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Abstract—The ubiquitous adoption of WiFi implicitly intro-
duces large diversity in types of application requirements and
topological characteristics. Consequently, considerable attention
is being devoted to making WiFi networks controllable without
compromising their scalability. Within this broad paradigm, we
propose Rhythm, a MAC protocol that achieves scheduled WiFi
efficiently and that is subject to the following constraints: (i)
It does not need fine-grained time synchronization, (ii) it adds
no “active listening” time, (iii) it does not need to gather the
queue status from clients, and (iv) it requires no additional
hardware. It also has the following properties: (i) low overhead,
(ii) work conservation, (iii) robustness to partial connectivity, and
(iv) backward compatibility.

I. INTRODUCTION

WiFi has become de-facto “zeroth”-mile connectivity in a
wide-swathe of Internet settings. High data-rate achievability,
cheap deployability, and near-universal availability on mobile
devices have all contributed to its tremendous ubiquity. WiFi
is routinely used today in many environments that exhibit
diversity both in terms of service requirements and topolog-
ical characteristics. Therefore, researchers are devoting con-
siderable attention to improving WiFi network controllability
without compromising its scalability. WiFi controllers that
centralize the management of access points (APs) within an en-
terprise network may be the simplest example of such efforts.
Functionalities such as radio resource management, wireless
policy management, and authentication services are moved to
the central controller. However, while WiFi controllers allow
for configurability, they do so only for macro-level “control
plane” parameters such as authentication settings and channel
assignments, and they do not control “data plane” functions
such as media access control.

The media access control (MAC) protocol used by WiFi
is an important function with regard to controllability and
scalability. The distributed MAC protocol has many bene-
fits, including low complexity, scalability, and robustness to
dynamic traffic loads. However, it is not controllable, and
its efficiency decreases as contention levels increase. Some
approaches improve efficiency by optimizing the contention
window of the distributed coordination function (DCF) [1],
[2]. However, without centralized network-wide information,
the resulting efficiency does not achieve what a MAC protocol
with centralized information achieves.

While distributed MAC protocols are less controllable and
often have low efficiency, centralized MAC protocols [3] are
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more controllable and enable cooperation among networks.
However, such approaches require fine-grained time synchro-
nization, which is not practical in many situations [4]. They
also introduce high overhead or inefficiency when collecting
micro-level network-wide information such as the queue status
of clients (e.g., the polling mechanism in the 802.11 PCF [5]).

Thus, this paper focuses on how to enable the controlla-
bility of WiFi networks without compromising their scalability.
To achieve this goal, we introduce a MAC protocol called
“Rhythm”. Specifically, Rhythm furnishes all nodes in WiFi
networks with a target schedule that has been determined by
a central entity. The nodes in the networks then operate in a
purely distributed fashion to meet the target schedule. We refer
to such a network behavior as “scheduled WiFi.”

The specific contributions of our work are two-fold:

• We present Rhythm, a solution for scheduled WiFi.
We show that Rhythm enables scheduled WiFi sub-
ject to the constraints of (i) no fine-grained time
synchronization, (ii) no additional “active listening”
time, (iii) no need for gathering the queue status
from clients, and (iv) no additional hardware; and
with the properties of (i) low overhead, (ii) work
conservation in the presence of non-backlogged nodes,
(iii) robustness to partial connectivity scenarios, and
(iv) backward compatibility with non-Rhythm nodes
in the environment.

• We evaluate the performance of Rhythm using sim-
ulations and real-time experiments carried out in a
software defined radio platform: the Wireless Open-
Access Research Platform (WARP) [6].

This paper is not the first to introduce the notion of
scheduled WiFi. A MAC protocol, Domino [4], is perhaps
closest to the approach used in this paper and best exemplifies
an approach to achieving a schedule without fine-grained time
synchronization. We detail the differences between Rhythm
and Domino later in the paper and compare their performance.
Briefly, Rhythm is more practical with minimal software-only
changes to WiFi implementation. It does not change WiFi
frame formats, and requires much less operating overheads,
enhancing performance and fairness.

The rest of the paper is organized as follows: Section II
presents the problem definition and Section III the design of
the Rhythm solution. Section IV evaluates Rhythm, Section V
presents related works, and Section VI concludes the paper.



