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SUMMARY

Over the last century and a half, humans have provided input to computers through a

range of technologies, including punch-cards, keyboards, mouse, stylus pens, and more re-

cently through voice, and gestures. This enabled humans to interact with the computers and

extend human capabilities across all knowledge domains, allowing them to make complex

decisions underpinned by massive datasets and machine learning. Despite their obvious

benefits, the action-based interfaces support only a handful of prescribed actions to per-

form, not only limiting the speed and effectiveness of communication but also degrading

the communication experience. Furthermore, in most of the cases, action-based interac-

tions fail to truly capture human intent due to the inherent channel loss in thought-to-action

translation, limited linguistic capabilities, societal and psychological biases, etc.

At the same time, the seat of all human thought, and hence arguably the earliest mani-

festation of any intent to communicate, resides in the brain. Thus, it is natural to consider

if it is indeed possible to tap directly into the brain to enable human to computer input.

The notion of brain-based communication has existed for almost all of recorded history

[1] and has been the subject of intense consideration for nearly a century and a half [2,

3]. EEG-based Brain-Computer Interfaces (BCIs) have emerged as a nascent modality to

radically transform and redefine the way we communicate with computing systems. BCIs

allow such information transfer by capturing brainwaves (synchronized neuronal firings)

in the form of electrical potentials or EEG and decoding user intent with further analysis

and processing. Since the first recording of human EEG (in 1929, Hans Berger [4]), for

the last five decades, the primary application of EEG has been as a diagnostic tool to study

conditions such as epilepsy and schizophrenia, and as an input modality for people with

physical disabilities [5, 6]. While the development of portable brain-computer interfaces

was instrumental in expanding the scope of applications EEG can be used for, consumer-

grade EEG headsets are now available off-the-shelf and come in user-friendly form-factors
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and are even fashionable [7]. The headsets have enabled the use of EEG as a casual in-

put modality in niche applications such as gaming and wellness [8, 9]. Such devices have

also opened up the opportunity for a study of the broader prospects of using EEG as a true

first-class citizen amongst input modalities.

Simultaneously, machine learning, with its ability to automatically obtain deep insights

and recognize unknown patterns in complex data sets, has seen remarkable successes in

the past decade, in part by emulating how the brain performs certain computations. As

we increase our understanding of the human brain, brain-computer interfaces can benefit

from the power of machine learning, both as an underlying model of how the brain per-

forms computations and as a tool for processing high-dimensional brain recordings. The

technology (machine learning) has come full circle and is being applied back to under-

standing the brain and any electric residues of the brain activity over the scalp (EEG).

Similarly, domains such as natural language processing, machine translation, and scene

understanding remain beyond the scope of true machine learning algorithms and require

human participation to be solved. This inherent inter-dependence and stimulating chem-

istry between EEG-based BCIs (brain) and computer algorithms (machine learning) is an

attractive, emerging research area that must be studied and examined scientifically. Thus,

investigating the interplay between brain-computer interfaces and machine learning sys-

tems through the lens of end-user usability forms the crux of this thesis dissertation. We

study the interplay between EEG-based BCIs and ML algorithms at two different levels,

First, ML can be used as a powerful tool to learn and characterize the brain activity

of an individual to build meaningful applications with it for day-to-day use cases. We

characterize the battery life of BCI wearables and identify the issue of the low-battery life

of commercially available BCI wearables. We performed experimental power analysis to

gain insight into what micro components of BCI wearables can be used as a control knob to

operate BCI wearables in low-power mode. We studied the practical benefits of using eye-

blinks as a command modality and proposed BLINK algorithm to detect eye-blinks through

xvii



EEG in a completely automatic and unsupervised manner. We proposed Trance, a wake-up

command detection system to increase the battery life by 2.7x with real-time detection of

BCI wearable.

Second, EEG-based human feedback can fundamentally help ML algorithms either as

an alternative input or implicit feedback. Providing user-thoughts as the direct input to the

ML algorithms could be beneficial in designing advanced personalization systems or high

precision information retrieval tools. We consider a paradigm where user personalization

models, specifically, preferences for online merchandise, are created based on the user’s

thoughts alone. We propose Cerebro, capable of ranking consumer products according to

the user preferences by relying solely on the user’s brainwaves. For the learning algorithms

that require significant human involvement, EEG can provide feedback directly without

putting any burden on the user. We study how intrinsic reactions captured through EEG

(in the form of error-potentials) can accelerate the learning of RL agents, and develop an

end-to-end system to enable such a paradigm.
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CHAPTER 1

INTRODUCTION

The brain is the seat of human intelligence, cognition, and behavior [10]. Hence, for most of

known history, humans have conceptualized, fantasized, and explored the notion of com-

munication directly through thoughts in the brain [11]. With the discovery of electroen-

cephalography (EEG) in 1929, obtaining a simple window into the functioning of the brain

became a reality [4]. At a high level, any brain activity occurs through the synchronized

electrical firing of billions of brain cells (neurons) communicating with each other. Such

activity can be detected externally through appropriate sensors on the scalp over the brain,

enabling the direct transfer of information from the human brain to a computer, also known

as brain-computer interfaces (BCIs). BCIs arguably provide a better modality of communi-

cation for human-computer interface applications because they are non-intrusive compared

to other input modalities, enable the capture of passive user intent, allow for shortened

intent to action pathway latency, and provide high degrees of privacy.

