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Overview

System Setup and Data Collection

Naïve Approach to Integrate Implicit Human Feedback

Towards Practical Integration of Implicit Human Feedback

• Human feedback can significantly accelerate the Reinforcement 
Learning  (RL) algorithms in end-user applications
• Human ratings and rankings [El Asri et al. 2016]
• Learning from Demonstrations [Ng, Harada, and Russell 1999]

• The issues with explicit human feedback
• Severely burdens the human involved in the loop
• Explicitly requires the humans to take actions
• Difficult (or impossible) in some situations like driving (or disable user)

• Implicit human feedback: Humans' intrinsic reactions as implicit (and 
natural) feedback through Electroencephalography (EEG) in the form 
of error-related potentials (ErrPs)
• Inspired by a high-level error-processing system in humans that 

generates error-related potential (ErrP) [Scheffers et al., 1996]
• When a human recognizes an error made by an agent, elicited ErrP can 

inform about the sub-optimality of executed action in the given state

• Widens the applicability of RL-human interactive systems
• Feedback is direct and fast while being natural and easy for humans
• Avoids unwanted situations with increased latency (explicit human 

feedback) in real-world environments

• Developed three discrete-grid based 
environments in OpenAI Gym Atari 
framework
• Wobble, Catch and Maze
• https://github.com/meagmohit/gym-maze

• Experimental Protocol (approved by IRB)
• Machine agent plays a computer game 

while a human silently observes
• Agent took action every 1.5 seconds

• Hardware: OpenBCI Cyton w/ BIOPAC CAP
• Software: OpenViBE platform + OpenAI Gym
• Recruited 5 subjects (mean age = 26.8)

Riemannian Geometry based ErrP decoding [Barachant et al., 2014]
• State-of-the-art algorithm for decoding event-related potentials
• Binary classification problem for ErrP labels
• Performance using 10-fold cross-validation
• AUC of 0.89 for Maze, 0.83 for Catch and 0.77 for Wobble
• Over 80% sensitivity for Maze

Reward shaping with full access method
• Human feedback is obtained on every state-action pair
• Time-intensive and not practically feasible
• Performance Evaluation
• Success rate: ratio of successful plays in the last 32 episodes
• Achieves a training  acceleration of 2.25x 

Integrating the Implicit Human FeedbackObtaining the Implicit Human Feedback

Zero-shot learning of ErrPs

• Definition of error-potentials can be learned in a 
zero-shot manner

• Experimentally validate that ErrPs can be learned 
on one environment, and the decoder is used as-
is for novel and unseen environments

• Performance:
• AUC of 0.9078 (test: Maze, train: Catch)
• Captures more than 80% of variability 

compared to 10-fold  CV

Learning from Imperfect Demonstrations 
• Implicit human feedback is required on initially given trajectories
• An auxiliary reward function is learned based on the labeled trajectories prior to RL training
• During the RL training, the learned reward function acts as a proxy for the human feedback
• Queries are made initially on a subset of state-action space
• Reduces the total number of queries and hence, cognitive load on humans

• Performance:
• Proposed approach makes 75.56% fewer queries as compared to full access
• Achieves 2.25x acceleration averaged over 5 subjects

Algorithm: Decoding ErrPs Performance: Decoding ErrPs Learning Curve Complete Episode

Performance: zero-shot learning over all game 
combinations compared with 10-fold CV

Proposed Framework Learning Curves
10 trajectories                        20 trajectories

Future Work
• Scalability over environments 

with larger state-spaces
• Extending the scope of zero-

shot learning beyond discrete-
grid navigational games

• Integrating human feedback
• Preserving policy optimality 

with reward shaping
• Considering other approaches 

e.g., policy shaping, IRL etc.
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