II. PROBLEM

Let us consider multiple infrastructure WLANs, containing
n nodes, all using the same channel. In these WLANs, a
central controller communicates with all APs. After gather-
ing network-wide information (only macro-level information
such as client lists from APs, not the queue status, are
gathered), the central controller determines a target schedule
S = {s0, · · · , sk−1}, where si ∈ N = {0, · · · , n−1} indicates
the scheduled node ID in position i. (Note that the length of
schedule k can be larger than the number of nodes n if a node
is scheduled multiple times.) S is delivered to all nodes through
the APs. With S, how can nodes in these networks efficiently
contend distributedly (without any other communication with
the central controller) to follow the transmission order in S?

At a high-level, Rhythm involves changes to the contention
mechanism in the 802.11 DCF. A Rhythm node listens to on-
going transmissions and determines a virtual schedule pointer
within S. It then contends based on the relative distance
between the virtual pointer and its position within S. The
non-trivial aspects of the Rhythm solution lie in how work
conservation is achieved when it is in the presence of non-
backlogged nodes (Note that the queue status is unknown to
the central controller) and how partial connectivity (i.e., nodes
cannot overhear each other) and other practical challenges such
as backward compatibility are handled.

In the following section, we start with the simplest scenario
and consider each challenge gradually.

III. RHYTHM: SCHEDULED-WIFI USING DISTRIBUTED
CONTENTION

A. Baseline algorithm

In a scenario in which all nodes are in transmission range of
one another (i.e., a fully connected topology) and all nodes are
usually backlogged, if nodes are to follow the target schedule,
we introduce a logic concept: the virtual schedule pointer.

1) Virtual schedule pointer: To follow a common schedule,
nodes must be synchronized. Although the most straightfor-
ward way is time synchronization, fine-grained time synchro-
nization can be difficult. Thus, Rhythm achieves scheduled
WiFi by synchronizing nodes in a “logical schedule position”
in which each node in the network maintains a virtual schedule
pointer, Pos, that points to the current logical position in
the schedule. If the values of Pos in all nodes are the
same (i.e., they are synchronized), the nodes follow the target
schedule by adjusting the backoff number. For example, let’s
assume that three nodes X, Y, and Z and a target schedule
S = {s0 = X, s1 = Y, s2 = Z} initially do a random backoff
(the same way as DCF), and one node (assuming Y) wins
the contention and transmits successfully. After hearing the
successful transmission of Y, all nodes (including Y) update the
virtual schedule pointer to 1. Then, instead of continuing the
random backoff, Z sets its backoff number to 0 by calculating
D = pos(Z) − Pos = 2 − 1 = 1, where pos(Z) is the
scheduled position of Z, and uses ((D − 1) mod k) as its
backoff number. Similarly, X sets its backoff number to 1,
and Y sets its backoff number to 2. If Z transmits, X resets
its backoff number to 0 after overhearing the transmission of
Z (Pos = 2, pos(X) − Pos − 1 = 0 mod 3). If Z does

not transmit, X starts transmission when its backoff timer
expires (X only waits 1 backoff slot). Such a mechanism
allows nodes to follow the target schedule without extra time
synchronization. Employing this mechanism, we develop a
baseline algorithm of Rhythm: Rhythm-Base.

2) Algorithm: We assume that target schedule S =
{s0, · · · , sk−1} is known to all nodes in the network. All
nodes maintain synchronization state ST and record RC =
{r0 ∈ N

⋃
{Col}}, where r0 represents the most recent

transmission, and Col represents a collision. Algorithm 1
illustrates position synchronization (UpdatePos) and schedule
matching (MatchSch) of Rhythm-Base. Initially, every node
does random backoff when RC is empty. Upon a successful
transmission, the nodes update Pos to a position in S that
matches RC. The update mechanism depends on the current
synchronization state ST , which has two states: RAN and
SY N . If ST == RAN , which indicates lack of synchro-
nization before this transmission, the nodes update Pos to the
smallest matched position in S. If ST == SY N , nodes start
from previous Pos and update Pos to the nearest matched
position in S. After updating, each node sets the backoff num-
ber to ((D − 1) mod k), where D = posnearest(sself )− Pos
and posnearest(sself ) is the nearest scheduled position of each
node. If a collision occurs, ST is reset to RAN , and the nodes
perform a random backoff, just as they did in DCF. If a node
hears a new transmission before the backoff timer expires, it
updates Pos and resets the backoff number. Otherwise, when
the backoff timer expires, the node transmits, records its own
transmission, and updates Pos.