Today, computer algorithms use traditional human-computer interfaces (e.g., keyboard,

mouse, gestures, etc.), to interact with and extend human capabilities across all knowledge

domains, allowing them to make complex decisions underpinned by massive datasets and

machine learning. For example, IBM Watson relies on an enormous database of cases to

recommend the best treatment strategy for a cancer patient to oncologists [12]. This grow-

ing interaction between humans and computers in a symbiotic fashion is delivering intel-

ligence, productivity, and enhanced communication experience at an unprecedented scale.

Machine learning, with its ability to automatically obtain deep insights and recognize un-

known patterns in complex data sets, has seen remarkable successes in the past decade,

in part by emulating how the brain performs certain computations. It consists of neural

networks, similar to the brain’s network of neurons, giving it the ability to distinguish an

image of a dog from one of a cat, to use a camera feed to spot vehicles and pedestrians
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while navigating a self-driving vehicle and to understand and communicate in the natural

language. As we increase our understanding of the human brain, brain-computer interfaces

can benefit from the power of machine learning, both as an underlying model of how the

brain performs computations and as a tool for processing high-dimensional brain record-

ings. The technology (machine learning) has come full circle and is being applied back to

understanding the brain and any electric residues of the brain activity over the scalp (EEG).

Similarly, domains such as natural language processing, machine translation, and scene

understanding remain beyond the scope of true machine learning algorithms and require

human participation to be solved.

The inherent inter-dependence and stimulating chemistry between EEG-based BCIs

(brain) and computer algorithms (machine learning) is an attractive, emerging research area

that must be studied and examined scientifically. Thus, investigating the interplay between

brain-computer interfaces and machine learning systems through the lens of end-user us-

ability forms the crux of this thesis dissertation. Specifically, we explore how these two

highly powerful, yet complementary entities can benefit each other, and propose systems

and algorithms for achieving the same. In this context, we provide our research contribu-

tions in two inter-related aspects by, (i) applying machine learning to solve challenges with

EEG-based BCIs, (ii) enabling human-assisted ML with EEG-based human input.

The global BCI market was valued at $1.15 billion in 2018, and it is expected to reach

$2.67 billion by 20261. However, the current consumer market presents a few consumer-

grade brain wearables. These are hardly being used outside the clinical or research set-

tings. Despite their established promise, the adoption of the technology has made very

slow strides and is strictly limited to niche applications. The use and development of brain-

computer interfaces, historically, has always been driven by the needs of users with motor-

disability functions. It has not been thoroughly subjected to practical communication barri-

ers (e.g., large form-factor, user discomfort, low bit-rate, and accuracy, etc.). These devices

1https://www.globenewswire.com/news-release/2019/07/22/1885929/0/en/Brain-Computer-Interface-
Market-To-Reach-USD-2-67-Billion-By-2026-Reports-And-Data.html

2



Figure 1.1: Landscape of BCI and ML research

were not designed to fit into the lifestyle of the mass consumer (functionality, comfort, and

cultural aspects), and their applications were limited to off-site laboratory tests.

1.1 BCI Research Landscape

We present a high-level research landscape of research at the intersection of EEG-based

BCIs and ML algorithms. We present this landscape along with the complexity (or sophis-

tication) of the interplay between BCI and ML algorithms (on the x-axis). On the y-axis,

we have the practicality of the systems in three major categories, theory, algorithms, and

systems. Further, we provide the color-coding of the research works in terms of the ma-

jor lobes (and hence, functionalities) of the human brain. The size of the dots reflects the

relative amount of work done in a particular area.

At the left-bottom corner, there is an abundance of research work performed in under-

standing the basic functionalities of the human brain, and correlating such aspects with the

observed variations in the brainwaves. Cognitive and working memory performance were

found to be correlated with alpha and theta oscillations [13, 14]. Several works studied the

process and comprehension of natural language [15, 16] and sensing of imagined speech

[17, 18]. Excitability and spatial attention in the visual cortex was found to be correlated

with alpha band activity in EEG [19, 20]. Further, cortical activity was investigated during
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imagined visuomotor tasks [21], motor imagery based online feedback [22], and emotional

intelligence [23, 24]. Various ML based classification algorithms were proposed in the lit-

erature for motor imagery tasks [25, 26], eye-blink [27, 28], emotions [29, 30], imagined

speech [31, 32], visually-evoked potentials [33], P300 potentials [34, 35], etc. Based on

the theory and algorithms, systems were researched and designed for control of wheelchair

[36], spelling devices [37, 38, 39], subject identification [40], etc.

As we move along the complexity of the interplay, the density of the research work

reduces considerably. Evidences of value-based decisions [41], subjective preferences [42]

and choice-induced preferential changes [43] were established with the neural correlates.

[44] analyzed the representational similarity of the object processing dynamics. [45] de-

veloped an algorithm to predict future consumer choices by relying on EEG data. An

automated object classification system driven by human brain signals was proposed [46].

Brain2Image [47] is capable of generating images using visually-evoked EEG poten-

tials. An end-to-end system was developed to correct the mistakes of a robot in real-time

using primary and secondary error-potentials captured through EEG [48].

