13: end if
14: i ← i + 1
15: end while
16: end if
17: return score
18: end procedure

the path from a1 to e1 matches completely with P1, and the
path from a2 to e2 matches completely with P2. In such a
scenario, the probability that the longer path among P1 and
P2 points to an incorrect element is higher than it’s alternate.

Based on this intuition, Trackr allocates more importance
to matching shorter paths compared to longer paths. This
is achieved by multiplying the score from Algorithm 2 with
a weight that monotonically decreases with an increase in
path length1. Trackr uses an inverse logarithm function

1
ln(1.25+lenдth) to weigh scores2.
(iii) Path Length Amendment: To find whether two paths
in different fingerprints lead to the same element, Trackr first
checks if the names of elements along the paths are equal.
Consider a case wherein an element is deleted along a path
but the rest of the path remains intact. In this case, the names
of elements will no longer match. Further, if this deletion
is close to the element (say it’s parent), it is highly possible
that all the paths within the element’s fingerprint will fail.
Through this optimization, Trackr accounts for one possible
deletion with Algorithm 3. Given a path from a fingerprint
computed on the old tree P1 and a path from a fingerprint
computed on the modified tree P2 (corresponding to the same
element with ID as in P1), if the length of P2 is one less than
that of P1, Trackr creates a set of dummy paths. For every
ith element along the path P1, Trackr creates a dummy path
P ′1 that indicates what P1 would look like if the ith element
was deleted. If the names of elements along this dummy path
match to that of P2, Trackr appends this dummy path into a
1When some areas of the DOM tree are subject to more changes than other
areas, the assumption on the uniform distribution of changes does not hold.
In this case, more weight can be allocated to paths that do not go through
change-prone areas. Finding these areas is beyond the scope of this paper
2Any monotonically decreasing function will produce the same results
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Algorithm 3 Matching paths with path length amendment
1: procedurematch paths weiдhted(P1, P2)
2: score ← 0
3: if names(P1) == names(P2) then
4: score+ =match paths(P1, P2). 1

ln(1.25+ |P1 |)
5: else if |P2 | + 1 == |P1 | then
6: candidates ← []
7: temp ← P1
8: for i ← 0; i < |P1 |; i + + do
9: temp ← temp\temp[i]

10: if names(temp) , names(P2) then
11: continue
12: end if
13: if dir (P1[i]) == ‘DOWN ′ then
14: l(temp[i])+ = l(P1[i + 1])
15: r (temp[i])+ = r (P1[i + 1])
16: else
17: l(temp[i − 1])+ = l(P1[i − 1])
18: r (temp[i − 1])+ = r (P1[i − 1])
19: end if
20: candidates .add(temp)
21: end for
22: scores ← []
23: for P ∈ candidates do
24: scores ←match paths(P , P1)/ln(1.25 + |P | + 10)
25: end for
26: score ←max(scores)
27: end if
28: return score
29: end procedure

list of candidate paths for consideration (lines 5-12). When
an element is deleted, all the element’s children are appended
to its parent. To account for this, if the original tree has to
be traversed ‘DOWN’ to reach the deleted element (from the
previous element in the path), the siblings count l and r of
the deleted element are added to the siblings count of the
next element along the dummy path. This is because the next
element is a child of the deleted element. On the other hand,
if the direction of movement is ‘UP’, the siblings count of the
deleted element are added to those of the previous element
along the path (lines 13-19). In the end, each candidate path
is matched to P2 using Algorithm 2, and the final score is set
to the maximum of all scores (among the candidate paths). In
addition, a penalty of 10 is added to the length of path P1 to
discourage false positives (lines 22-27).
(iv) Progressive Path Patching: Through baseline quorum
fingerprinting and the previous three optimizations, an ele-
ment can be reliably identified even when the DOM tree is
changed. When a web service utilizes Trackr to track some
elements, their fingerprints are computed and stored. Over
time, as the web application undergoes more changes, the
paths within the old fingerprint slowly become irrelevant. To
avoid this issue, Trackr progressively updates the fingerprint
every time the user visits the same web application. To do

Name Value Name Value
# of iterations 50 Probability of change 0.5

# of rounds of change 7 # of tracked elements 30

Table 1: Default Experimental Parameters

this, Trackr first identifies the elements in the web application
using the matching procedures outlined earlier. If any of the
paths in fingerprint have since been modified, Trackr patches
the stored fingerprint to reflect the new paths.
(v) Local Signature: While all of the previous optimizations
are designed to create resiliency in the presence of changes
away from the element, when the element itself migrates to a
different part of the tree either by itself, or as a part of migra-
tion of one of its ancestors all of the paths in the fingerprint
can fail. However, there is still a high possibility that the ele-
ment’s surrounding context remains the same (as the element
migrates with its descendants). As a fail-safe for this situation
Trackr includes an element’s local context, called its signature
in the fingerprint. The siдnature of an element is defined as
a list of tag names of the children and grandchildren of the
element ordered in a depth first pattern. To find an element
using its siдnature, Trackr matches the pattern in siдnature
to all other elements in the DOM tree and looks for an exact
match. As the signature has a very high rate of false positives,
it is only used when the all the paths fail.