Rhythm-Base is simple, proffers weighted fairness, as in-
dicated in the target schedule, and yields near optimal channel
utilization: i) It wastes only 1 backoff slot (9µs in 802.11g) if
a scheduled node does not transmit, ii) it causes no collisions
when all nodes are synchronized, iii) it requires only one
successful transmission for convergence in Pos. (Matching
transmissions to the smallest position after collision avoids
ambiguity when some nodes are scheduled multiple times.)
In addition, because of its fast-convergence property, Rhythm-
Base is robust against disturbances such as the packet error
or loss of ACKs (both recorded as Col). Note that although
Rhythm utilizes overheard transmissions, the active listening
time is the same as that of DCF.

3) Overhead estimation: The use of Rhythm-Base intro-
duces two overheads: i) The overhead of broadcasting the
target schedule: Every node needs to know the target schedule
S. S can be placed into a beacon every few seconds. The
extra time for sending S is Ts = k×l

Rb
, where l is the length of

the MAC address, k the schedule length, and Rb the sending
rate of beacons. The overhead is Os = Ts

Tp
, where Tp is

the period of updating the target schedule. If Rb = 6Mbps,
k = 100, and Tp = 100ms, the overhead of broadcasting
the target schedule is only Os = 0.8%, which is very low
even when we have a long schedule and update it frequently.
ii) The overhead of re-synchronization resulting from packet
error and collision: Assuming Pcol is the probability of having
a packet collision when n nodes contend using DCF, and Perr
is the packet error rate, the overhead caused by packet errors
and collisions in DCF is Oe = (1 − Pcol)Perr + Pcol. In
Rhythm, 1 successful transmission can gain synchronization
and avoid collisions, so the overhead in Rhythm is Oe =



Algorithm 1 Rhythm-Base
1: function UPDATEPOS
2: if r0 ==Col ‖ |RC| == 0 then
3: set RC = {Col}
4: ST = RAN
5: return, and do regular random backoff as DCF
6: else if ST == RAN then
7: Pos=MatchSch(-1)
8: else
9: Pos=MatchSch(Pos)

10: end if
11: set RC = {r0} . clear old record
12: ST = SY N
13: set backoff number=(posnearest(sself )− Pos− 1) mod k
14: end function

15: function MATCHSCH(prevPos)
16: j = (prevPos+ 1) mod k
17: while True do
18: if sj == r0 then
19: return j
20: end if
21: j = (j + 1) mod k
22: end while
23: end function

Perr×(1−Pcol)(1+Pcol×2+P 2
col×3+· · ·) ≤ Perr× 1

1−Pcol
.

If Perr = 1% and Pcol = 15%, then Oe = 15.85% in DCF
and Oe ≤ 1.18% in Rhythm.

4) Limitations of the baseline algorithm: Although
Rhythm-Base yields near optimal channel utilization with low
overhead, it cannot perform well in the following situations:

• Non-backlogged nodes lead to inefficiency: In
Rhythm-Base, 1 backoff slot (9µs) is wasted when a
scheduled node does not transmit. When many nodes
are continuously non-backlogged, the performance of
Rhythm-Base might be worse than that of DCF.

• Partial connectivity leads to a lack of information:
Rhythm-Base achieves position synchronization by
overhearing transmissions. Thus, if nodes are located
outside the transmission range of the other nodes (i.e.,
hidden terminals), they do not overhear transmissions,
and Rhythm-Base may not achieve position synchro-
nization.

In the following subsections, we propose mechanisms that deal
with these situations.

B. Work conservation with non-backlogged nodes

Non-backlogged nodes generate idle slots, leading to ineffi-
ciency. Instead of informing the central controller to change the
target schedule, which generates extra overhead and requires
small delay between central entity and APs, we introduce a
Shrinking mechanism in Rhythm (Rhythm-Shrink), in which
nodes distributedly adjust the schedule.

1) Schedule shrinking for non-backlogged nodes: Each
node maintains a non-backlogged record: If some scheduled
nodes do not transmit, they are deemed non-backlogged. Non-
backlogged nodes are ignored in backoff calculation and
schedule-matching algorithms; that is, the schedule shrinks
among these non-backlogged nodes. Schedule shrinking re-
duces idle slots and thus avoids the inefficiency caused by non-
backlogged nodes. However, when nodes receive new packets,
how do they get back on schedule? One simple way is to
generate a collision that stops schedule shrinking. However, if
30 nodes are non-backlogged and only one of them receives

 

Fig. 1. Time line of mirror insertion

new packets, a collision and 29 idle slots (261µs) is generated
every time a node gets back on schedule. Thus, we introduce
an efficient insertion mechanism that reinserts nodes on the
schedule.