1.2 Research Contributions

Our research contributions primarily lie in the domain of system and algorithms, investing

the interplay between EEG-based BCIs and ML algorithms through the lens of end-user

usability. We provide out research contributions at two levels, as below,

1. Using ML techniques to solve challenges in EEG processing : One of the most

debilitating aspects of EEG is its vulnerability to distortions caused by other interfering

electrical fields, especially eye-blinks, leading to confused or possibly false EEG inter-

pretations. Hence, the detection and removal of eye blink components are imperative in

any EEG-based intent decoding and analysis. The currently available solutions suffer from

one of the limiting requirement - (i) a partly manual inspection for thresholds or template

selection, (ii) a user training phase, (iii) a high number of EEG channels, and (iv) Elec-
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trooculography (EOG) channels requiring additional electrodes above and below the eyes.

We contribute a fully automatic and unsupervised (i.e., without requiring any training from

the user) blink detection algorithm, BLINK, capable of identifying accurate timestamps

of eye blinks in a single-channel EEG data. Further, building upon the eye-blinks, and

their detection through BLINK, we propose a wake-up command design and detection for

BCIs, and explore how battery life can be made to last for approximately a day (2.7x, 10.14

hours). With our preliminary motivational study with currently available commercial BCIs,

we found that the wearable BCI headsets are always-on and are thus power-hungry, requir-

ing users to charge headsets multiple times a day. The key challenge that we address is

enabling the cap to operate in a near-sleep mode while still reliably detecting and interpret-

ing a wake-up command from the user. Our core contribution is Trance, a user-friendly

and robust wake-up command for BCI that is computationally lightweight and hence can

be supported by off-the-shelf BCI caps.

2. Enabling human-assisted machine learning with EEG-based human input: Ma-

chine learning algorithms developed for recommendation engines on e-commerce plat-

forms (e.g., Amazon.com), digital media (e.g., Netflix), and advertising platforms (e.g.,

Google AdSense) rely on user models for personalization. The current paradigm constructs

and adapts the user models based on user-actions whether explicit actions (e.g., ratings, re-

views) or implicit actions (e.g., browsing history, click-through rate) are used. In this work,

we argue that a machine learning algorithm that also takes into account user-thoughts is

likely to be significantly more informative and accurate than one that relies on user-actions

alone. The specific goal in this context is to determine the preference ranking for a set of

objects by relying entirely on the brain activity of a user recorded through a wearable EEG

headset. We present a machine learning algorithm, Cerebro, which can learn the specific

nuances of the user’s brainwaves and rank the objects accurately based on preferences. We

measure the accuracy of the algorithm in terms of the Normalized Discounted Cumulative

Gain (NDCG) score, showing that it performs with an attractive score of 0.92 when trained
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on 7 objects, and evaluated on 3 objects for the 14 users.

Despite the tremendous advancements in machine learning, there are still several fron-

tiers that remain unsolved. Several AI-complete problems rely on human participation,

either during the training phase or while using the algorithm in live situations. In this

work, we explore an interesting solution paradigm that will allow humans to assist ma-

chine learning algorithms without being over-burdened. This model benefits from the nat-

ural rich activity of a powerful sensor (the human brain); but at the same time, it does

not burden the human if an activity is intrinsic. This paradigm is inspired by a high-level

error-processing system in humans that generates error-related potential (ErrP), a negative

deflection in the ongoing EEG. We develop three reasonably complex 2D discrete navi-

gational games to experimentally evaluate the overall performance of the proposed work.

Major contributions of our work are as follows: i) we propose and experimentally vali-

date the generalizability of error-potentials, where the error-potentials can be learned for

one game, and transferred to other unseen games, (ii) we propose a novel RL framework

for integrating implicit human feedback via error-potentials with RL agent, improving the

labeling efficiency and robustness to human mistakes2, (iii) we propose an algorithm for

reliable detection of error-potentials through user brainwaves, and (iv) compared to prior

works, we scale the application of error-potentials to reasonably complex environments

and demonstrate the significance of our approach for accelerated learning through real user

experiments. We show that with the proposed algorithm modifications, error-potentials can

be decoded with 84.4% accuracy (11.05% improvement) and can achieve acceleration upto

3.38x while making 75.56% fewer queries.

2The RL framework, i.e., how error-potential based human feedback is integrated with RL algorithm, is
the contribution from our collaborators, Duo Xu, and Dr. Faramarz Fekri. Their contributions are explained
here in a very succinct manner for completion purposes. We thank our collaborators for their outstanding
work and for providing us the permission to present their work in this thesis.
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1.3 Thesis Statement

Machine Learning (ML) algorithms and Brain-Computer Interfaces (BCIs) can be used

synergistically, with ML enabling BCI and BCI assisting ML, and the interplays are demon-

strable using real-life applications.