4 EVALUATION

Methodology: In this section, we evaluate the performance
of Trackr on four different web applications: (i) Learning
Management - Sakai[18], (ii) Human Resources Manage-
ment - Oracle Peoplesoft[19], (iii) Collaboration and Team
Management - Microsoft Sharepoint[20], and (iv) Customer
Relationship Management - Salesforce[21]. For each of these
websites, we first download the homepage after login and
extract the DOM tree. On an average, the number of ele-
ments in the DOM tree were 191, 1356, 1357, and 1886, for
Sakai, Peoplesoft, Sharepoint, and Salesforce, respectively.
We then introduce several rounds of change into this DOM
tree. At every change round, each DOM element undergoes
a change with a probability pchanдe (default value = 0.5%)3.
Each change round represents the modifications to the DOM
tree between two consecutive visits. The default number of
rounds of change is set to 7. At the end of each change round,
Trackr patches the fingerprint (III-A-iv).

For elements that are selected to change, the type of change
is chosen randomly among: (i)Attribute change: The value of
a randomly chosen HTML attribute is changed to a new value;
(ii) Attribute insertion: A new HTML attribute is added to
the element’s tag; (iii) Attribute deletion: A randomly chosen

3Even though this probability is small, given the size of a typical DOM tree,
the number of changes with each round are high.
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Figure 7: Performance of Trackr compared to Graphical (Coordinates), Path From Root, and Path From ID
attribute is deleted from the element’s tag; (iv) Insertion:
A new element is inserted as a child of the element at a
randomly chosen index. The type of this element is randomly
selected among all previously seen tags in that DOM tree; (v)
Deletion: The element is deleted from the DOM tree and any
children are inserted back into the deleted element’s position;
(vi) Migration: The element, along with its descendants, are
moved to a different (randomly selected) location in the DOM
tree; These changes broadly reflect the types of changes an
element is subjected to in reality.

At the beginning of every iteration, we download the web-
site, extract the DOM tree and select 30 candidate elements
(at random) from the DOM tree to be tracked by Trackr. Af-
ter completion of all change rounds, we use Trackr to find
the candidate elements in the modified DOM tree. To es-
tablish the ground truth, at the beginning of each iteration,
we add a unique dummy ID for each element in the DOM
tree. At the end of the iteration, we compare this dummy-
id to the dummy-id of the element returned by Trackr. We
then compute: (i) Type-I error = # of candidates wrongly identified

Total # of candidates
(when the dummy ID of the element returned by Trackr is not
equal to the dummy ID of the candidate); (ii) Type-II error =
# of candidates not found

Total # of candidates (when Trackr is unable to find the element
in the DOM tree, but the element was not deleted); (iii) Error
= Type-I error + Type-II error; To eliminate random bias, we
repeat the experiments for 50 iterations. We also evaluate
these errors for three other fingerprint candidates used in prior
work: (i) Graphical coordinates (Graphical Coordinates), (ii)
Path from the root of the DOM tree (Path From Root), and
(iii) Path from the nearest ancestor with an attribute ID (Path
From ID).
Macroscopic results: Figure 7 shows the errors of finger-
print candidates using the default parameters from Table 1.
Trackr clearly outperforms all other candidates. On an aver-
age, Trackr is inaccurate only 4.74% of the time, where as
the average error rates for Graphical Coordinates, Path From
Root, and Path From ID are 69.74%, 45.44%, and 10.64%,
respectively. Graphical Coordinates have the highest error
rate and it performs worse compared to the fingerprints that
rely on the DOM. We can also observe that Path From ID
has a much lower error compared to Path From Root. This
improvement can be attributed to the decrease in the path
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Figure 8: Sensitivity to % of nodes changing in DOMlength by computing the path from an element in the vicin-
ity of the given element. This is because the shorter paths
have a lower probability of breaking. By building redundancy
into the fingerprint by computing paths from many elements,
adding resiliency to the paths, giving more importance to
shorter paths, accounting for deletions, patching fingerprints
when possible, and by using the local signature when all of
the above fail, Trackr achieves a 55% improvement over Path
From ID.
Microscopic results: We also study the improvement result-
ing from progressively applying optimizations to the baseline
algorithm for Sakai application. When we add the path re-
siliency optimization to baseline quorum fingerprinting, by in-
cluding two different indices in the paths, the error is reduced
from 5.8% to 4.8%. By introducing weights proportional to
the path lengths and including the path length amendment op-
timization, the error is further reduced to 4.2%. By patching
the fingerprints on every visit to the web application, the error
reduces to 3.9%. Finally, by using local signatures to find the
elements when all the paths break, the error rate of Trackr is
reduced to only 2.8%.
Sensitivity Analysis: In this section, we study the sensitivity
of Trackr to different parameters for two web applications -
Sakai and Peoplesoft. Unless mentioned, the experiments use
the default parameters from Table 1. For relative comparison,
we also show the performance of Path From ID. Figure 8
shows the effect on the error of changing the percentage of
nodes subject to modification in each round of change. As the
percentage of change increases, the error rate also increases
for both Path From ID and Trackr. This is because as the
DOM undergoes more changes, the chances of the paths in
the fingerprint breaking also increase. The increase in error is
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Figure 9: Sensitivity to the number of rounds of changes
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Figure 10: Sensitivity to types of changes
roughly linear. On an average, every 0.1% increase in proba-
bility of change results in a 1.1% increase in error for Trackr,
and a 1.9% increase for Path From ID.