2) Mirrored collisions during insertions: If non-
backlogged nodes exist, 1 backoff slot, referred to as
an insert slot, is left at the end of each schedule cycle for
these nodes to win the contention and start a transmission,
which stops schedule shrinking among the nodes. If only
one node is inserted, it is recorded as backlogged when
its transmission is heard. However, how can several non-
backlogged nodes be simultaneously inserted with only 1
backoff slot? We introduce “mirror insertion,” which generates
two customized collisions for efficiently inserting multiple
nodes simultaneously.

The main goal of mirror insertion is to determine an
instant insertion order at which point all inserting nodes
will be inserted so that no time is wasted waiting for non-
backlogged nodes that are not inserting. Fig. 1 illustrates the
time line of mirror insertion. When nodes want to insert, they
transmit a packet of a special length (achieved by packet
splitting and aggregating) in the base rate. The length is
min pkt + (n − I) × δ, where min pkt is a predefined
minimum packet size known by all nodes, δ the sum of the
preamble transmission time and the transmission switching
delay, and I the order of their first scheduled position in
S. (For example, if S = {0, 3, 1, 3, 2}, the order of the
first scheduled position is {0, 3, 1, 2}, and the insert packet
length is min pkt for node 2, and min pkt + 3 × δ for
node 0.) When multiple nodes are inserted simultaneously, a
collision occurs. Each inserting node records λi (i ∈ N ), the
time from the end of its transmission to the time when the
channel becomes idle. Then, each inserting node transmits at
EIFS−DIFS+λi after the channel becomes idle, creating
a second collision, a “mirror image” of the first. After the
first collision, all inserting nodes listen to the channel before
transmitting. Since the start of each transmission is separated
by at least δ, each node is able to hear the preambles of all prior
transmissions before starting its own. Each node then applies
preamble correlations to the heard signal and figures out how
many nodes start transmitting before it start to transmit during
the second collision. This transmission order determines the
insertion order for all inserting nodes, as illustrated in Fig. 1.

The key mechanism of mirror insertion is identifying
preambles in collision using correlation. A preamble is a
pseudo-random sequence that can be identified using corre-
lation, even under high interference. Studies have proven this
mechanism valid with multiple random collided packets [7].
Since mirror collision is designed in a way in which preambles
are separated in the integer number of δ (we use 26µs when



Algorithm 2 Backoff Calculation of Rhythm-Shrink
1: function CALBK(Pos)
2: if IsInsterting==False then . node is not inserting
3: Sch Pos=posnearest(sself )
4: else if IsInsterting==True then . node is inserting
5: if InstST==Before Mirror Coll then . before mirror collisions
6: Sch Pos=k
7: else if InstST==After Mirror Coll then . after mirror collisions
8: BK =(n front insert)-(n insert)
9: return BK

10: end if
11: end if
12: BK = (Sch Pos−Pos− 1) mod k;
13: BK = BK−NonBkLogCount(Pos,Sch Pos) . skip non-backlogged nodes
14: if Sch Pos≤ Pos & NonBkLogCount(0,k)> 0 then
15: BK++
16: end if
17: return BK
18: end function
19: function NONBKLOGCOUNT(p1,p2)
20: return the number of non-backlogged nodes between position p1 and p2
21: end function

the preamble transmission time is 16µs), its identification is
even easier.

Mirror insertion does not require fine-grained time syn-
chronization. As long as the preambles in the second collision
are separated far enough for identification, an insertion order
is determined. Since mirror collisions are two collisions within
EIFS, they are easily recognized, and are not treated as
normal collisions.

3) Algorithm: As the position synchronization and
schedule-matching algorithm of Rhythm-Shrink closely re-
sembles that of Rhythm-Base (requiring only skipping mir-
ror collisions when matching and setting Pos = k during
insertion), this work omits it.1 Algorithm 2 illustrates the
backoff calculation of Rhythm-Shrink. When a non-inserting
node calculates the backoff number, it skips non-backlogged
nodes (line 13) and adds an insert slot if required (line 14 to
15). After creating mirror collisions, inserting nodes learn the
insertion order, continue counting the insertion transmissions,
and set up the backoff number accordingly (line 8). Since
Pos = k during insertion, non-inserting nodes will continue
adding an extra backoff slot (line 14 to 15), and inserting nodes
win the contention after creating mirror collisions.