1.4 Thesis Organization

The thesis dissertation is organized as follows. Chapter 2 presents the relevant literature

survey. In chapters 3 and 4, we explain our contributions in using machine learning for solv-

ing usability and wide-adoption challenges in EEG-based BCIs, i.e., BLINK and Trance,

respectively. In chapter 5, we introduce how machine learning algorithms can be informed

with human preferences using EEG as an alternative input and propose Cerebro to rank

objects based on the user’s brainwaves. In chapter 6, we explain the system and research

allowing EEG-based BCIs to assist Reinforcement Learning (RL) algorithms. Finally, we

discuss additional challenges and further research directions in section 7.
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CHAPTER 2

LITERATURE SURVEY

Inspired from the early works of Richard Caton [49] and Vladimir Neminsky, [50] Hans

Berger published the first-ever work on the human EEG and the presence of alpha waves

in 1929 [4]. The first BCI dates back to 1973, developed by Jacques Vidal to control the

cursor movements. He used the expression for his research projects at UCLA [51, 52],

funded by NSF and contracted by DARPA, which marked the beginning of research in

BCI for communication and control. In this chapter, we provide a summary of the relevant

research and compare them with the proposed contributions of this work.

Invasive BCI

Various researchers across the world started to develop and plant electrodes inside the grey

matter of the brain in living beings, termed as invasive BCI. Experimental studies per-

formed on monkeys and rats revealed the possibility of voluntary control of external de-

vices using neural signals [55, 56, 57]. Rhesus monkeys were trained to use BCI to track

visual targets or feed themselves (Fig. 2.1) using robotic arms [53]. Researchers from the

University of California Berkeley were able to reproduce images seen by cats by decoding

Figure 2.1: Monkey
feeding itself using
invasive-BCI
(Image taken from [53])

Figure 2.2: Restoration of images seen by cats
First row displays actual image, second row
displays restored image (images taken from [54])
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neuronal firing patterns in the brain’s sensory input area (Fig. 2.2) associated with retina

[54].

Human BCI implantation for medical and control purposes increased significantly after

the 1970s, restoring locomotion, vision impairment, neuromuscular and mental disorders,

marking several seminal discoveries in the field [58, 59, 60, 61]. Phillip Kennedy was

credited for the first BCI implant in humans. His patient was Johnny Ray who was suffer-

ing from ‘locked-in syndrome’ at the time of implantation, learned to control a computer

cursor, and died later in 2002 [62]. Matt Nagle, suffering from Tetraplegia, was the first

person able to control an artificial hand using BCI developed by Cyberkinetics [63].

Non-invasive BCI

While invasive BCI has its merits over non-invasive techniques, in terms of signal quality

and noise sensitivity, non-invasive techniques gained attention for healthy users as it does

not require surgical procedures and in-head implantations which often pose risks to human

health. The main non-invasive BCI technologies are electroencephalography (EEG), mag-

netoencephalography (MEG), and functional magnetic resonance imaging (fMRI). Neu-

ronal activity inside the brain generates electrical activity that is captured by EEG, while

MEG captures produced magnetic fields (due to electric currents). fMRI on the other hand

measures changes in blood flow inside the brain cell to determine brain activity. EEG is one

of the most widely used non-invasive technology due to its temporal resolution, safe, easy,

and inexpensive procedure. Today, in spite of the presence of high-resolution MRI, EEG

is popular in medical use for diagnosing epileptic seizures, sleep disorders, brain death,

etc., [64, 65]. EEG applications for healthy users mainly fall into categories, namely, en-

hanced communication and remote control, cognitive performance improvements, gaming,

neuromarketing, and brain computing [66, 67, 68, 69]. The prominent electrophysiological

signals used to design present BCI systems are Visually Evoked Potentials (VEPs), Event-

Related Potentials (ERPs), Slow Cortical Potentials (SCPs), and sensorimotor rhythms.
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VEPs

Stimulating a subject’s central or peripheral visual field evokes large potentials in brain

signals, dominant in the occipital scalp area. It has been established that occipital brain

frequency resonance with the frequency of visual stimuli, oscillating in a sinusoidal pattern.

These are further categorized into transient VEP (tVEP) and steady-state VEP (SSVEP)

based on stimulus rates. Vidal developed a VEP-based BCI which could move a cursor on

a monitor screen by determining the eye gaze direction of the user [70, 71]. Brain Response

Interface (BRI) developed by Sutter (1992) presented an 8x8 grid of symbols and achieved

a rate of 10-12 words/min with high accuracy [72]. [73] designed a self-regulated BCI and

achieved an accuracy rate of 92% with an avg. selection time of 2.1s.

SCPs

As evident from the name, slow cortical potentials are slow oscillations that could last

upto 10s. SCPs are typically associated with cortical activation [74, 75, 76], which can be

learned to control with training procedures. Various Thought Translation Devices (TTD)

were demonstrated based on SCPs, extensively targeted for providing communication abil-

ities to locked-in patients [77]. Similarly, SCP based BCI, Language Support Program

(LSP) can write 2-36 words/hr with accuracy ranging from 65 to 90% [78].

ERPs

ERPs are behavioral responses of the brain to specific events or infrequent (or significant)

stimuli infused with regular stimuli in auditory, visual, or sensory format. P300, a positive

deflection after 300ms of stimuli, is predominantly used in several modern BCI designs.