We also study the effect of the type of change on the error
(figure 10). With only insertions allowed, the average error
rate is 1.7% for Trackr and 7.3% for Path From ID. When
only deletions are allowed, the average error rate is 2.9%
for Trackr and 9.9% for Path From ID. For only migrations,
the average error rate is 4.1% for Trackr and 8.8% for Path
From ID. Given that the probability of change is the same,
if all changes are equal, the error should remain the same.
However, these numbers indicate that Trackr is most resilient
to insertions and most sensitive to migrations. This is because
when a node migrates, all the paths in the fingerprint are
broken leaving Trackr with only local signature to find a
match. However, since the local signature is more susceptible
to finding the wrong elements, the error rate for migrations is
higher.

Figure 9 shows the effect of changing the number of rounds
of change, the DOM tree is subject to, before the error is
computed. As the number of rounds are increased from 0 to
15, the error rate also increases. On an average, per round of
change, the increase in error rate is about 0.7% for Trackr and
1.63% for Path From ID. The increase in error rate is lower
for Trackr, as the paths in the fingerprint are progressively
updated after every round of change. While this number
seems alarming, in reality, DOM trees change very slowly
with time, and hence Trackr still remains robust for a long
period of time.

1. GBP-USD gains
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www.bitcoin.com
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Figure 11: Dashboard App
5 USE CASES FOR TRACKR
5.1 Prototype:
To demonstrate the usage of Trackr, we developed Dash-
board, a proof-of-concept Android mobilization app. Using
Dashboard, users can mobilize and monitor values within UI
elements spanning across multiple web applications within
one mobile app. Figure ?? shows In this section we discuss
how Trackr’s accurate and reliable fingerprinting of UI ele-
ments can be integrated with the three secondary service use
cases we introduced in Section 2.
Automation: To automate a workflow with Selenium, the
developer has to first obtain a handle for the UI element using
DOM access methods and specify the type of action with any
required parameters in a script. For example, to enter text
in a text box, the developer has to script how to access the
text box element, say through xpath expressions, and use the
method find element by xpath() to obtain a handle. Text can
be inserted by calling the method send keys() on the handle.
The burden of obtaining the right handle for an element rests
with the developer. If the web application changes after the
automation scripts have been written, Selenium will not be
able to perform the specified actions on the desired element.
The developer then has to manually update the scripts with
methods to access the correct handle for the elements within
the modified DOM tree. For web applications that frequently
change, this is burdensome and impractical.

Trackr can alleviate the problem of re-coding handles
for elements every time the application changes, by allow-
ing the developers to create a robust fingerprint for the ele-
ments. By including the Trackr browser extension through
add extension()method of selenium, and callingTracker .track()
on the element’s current handle, a tracker for the element can
be initialized. At a later point in time, the correct handle to
the element can be obtained by passing the tracker’s name to
Tracker . f ind() method. The following pseudo code demon-
strates the usage of Trackr in Selenium.
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\\Adding trackr extension
options = webdriver.ChromeOptions()
options.add_extension('trackr.crx')
driver = webdriver.Chrome(chrome_options=options)
...
\\ Track a list of elements
\\ elem: a handle for the element to be tracked.
\\ name: a name for the tracker
js='return Trackr.track(arguments);'
fp = driver.execute_script('js',elem, name)
...
\\ Get a handle for tracked element
js = 'return Trackr.find(arguments)'
elem = driver.execute_script('js',name)
...