4) Overhead estimation: Mirror collisions result in the
main overhead of the shrinking mechanism: Omirr =
2×Tcol×PinsrtCol

dTinact
Tsch

e×Tsch

, where Tcol = Tmin pkt + (n − Iavg) × δ
is the time spent in each mirror collision, Iavg is the average
minimum first scheduled position of the insert nodes, PinsrtCol
is the probability of having more than two inserting nodes,
Tinact is the average period in which a node runs out of
packets, Tsch is the average period of the target schedule, and
Tmin pkt is the transmit time of a packet with size min pkt.

Tcol slightly increases as the number of node increases: If
Tmin pkt = 52µs, δ = 26µs, n = 50, Iavg = 25, PinsrtCol =
1 and dTinact

Tsch
e × Tsch = 50ms, we have Omirr = 2.81%. If

n = 300, Iavg = 150, we have Omirr = 15.81%. Compared
to 40%, which results from collisions when DCF is used with
n = 300, this value is still reasonable. The traffic dynamic
and the schedule period also affect Omirr. If Tsch = 200ms
or Tinact = 200ms, Omirr = 3.95% in the n = 300 case.

In summary, the overhead grows only when the three

1More details can be found in [8].

following conditions are satisfied: i) the number of nodes is
large, and ii) traffic is strongly dynamic, and iii) the average
schedule period is short. Because it is unlikely to have both
short schedule period and a large number of nodes, Rhythm
can yield near optimal channel utilization in most practical
situations with various traffic loads.

C. Handling partial connectivity

Partial connectivity hinders position synchronization in
Rhythm. Instead of transmitting RTS/CTS, which generates
large overhead, we introduce a clique mechanism in Rhythm
(Rhythm-Clique).

1) Separation and connection: The main concept of the
clique mechanism is separating nodes that cannot overhear
each other into different groups. Nodes inside the same group
overhear each other. Thus, each group can operate Rhythm-
Shrink by itself. Then, we use nodes that can hear different
groups to connect groups. We illustrate this concept using
an example in Fig.2(a), where nodes 1 and 2 cannot hear
each other. The target schedule separates the two nodes and
connect them using node 0: S = {0, 2, 2, 0, 1, 1}. The start and
end positions of each group are the positions of the adjoining
connecting nodes (indicated in Fig. 2(b)). When Pos points to
positions inside a group (referred to as active positions), nodes
in the group operate Rhythm-Shrink. Otherwise, they set up a
long backoff. After the first successful transmission of node 0,
all nodes have Pos = 0. Node 1 sets up a long backoff and
node 2 transmits twice. Then, node 0 transmits again, which
updates Pos = 3. Node 2 sets up a long backoff and node 1
transmits twice. Then, node 0 transmits and updates Pos = 0
again. Repeatedly, the nodes follow the schedule even when
they cannot overhear each other. Based on the same concept,
we describe the clique mechanism below.

2) Cliques and bridges: The clique mechanism involves a
target schedule that separates nodes that cannot overhear each
other into different portions, or cliques, of the schedule (all
nodes inside a clique overhear each other) and places “bridges”
to connect the cliques. The start and end positions of a clique
are the positions of the adjoining bridges, which define the
active positions of a clique. Fig. 2(c) shows a schedule with
three cliques, Ci, four bridges, Bj , and start/end positions.

To trigger Pos updates, bridges should always transmit,
and the transmissions of bridges must be heard by their
adjoining cliques. Accordingly, bridges can be set up in three
ways: i) Using a node that hears both cliques: A node that
hears both cliques can act as a bridge connecting them; ii)
using nodes from both cliques that hear each other: shown in
Fig. 2(c); after overhearing the transmission of B1, the Pos
update of C1 is triggered, and B2 transmits and triggers the
Pos update in C2; iii) using nodes from both cliques that
can communicate with each other using the backbone: Some
nodes can communicate using a backbone connection (such
as APs). In Fig. 2(c), when B2b transmits, it sends a packet
containing the transmission time of its wireless transmission
to B3b through the backbone. Based on information carried in
this packet, B3b learns the end time of transmission of B2b,
and transmits to trigger the Pos update in C3. We can extend
the concept of the clique mechanism to scheduling multiple
cliques that do not interfere with each other in parallel (Fig.
2(d)).
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3) Algorithm: Assume that the conflict graph of WLANs
is known by the central controller. The controller designs the
target schedule S with cliques and bridges (each client belongs
to at least one clique formed by its AP and itself). Since bridges
always need to transmit, only APs are selected as bridges. If
a bridge runs out of data packets, it transmits a CTS-to-Self
with NAV= 0. The first position s0 is always a bridge. S with
information about the cliques and bridges is then delivered to
all nodes.