One of the famous P300 based BCI is the P300 speller, initially developed by Farewell and

Donchin in 1988 with an information rate of 5 letters per minute and improved further in

upcoming years[79, 80]. A typical ‘P300 speller’ presents a 6x6 matrix of symbols flashing

rows and columns with distinct frequency, requiring users to pay attention to a particular

symbol. N170 presents a negative peak after 170ms correlated with facial visual stimuli,
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helpful in distinguishing cases of faces vs non-faces [81]. Similarly, other ERPs, namely

N400, N300, P600, etc are associated with semantic congruity and language processing

[82, 83].

Sensorimotor Rhythms

Sensorimotor rhythms, also known as mu waves are EEG activities occurring over sensory

and motor cortical areas of the brain, in between frequency range of 8-12 Hz. They occur

with actual or imagined body part movements and are distinct in terms of spatial localiza-

tion over the primary motor and sensory cortex of the brain, mapped directly to the motor

and sensory body parts [84]. The Wadsworth BCI is based on the same signals, which

require users to imagine limb movements to control a cursor on a 2-D screen. The sys-

tem achieving an information bit rate of 20-25 bits/s [85] requires elongated training and

is hectic in terms of its use operations. Mu-waves based BCIs are particularly favored as

they don’t present strict requirements to external stimuli. [86] explores a similar problem

to facilitate communication-based on thoughts itself.

Emerging areas in non-invasive BCIs

One of the emerging areas in BCI is human-aided computing. [87] builds a classification

system exploiting cognitive processing in human brains. Performance of current state-

of-the-art computer vision algorithms is shown to improve when combined with implicit

human processing and EEG [88]. [67] focuses on cognitive performance improvement

by monitoring brain activity during daily mental and physical activities. Blending of BCI

technology with virtual reality systems is slowly transforming the interactive education and

entertainment world [89].

With increased knowledge of frequencies and patterns exhibited by brainwaves, and the

advent of novel technologies is motivating researchers and entrepreneurs to jump into the

consumer sector of BCI. Mindflex by Mattel, Mindwave by NeuroSky, and Star Wars Force

Trainer are few inexpensive EEG-based consumer BCI products in the entertainment sector
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[90, 91]. Mind Solutions Inc., launched NeuroSync [92] a brainwave optimization device

designed for relaxation, self-regulation, and meditation. Emotiv’s EPOC/EPOC+/Insight

and NeuroElectrics’s Enobio [93, 94] develops EEG based BCI headsets in wearable design

using dry sensor technology for communication, control, and gaming purposes.

2.1 EEG-based Eye-blink Detection Algorithms

Several related works lie at the intersection of EEG and eye-blinks, which can be broadly

classified into two categories: (i) removing eye-blink artifacts from the EEG signal, and (ii)

detecting the time instants of eye-blinks in EEG. From a technical perspective, both cate-

gories are quite different from each other. The former removes the eye-blink components

from EEG resulting in pure cerebral data, however, is unable to locate the time instants of

eye-blinks. The latter locates the time instants but is incapable of removing the distortion

without losing the cerebral data within the eye-blink duration. Several hybrid approaches

have been proposed in the literature first to identify the eye-blinks and removing the related

component to clean the signal [95, 96].

2.1.1 Blink component removal methods

Multiple strategies are proposed in the literature to purify the EEG waveform using Blind

Source Separation (BSS) based methods. These methods [97, 98, 99, 100, 101] vivisect

EEG waveform into additive subcomponents using BSS algorithms like Independent Com-

ponent Analysis (ICA) and remove the non-cerebral (mostly eye-blink) component from

the EEG using template matching. The templates are created with labeled eye-blink ex-

amples which are proved to be consistent across users. These methods perform very well

but require maintaining a large database of templates, and sampling from a large number

of electrodes to find the multiple subcomponents. [102] is one such semi-automatic pro-

cess requiring the manual labeling and selection of a template. Some of these works even

require putting extra electrodes over and above the eye, also known as Electrooculography

(EOG) [99]. EyeCatch [103] uses a similar strategy to detect eye-blinks specifically. It
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analyses and compares the IC scalp maps with the half-million scalp maps present in their

database. ICA-based approaches are advantageous in circumventing the limitations of con-

ventional artifact detection methods, however, they can be only used in dense EEG systems

due to their strict requirements of a high number of EEG channels.

[104] presented a new identification procedure based on an efficient combination of

independent component analysis (ICA), mutual information, and wavelet analysis for fully

automatic ocular artifact suppression. The results on 3105 4-s EEG epochs indicate that the

artifact components can be identified with an accuracy of 97.8%, a sensitivity of 96.9%, and

specificity of 98.6%.

Various non-ICA based approaches were proposed in the literature to tackle the limita-

tions of ICA based approaches. [105] combined Discrete Wavelet Transformation (DWT)

and Adaptive Predictor Filter (APF), [106] combined EMD and CCA, [107] used adap-

tive filtering, [108] used autoregressive moving average exogenous (ARMAX) model with

extended least square (ELS) algorithm, [109] used RBF (with adaptive optimization) to re-

move the ocular artifacts from the EEG signal. Methods proposed in [110, 111] are capable

of removing such artifacts using only a single EEG channel through combining Singular

Value Decomposition (SVD) with Singular Spectrum Analysis (SSA), and algebraic and

DWT methods respectively. The recently proposed approach [112] combines morphologi-

cal component analysis (MCA) and k-SVD to achieve the same. [113] uses a model based

on the ballistic physiological components of the eye blink and achieves a success rate of

over 90% in terms of recovering the variance of the original EEG.