Macro-Creation: In IFTTT, macros can be configured
through a GUI, wherein the users can select from a list of
available triggers and actions. The burden of providing the
triggers for IFTTT is on the web application and therefore,
the users are restricted to only those applications that expose
an IFTTT compatible API. However, given that very small
percentage of applications provide an API, the benefits of
macros are severely limited. On the other hand, expecting all
web services to provide a functional API to monitor variables
and perform tasks is impractical.

With simple extensions to Trackr, users can be allowed to
create their own triggers even from web applications that do
not currently provide an API to integrate with IFTTT. To sup-
port this feature, Trackr browser extension can be extended
to allow users to select a web element to be monitored by
right-clicking on it in a web page and selecting an option
from the context menu. The users can then be asked to also
enter a condition for the monitored value. Trackr can then
periodically monitors the element from the application. When
the trigger conditions are met, Trackr can embed the value
in a JSON object and send a response back to IFTTT as an
HTTP POST message indicating that the trigger is activated.
These steps are demonstrated in the following pseudo code.
elem, condition <- get from user
// Start a tracker to monitor element
fp = trackr.Track(elem,name);

//periodically monitor value of elem
while(1):
load_web_service() // Load the web service
// Get the monitored value
value = Trackr.find(name).value
if value satisfies condition:
//Create a IFTTT JSON response
response_json= {
"trigger_identity": "92429d82a41e93048",
"triggerFields": {"monitored_value": value},
"ifttt_source":
{"url": "https://example.com/trigger"},

}
// post the response back to IFTTT
post(response_json);
sleep(period) // polling frequency

Application Mobilization: Mobilizing enterprise applica-
tions with refactoring involves hosting the application on a
cloud server and providing a highly optimized native UI for
the users to interact with the application on their smartphones.
Through Capriza [2], users can create micro-apps that per-
form specific workflows on traditional enterprise applications

through a simple GUI tool called the Designer. It allows the
users to select elements from the original application UI, cus-
tomize them and add them to the smartphone UI. For these
selected elements, Capriza creates unique fingerprints and
associates them to their smartphone native versions. When
the user performs an action (say taps a button on the smart-
phone), these mappings are used to find the corresponding
UI element of the original application and execute actions.
For the created mobile app to function correctly, the actions
have to be executed on the correct elements in the original
UI. When the layout of the original application changes, it is
possible that the fingerprints generated by Capriza at the time
of micro-app creation fail. In this case, the user will not be
able to perform the intended workflow on the micro-app. The
user will now have to recreate the original micro-app from
the modified application UI.

When the user selects the elements from the Designer,
Capriza can use Trackr to initiate trackers for them and
map these trackers to their corresponding native UI elements.
When the user performs an action on the native UI, the tracker
names can be used to obtain a handle to the element in the
original UI and perform the corresponding action on it.

6 ISSUES AND CONCLUSIONS
The following questions could be raised on the approach taken
by Trackr to track elements: (i) Can Object tracking algo-
rithms from image processing research [22] be used to track
elements? Object tracking algorithms assume that between
two consecutive video frames, the object does not move by a
lot. However, given that the web elements are containers of
content, their appearance can change drastically between two
instances. Therefore, pixel based object tracking methods
are not applicable to our problem; (ii) Can the developers
of web applications be forced to declare attribute IDs for
all web elements? It requires remodeling the large body of
legacy web applications and is impractical; (iii) Can trackers
be embedded within elements by the secondary web services?
This would require a change at the web application’s end to
honor the trackers, and is therefore impractical;

The following are some issues with the design choices
made for Trackr. (i) Software design choice: In this paper,
we designed Trackr to be a browser extension. However, the
principles of Trackr are not restricted to this design choice.
Alternatively, Trackr can also be implemented as a javascript
library that the web applications can include to avail finger-
printing services; (ii) Reactive vs. Proactive updates: Trackr
updates the stored fingerprints reactively upon every subse-
quent visit to the web application by the user. While this
approach could work well if the pages are frequently visited
by the user, a reactive approach where in Trackr periodically
updates the fingerprint is more suited for infrequently ac-
cessed pages; (iii) Identification of the web page: Trackr
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stores the fingerprints in a database indexed by the name of
the tracker and a URL of the web page. However, it is possi-
ble for some web pages to have a dynamic URL e.g., news
articles. In this case, a better indexing mechanism would be
to create a fingerprint for the page itself, independent of the
URL. One way to achieve this is to select a subset of elements
whose presence definitively identifies the web page. We plan
to address these issues in the future;

To conclude, in this paper, we proposed Trackr, an algo-
rithm to reliably track UI elements within a web application
for robust API creation. We introduced the principle of quo-
rum fingerprinting used by Trackr to create unique identities
for the tracked elements and presented optimizations designed
to increase its robustness. We evaluated Trackr over four pop-
ular web applications to show attractive benefits. Finally, we
discussed Trackr’s application through three uses cases.
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