The schedule matching of Rhythm-Clique is the same as
that of Rhythm-Shrink. The position synchronization and the
backoff calculation of Rhythm-Clique are similar to those of
Rhythm-Shrink; thus, we illustrate only their differences. Ini-
tially, all nodes (except s0) set a long backoff time. s0 starts the
first transmission, and nodes update Pos when they overhear
transmissions. If Pos belongs to its active positions, a node
operates as Rhythm-Shrink. Otherwise, it sets a long backoff
time. When doing insertion, each clique works independently.
That is, nodes maintain only a non-backlogged record for the
cliques they belong to. In addition, an insert slot is added at
the end of each clique portion.

4) Overhead estimation: Rhythm-Clique contains three
major overheads: i) Broadcasting extra information and dy-
namically generating conflict graphs: Similar to broadcast-
ing S, broadcasting additional information about cliques and
bridges result in little overhead. For generating conflict graphs
dynamically, we can utilize PIE [9], which is an online passive
interference estimation for WLANs. PIE, which has very low
overhead, fast convergence time, and fine-grained interference
estimation, can handle mobile clients at walking speed (0.25
m/s). ii) Transmitting CTS-to-self packets: The overhead of
transmitting CTS-to-self packets is OB = PAP×nB×CTS

Tsch
,

where nB is the number of bridges, PAP the probability that
a bridge (which is also an AP) runs out of packets, CTS
the transmission time of a CTS packet, and Tsch the average
period of the schedule cycle. Typically, because the downlink
traffic is heavy [10], PAP is small; since k ≥ n >> nB ,
Tsch >> nB × CTS. Thus, OB is small. iii) Backbone
transmission delay between bridges: The overhead introduced
by delay in the backbone is Od = d×nBd

Tsch
, where d is the

average delay deviation between two bridges and nBd the
number of bridges that communicate through the backbone.
Consider k = 30 and nBd = 2, Od = 9.17%, even when
d = 0.5ms. (The average delay d between two APs with one
switch is 0.1ms with a standard deviation of 0.09ms [11].)

D. Other challenges and considerations

1) System architecture: The system architecture of WiFi
networks operating Rhythm contains a central controller that
periodically communicates with these networks. The central
controller can be a WiFi controller or a server set up in the

cloud. WiFi network information, such as the conflict graph
and the client list, are periodically sent to the central controller.
The conflict graph can be obtained by using PIE [9], and the
client list can be monitored by each AP. Protocols such as
CAPWAP [12] and LWAPP [13] allow APs to communicate
with a central controller. Based on the collected information,
the central controller determines the target schedule S with
cliques and bridges, and delivers it to all nodes through APs.

2) Backward compatibility: Rhythm is backward compat-
ible with legacy WiFi. The operation of Rhythm and non-
Rhythm WiFi nodes can be separated into different time dura-
tion using network allocation vectors (NAVs) (which is similar
to how PCF/DCF coexist). At the end of each schedule cycle,
all bridges, one after another (following the order indicated
in S), transmit a packet (e.g., a beacon) with an unused bit
set (e.g., a power saving bit is not used in packets from APs
[5]). This packet contains NAV=P , where P is the estimated
transmission time of all Rhythm nodes. While non-Rhythm
nodes set up NAV=P , Rhythm nodes recognize the unused bit
and ignore the NAV. The estimation of P can be coordinated by
bridges using backbone transmissions and adjusted to ensure
fairness between Rhythm and non-Rhythm nodes.

3) Schedule updates and membership changes: The update
of S is indicated by a sequence number carried in ACK sent
by AP (ACK contains four unused bits [5]). If nodes receive
or overhear a new sequence number, they switch to using non-
Rhythm duration until they receive or overhear the new S from
AP. When a node wishes to join a network, it first tries to
overhear S from the APs, and then uses the non-Rhythm period
for registration. Note that since Rhythm automatically shrinks
the schedule, a delay in updating the target schedule does not
decrease reduce channel utilization.

4) Scheduling decision: Currently, the central controller
simply uses greedy algorithms to locate cliques in the conflict
graph and places all nodes on the target schedule. How-
ever, since Rhythm actually controls relative scheduling and
weighted fairness, with more intelligent scheduling decisions,
it is possible for Rhythm to solve other MAC issues, such as
QoS, energy-efficient, and higher layer traffic aware schedul-
ing. In future work, we will explore the potential application
of Rhythm in other MAC issues.