The method proposed in [110] is capable of removing such artifacts using only a single

EEG channel through Singular Value Decomposition (SVD) and Singular Spectrum Anal-

ysis (SSA). [111] uses algebraic and DWT based methods to remove such artifacts using

only single-channel EEG data.
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2.1.2 Blink identification methods

A very trivial approach to detect eye-blink timestamps is to continuously monitor the EEG

signal and detect eye-blink if the amplitude crosses a preset threshold value. Improved

approaches in the literature extract relevant features to apply a threshold. In [114], var-

ious statistic based features were calculated for data artifacts in five aspects of the EEG

data: channels, epochs, ICs, single-channel single-epochs, and aggregated data (i.e., across

subjects). A threshold of ±3 was used for the Z-score for each feature to detect the blink

artifact. [114] was shown to perform with a score of 94.47 and 98.96 for sensitivity and

specificity, respectively on simulated data over 128-channels. The performance of [114]

drops significantly with a reduced number of electrodes (i.e., 32). [115] employs the use of

extreme statistics and used p-value as the threshold parameter to detect the blink artifacts on

29-channel EEG data. An automatic threshold of µ+2σ is used along with channel correla-

tion (in Fp1 and Fp2) electrodes in [116]. [117] proposed the use of multi-window summa-

tion of derivatives approach and compared against the correlation, Dynamic Time Warping

(DTW) and Root Mean Square Error (RMSE) based approaches. A similar threshold-based

approach was used in [118] along with DTW. [119] applies a threshold-based peak detec-

tion technique for activating the home lighting system. An intelligent approach over simple

amplitude thresholding is to extract relevant features from the EEG signals and perform bi-

nary classification by comparing it with a threshold. Such threshold-based techniques were

also used in [115] over the frequency spectrum. Power Spectrum Density (PSD) of a mov-

ing window was compared to a threshold to detect eye-blink artifacts. The performance of

such methods suffer due to a high variance in eye-blink duration, and blink peak not falling

in the middle of the window. Threshold-based approaches are highly sensitive to the chosen

features and preset threshold, which could vary highly across devices and subjects.

Fingerprint or template matching based methods are widely used in the field of pattern

recognition. In these approaches, an eye-blink template (or fingerprint) is first obtained

and then matched with the continuous EEG data using a moving window. If the similarity
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measure crosses a preset threshold value, an eye-blink signal is detected in the particu-

lar window. These methods are highly sensitive to the chosen template and the similarity

metric. [120] applied Dynamic Positional Warping (DPW), a variant of DTW, and demon-

strated the accuracy improvements over DTW, RMSE, and correlation as the similarity

metric. The templates are typically chosen either through manual inspection or generated

with an algorithm. [120] selected five templates from the ground truth dataset, and hence

is not fully unsupervised.

Supervised-learning based methods design a specific kind of neural network architec-

ture (or deep architecture) for learning the distinctive and similar patterns based on the

training data [95, 121]. [121] uses Support Vector Machines (SVMs) for the identification

of blink artifacts with a moving window of 450ms. [122] uses segmentation of a 1-second

window and applies the RBF network on three extracted features achieving an accuracy of

75.3%. Such techniques demand user-training and are heavy in computation (for training)

and memory (weight storage).

Other algorithms that work on purely statistical techniques do not estimate the blink

positions but instead count them [123, 124] or are highly sensitive to the input parameters.

[124] does not explicitly detect eye-blinks but any spiked artifacts. This can result in high

false positives as a result of eye and head movements. Sensitivity to the input parameters

defeats the universality point. [96] proposed a complicated approach of combining a high-

speed eye tracker to timestamp blinks and further removed artifacts caused by eye-blinks

and movements. [104] proposed a novel combination of ICA with mutual information and

wavelet analysis to achieve 97.8% accuracy using 6 EEG and 2 EOG electrodes. [125]

detects blink artifacts with 90% specificity and 65% sensitivity using an extended Kalman

filter. [126] performs DTW score clustering during wearable EEG-based cognitive work-

load assessment tests to achieve an accuracy of 96.42%. Despite the attractive performance

rates, the proposed method is not suitable due to the requirements of user training and 7-

EEG channels. [28] relies purely on statistical techniques but requires the EEG signal for
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an extended period of time (offline), to extract the blink profile. Regression-based methods

require measuring EOG electrodes to correctly estimate the regression coefficients [127,

128, 129]. This again puts extra hardware requirements on the available EEG architectures

in the market and is clearly not suitable for our case; hence, we skip the discussion of such

approaches. Thus, there does not exist any eye-blink detection algorithm (through EEG)

that fits the requirements of universality, no supervised-training, no manual involvement,

small form-factor, and near-perfect detection accuracy. In this context, we later present in

this thesis, a novel solution and compare it against a specific related work, BLINKER [28].

