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Overview Naive Approach to Integrate Implicit Human Feedback Future Work
* Human feedback can significantly accelerate the Reinforcement Obtaining the Implicit Human Feedback Integrating the Implicit Human Feedback * Scalability over environments
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* Explicitly requires the humans to take actions with reward shaping
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* Implicit human feedback: Humans' intrinsic reactions as implicit (and » Electrode Selection: ElectrodeSelect (nelec.
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generates error-related potential (ErrP) [Scheffers et al., 1996] Algorithm: Decoding ErrPs Performance: Decoding ErrPs Learning Curve Complete Episode  Wayne J. Holman Endowed Chair

* When a human recognizes an error made by an agent, elicited ErrP can
inform about the sub-optimality of executed action in the given state

Towards Practical Integration of Implicit Human Feedback

* Widens the applicability of RL-human interactive systems

* Feedback is direct and fast while being natural and easy for humans Zero-shot |earning of ErrPs Learning from Imperfect Demonstrations M.
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feedback) in real-world environments * Definition of error-potentials can be learned in a * Implicit human feedback is required on initially given trajectories ,}"H'jj”‘uudé‘l”
" lgorithm 1 o decode Ert labels 1., ENP(. )
zero-shot manner * An auxiliary reward function is learned based on the labeled trajectories prior to RL training [etiseaeeitnim
* Experimentally validate that ErrPs can be learned ¢ During the RL training, the learned reward function acts as a proxy for the human feedback | R——
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environments in OpenAl Gym Atari * Captures more than 80% of variability * Achieves 2.25x acceleration averaged over 5 subjects a1+ by any R o
framework compared to 10-fold CV
1 e Wobble, Catch and Maze

1 Trained on: Maze Catch Wobble
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e https://github.com/meagmohit/gym-maze
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 Experimental Protocol (approved by IRB)
 Machine agent plays a computer game
while a human silently observes
 Agent took action every 1.5 seconds
 Hardware: OpenBCl Cyton w/ BIOPAC CAP
» Software: OpenViBE platform + OpenAl Gym
* Recruited 5 subjects (mean age = 26.8)
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