IV. EVALUATION

In this section, we present experimental results carried out
by WARP, and use ns2 simulations to evaluate each mechanism
in Rhythm.2 Then, we compare Rhythm to a closed related
work, Domino [4]. Table II shows the simulation parameters,
which follows 802.11g.

2Since the WiFi backoff timer duration is “lazily calculated” in ns-3 [14],
and the backoff timer is vital for Rhythm, we evaluate Rhythm using ns-2.



TABLE I.
THROUGHPUT(MBPS)

Link Number Rhythm DCF
1 9.00 6.62
2 8.18 8.98
3 9.00 6.62
4 8.18 9.00

Total 34.36 31.22

TABLE II. NS2 PARAMETERS
Parameter Value
Frame size 1500byte

Basic transmission rate 6Mbps
Data transmission rate 54Mbps

Slot time 9µs
SIFS 10µs
DIFS 28µs
δ 26µs

A. WARP experiments

We implement Rhythm in a software-defined radio plat-
form: the Wireless Open-Access Research Platform (WARP)
v3 [6]. We set up a fully connected topology in a typical
indoor environment with three WARP nodes, one that acts
as an AP, and the other two that act as clients, operating in
5.18GHz with 54Mbps data transmission rate. Iperf is used
to generate UDP traffic with frame size 1500byte. Table I
shows the throughput of each link (two uplinks and two down-
links) from the experimental evaluation. Rhythm produces a
throughput which is 95% of the theoretical optimal (36Mbps)
and better fairness than DCF (the target schedule S is: {AP,
client1, AP, client2}). Given the limited number of hardware,
the throughput difference between Rhythm and DCF is not
large. In scenarios with more nodes in the following sections,
large improvement will occur. We consider these experimental
results as a proof of concept and evaluate the performance of
Rhythm in more complicated situations using ns-2 simulations.

B. Baseline algorithm

Fig. 3 shows the time usage (channel utilization) of Rhythm
in a topology with 20 nodes (all nodes are backlogged and
the topology is fully connected). As expected, Rhythm spends
almost no time in collision or backoff idle, and the small
portion of idle time results from Interframe Space (IFS),
which is an unavoidable protocol overhead, yielding channel
utilization of almost 90%. Compared to DCF, Rhythm leads to
20% improvement in channel utilization. We also examine the
ability of Rhythm to provide weighted fairness. Using the same
topology, we randomly assign schedule weights to each node
and calculate the weighted Jain’s fairness index. Fig. 4 shows
that Rhythm produce correct weighted fairness as indicated in
the target schedule.

C. Shrinking mechanism

We examine the shrinking mechanism of Rhythm using
fully-connected topologies and a variety of traffic. First, we
present the performance of Rhythm-Base at determining the
effect of the shrinking mechanism in a topology with 50
nodes. The two APs are always backlogged, and the clients are
randomly backlogged periodically during a certain percentage
of time. In Fig. 5, while the channel utilization of Rhythm-Base
decreases as the average backlogged time decreases, Rhythm
maintains channel utilization.

Then, to examine the overhead of mirror insertion, we
carry out simulations with a large number of nodes. Figure 6
shows channel utilization with a different number of nodes.
The two APs are always backlogged, and the clients have
random traffic. Initially, the channel utilization of Rhythm
slightly decreases since Tcol slightly increases as the number
of nodes increases. However, since Tsch and Tinact also
increase as the number of nodes increases, this decrease slows

 

0%

20%

40%

60%

80%

100%

RTS/CTS Idle Collision Data/Ack

C
h

an
n

el
 u

ti
liz

at
io

n

Rhythm DCF DCF(RTS/CTS)

Fig. 3. Time usage of Rhythm  

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 3 5

W
ei

gh
te

d
 Ja

in
's

 f
ai

rn
es

s 
in

d
ex

Maximum weight

Rhythm DCF DCF(RTS/CTS)

Fig. 4. Weighted fairness of Rhythm

 

50%

60%

70%

80%

90%

100%

0%20%40%60%80%100%

C
h

an
n

el
 u

ti
li

za
ti

o
n

Backlogged time % of clients

Rhythm DCF

DCF(RTS/CTS) Rhythm-Base

Fig. 5. Examination of the shrinking
mechanism

 

30%

40%

50%

60%

70%

80%

90%

50 100 150 200 250 300

C
h

an
n

el
 u

ti
liz

at
io

n

Number of nodes

Rhythm DCF DCF(RTS/CTS)

Fig. 6. Rhythm performance in
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down. Finally, Rhythm achieves over 200% improvement in
channel utilization when the number of nodes reaches 300,
indicating that Rhythm improves channel utilization in high-
density deployed WiFi.