2.2 Eye-blinks as an Input Modality

Eye blinks are widely used as a communication modality in smartphone and VR appli-

cations for home automation, gaming, snapping photos, etc [130, 131, 132, 133]. The

primary reason behind this is their naturality and ease of use. Various eye-based systems,

e.g., eye-gaze, wink, blinks, eye-movement tracking, are presented in the literature as an

interaction modality between humans and machines [134, 135, 136, 137, 138]. Tag et al.

[139] proposed a real-time system adapting video settings as per the viewer state. The

viewer state is described as the average eye-blink frequency measured through electro-

oculography. Pike et al. [140] used eye-blink, levels of attention, and meditation (recorded

through EEG), to influence the adaptive media. Huang et al. [141] presented PACE, to

collect user-interaction data unobtrusively by relying on the eye and facial analysis of we-

bcam data. In [142], Chatterjee et al. argued that combining eye-gaze with gestures can

outperform the individual, and in general, approach the gold-standard performance of input

systems (e.g., mouse, trackpad, etc.). “Blink Link” [137] was designed by Grauman et al.

leveraging a series of eye-blinks as an alternative communication tool for users with severe

disabilities through computer vision processing. In our work, we focus on using eye-blink

detection through EEG-based BCI wearables, and only to deliver a wake-up command.
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2.3 Detection of EEG-based Implicit User Preferences

The detection and analysis of consumer preferences through EEG based neuro-biological

changes has been studied thoroughly. [143, 144, 145] studied the extensions of brands to

different product categories. Studies in [143] revealed that N270 is directly associated with

the conflict in the brand category and the extended category, thus, can be used as a reference

in brand extension attempts. [144] and [145] shows a similar association of P300 potentials

and N400 potentials for mental categorization in brand extensions. [146] uses K-nearest

neighbors and probabilistic neural nets on Alpha wave features to recognize the most pre-

ferred automotive brand with 95% accuracy. Authors in [147] show a positive correlation

between the passive viewing of luxury (branded) goods with the Late Positive Potentials

(LPPs) in EEG, in the presence of another person. [148] uses the LPPs to relate the olfac-

tion and emotions, and provide insights on the emotional reactions of the consumers to the

ambient scents. [149] explored the positive relationship of LPPs with the herding tendency

of consumers in the context of online reviews for book purchases. In the same context of

recommendations, [150] validates similar herding behavior through P300 waveforms.

In a consumer shopping task, [151] explored the ERP measures and the role of math

anxiety in consumers for discounted and promotional products. The correlation of differ-

ent EEG frequency bands with the subject’s internal decision of like or dislike towards the

product has been shown in [152]. They concluded that theta-band activity near frontal, pari-

etal and occipital lobes are reflective of human preferences. [153] establishes the feasibility

of detecting subjecting preferences through N200 signals, LPPs, and Positive Slow Waves

(PSWs). Moreover, the authors found that subsequent buying decisions also modulated the

LPPs. [154] reported an average accuracy of 60% when predicting the preferred product

from a pair of products using N200 and theta wave features. [155] classified 30 pairs of

shoes successfully in two classes (buy and no-buy) for 40 participants. [156] developed a

predictive modeling framework to understand consumer choices towards e-commerce prod-

ucts from 14 categories (3 products each). An accuracy of 70.33% was achieved for the
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consumer choice classification task using S-Golay filtering, Discrete Wavelet Transform

(DWT) coupled with Hidden-Markov Models (HMMs).

2.4 Detection of Error-related Potentials

Error-potentials in EEG signals are studied under two paradigms in human-machine inter-

action tasks, (i) feedback and response ErrPs: error made by humans [157], (ii) interaction

ErrPs: errors made by machines in interpreting human intent [158, 159]. As an instance

of interaction ErrPs, [160] uses ErrPs in-tandem with P300 to boost the performance of the

BCI speller device. Another interesting paradigm is when a human is watching and silently

assessing a system. Several works propose the use of ErrP from a passive (or silent) human

observer as feedback to a learning system. In [48], a simple robotic system that performs

a binary selection task using ErrP as feedback is studied both in open and closed-loop set-

tings. This enables ErrPs to be used as a supplementary reward for the Q-learning [161] or

deep Reinforcement Learning (RL) algorithm [162]. With the recent developments in deep

learning, ErrP has also found application in reinforcement learning where it can be used

as a reward function. [48] uses ErrP as a reward signal while a user is observing a robot

perform a specific task. The use of error-potentials in human-computer interaction tasks,

or for the acceleration of RL algorithms is underpinned upon the accurate detection of the

error-potentials. Several approaches have been proposed in the literature to decode the

error-potentials. [163] demonstrated the possibility of continuous and asynchronous detec-

tion of ErrP, while [158] proposed a statistical classifier. The state-of-the-art error-potential

decoding algorithm relies on the Riemannian geometry framework and was proposed by

Baranchant et al [164, 165]. It was later successfully applied for various classification

paradigms in BCIs, namely, motor imagery, P300, SSVEP, etc. We explain the above algo-

rithm later in this thesis, and provide comparisons with the proposed modifications in the

algorithm to boost the accuracy.

Recently, there is a long line of papers studying reinforcement learning from human
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feedback, such as [166, 167, 168, 169, 170]. However, they are only about explicit human

feedback or labeling, and they all assume human feedback is noiseless. In this thesis,

we perform reward-shaping using implicit human feedback, and also propose a practical

framework to use reward function learned by imitation learning to augment the following

RL agent. Numerous works [157, 171, 172] have studied a high-level error-processing

system in humans generating the error-related potential/negativity (ErrP or ERN).