D. Clique mechanism

To examine the performance of the clique mechanism
of Rhythm, we design various topologies and traffic loads.
Since the overhead of the mechanism is not obvious when the
number of nodes is large, we decrease the number of nodes to
30. Two APs are located in the center act as bridges; we change
the locations of the clients to create hidden terminals. All nodes
are continuously backlogged. Figs. 7(a) and 7(b) show channel
utilization and fairness under varied percentages of nodes
suffering from hidden terminal problems. With the clique
mechanism, Rhythm yields near optimal channel utilization
and fairness, as indicated in the target schedule. Next, to
examine the overhead of transmitting CTS-to-self packets, we
change the backlogged time percentage of the two APs. As
shown in Fig. 7(c), since n = 30 >> nBarr = 2, the overhead
is small even when the backlogged percentage of APs is 0%.
Finally, to estimate the overhead caused by backbone delays,
we separate the two APs and ensure that they cannot hear
each other and communicate through the backbone. As shown
in Fig. 7(d), channel utilization decreases by 9% when the
average backbone delay reaches 0.5ms, which agrees with our
overhead estimation.

E. Comparison with Domino

We compare the performance of Rhythm with closely-
related Domino [4]. Since the WiFi backoff timer duration
is “lazily calculated” in ns-3 [14], we evaluate Rhythm using
ns-2. However, as simulation of Domino is available in only
ns-3, we implement Rhythm-Base (representing Rhythm) in
ns-3 and compare it to Domino in a fully connected topology
(no hidden terminal and no exposed terminal) with all nodes
continuously backlogged.
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Fig. 9. Fairness when certain flows
have a smaller queue size

Similar to Rhythm, Domino [4] triggers the next transmis-
sion by overheard transmissions. (The batch design in Domino
is similar to the clique mechanism in Rhythm.) While the
target schedule in Rhythm is a high-level transmission order
in which nodes have a certain degree of distributed adjustment
(e.g., the shrinking mechanism), the schedule in Domino is an
exact transmission schedule that nodes always follow. Thus,
Domino needs to collect the queue status from all nodes and
generates a schedule based on the queue status. Since the queue
status collection generates certain overheads, shown in Fig. 8,
the throughput of Domino is lower, and its channel utilization
is 76% while that of Rhythm can reach 88%. Nevertheless,
since Domino generates a schedule based on the queue status,
the schedule can be biased to flows with a larger queue size,
especially when the batch size is large (i.e., it schedules all
packets for flows with a smaller queue size and thus extra slots
for flows with a larger queue size). Therefore, as indicated in
Fig. 9, when certain flows have a smaller queue size, Domino
does not ensure as much fairness as Rhythm.

V. RELATED WORK

Some papers have employed protocols similar to Rhythm.
For example, CENTAUR [10] also utilizes the centralized
WiFi architecture for enhanced performance of WiFi. It solves
hidden terminal problems by separately scheduling conflicting
downlink transmissions. However, it only gives control to
downlink traffic, so it does not avoid hidden terminal problems
generated in uplink traffic. It also improves performance, but
only in cases with hidden/exposed terminal problems. Another
protocol, Chain [15] broadcasts order coordination (similar
to the target schedule) to achieve high channel utilization.
However, it improves performance only when the traffic load is
high. In addition, it neither addresses hidden terminal problems
nor improves in downlink. Similar to Rhythm, Domino [4]
utilizes relative scheduling to avoid overhead from tight time
synchronization. While Domino provides an efficient way of
collecting the queue status from all nodes, Rhythm provides a
distributed adjustment mechanism without having to collect the

queue status. However, as indicated in the evaluation section,
Domino generates extra overhead and unfairness in certain
scenarios. In addition, it requires use of a special address
derived from Gold codes, which either limits the number of
nodes (127 in its evaluation) in a collision domain or increases
overhead by using larger signatures for addressing.

VI. CONCLUSION

This paper presented Rhythm, a MAC protocol under a
theme of enabling WiFi network controllability without com-
promising its scalability. We showed that Rhythm provides
near optimal channel utilization and weighted fairness under
various traffic loads and connectivity scenarios. By providing
controllability of WiFi networks, Rhythm can solve other MAC
issues by scheduling, a topic that we will explore in future
work.
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