Interaction, response, and feedback ErrPs have been heavily investigated in the do-

main of choice reaction tasks, where human is actively interacting with the system [173,

174, 175, 158, 176] and the error is made either by the human or by the machine. [177]

demonstrated the use of ErrP signals in an interactive RL task when the human is actively

interacting with the machine system. [158] explored the ErrPs when human is silently ob-

serving the machine actions (and does not actively interact). Works at the intersection of

ErrP and RL [178, 48] demonstrate the benefit of ErrPs in a very simple setting (i.e., very

small state-space), and use ErrP-based feedback as the only reward. Moreover, in all of

these works, the ErrP decoder is trained on a similar game (or robotic task), essentially

using the knowledge that is supposed to be unknown in the RL task. In our work, we use

labeled ErrPs examples of very simple and known environments to train the ErrP decoder

and integrate ErrP with Deep Reinforcement Learning (DRL) in a sample-efficient manner

for reasonably complex environments.
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CHAPTER 3

UNSUPERVISED DETECTION OF EYE-BLINKS IN EEG

EEG signals are quite vulnerable to distortions caused by other interfering electrical fields.

Specifically, eye-blinks produce a very strong interfering electric field (as the retina and

cornea form an electric dipole [179, 180]) severely impacting the signal-to-noise ratio

(SNR) of recorded EEG measurements. The presence of eye-blink artifacts in the EEG

signal leads to confused or possibly false EEG interpretations. Hence, the detection and

removal of eye-blink components can be significantly useful in any EEG analysis. Several

algorithms have been proposed in the literature to identify eye-blinks, but they are char-

acterized by one of the following limiting requirements - (i) a partly manual inspection

for thresholds or template selection, (ii) a user training phase, (iii) a high number of EEG

channels, and (iv) Electrooculography (EOG) data requiring additional electrodes above

and below the eyes.

In this context, we first show that the brainwaves generated when a user blinks are de-

tectable with a high degree of robustness. We then propose a fully automatic and unsuper-

vised (i.e. without requiring any training from the user) blink detection algorithm, BLINK,

to identify accurate timestamps of eye-blinks in the EEG data. The precise time-stamping

of eye-blinks in the EEG data maximizes the availability of clean EEG for analysis, and

can provide insights into blink duration and blink interval. BLINK relies on the natural fre-

quency of occurrence of eye-blinks to self-learn brainwave profiles for each specific user’s

blinks, and hence does away with any user training requirements. BLINK design requires

only a single EEG channel to operate.

Through extensive user experiments we show that BLINK can detect eye-blinks ro-

bustly across different EEG headsets and various user activities. We use two different

commercially available BCI platforms—Muse and OpenBCI—to show the generalizability

of BLINK over EEG headsets. We use controlled and uncontrolled user studies to evaluate
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Dataset Device Type Users Total Activity

EEG-IO OpenBCI Involuntary 20 500 external stimulation
EEG-IM Muse Involuntary 20 500 external stimulation
EEG-VV OpenBCI Voluntary 12 750 watching video
EEG-VR OpenBCI Voluntary 12 600 reading article

Table 3.1: EEG datasets collected for BLINK evaluation

the performance of BLINK over involuntary and voluntary eye-blinks respectively. Overall,

we collected 4 different user EEG datasets (Table 3.1) with real users containing more than

2300 eye-blink waveforms. We show that BLINK detects eye-blinks with an accuracy of

over 98% for all four datasets along with a high degree of precision.

We have publicly released our collected datasets and code1 for the BLINK algorithm

so that the presented results can be reproduced2. To the best of our knowledge, this is the

first ever annotated eye-blink EEG dataset released in the public domain. We later discuss

a methodology for using BLINK as-is in an online fashion to enable real-time eye-blink

detection. This can widen the applicability of BLINK in the domains of Brain-Computer

Interface (BCI) based communication and control, and real-time EEG data processing.

Blink waveform characteristics

A typical blink waveform on the frontal EEG is visually similar to a trough waveform in

the voltage-time domain. Fig. 3.1 shows a snapshot of such waveform at frontal electrode

position (Fp1 in this case, according to the 10-20 electrode system) referenced to the ear-

lobe electrodes (x-axis: time-domain, y-axis: voltage-domain). The blink waveform can

be characterized by its (i) waveform pattern, (ii) blink amplitude, and (iii) blink duration.

A blink waveform pattern is defined as the voltage variation with time during a natural or

forced eye-blink. The depth of the trough in the waveform pattern is known as the blink

amplitude. Blink duration is simply the time taken by the user to perform the blink.

1Dataset and codes are available at https://github.com/meagmohit/BLINK
2User data is anonymized to ensure the privacy
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Figure 3.1: A typical eye-blink waveform Figure 3.2: User evaluation setup

Detection challenges

Detecting eye-blinks is ostensibly easy as blink waveforms are visually prolific in features

(as in Fig. 3.1). The normalized blink waveform pattern (in time- and voltage- domain,

i.e. single-unit time duration and single-unit voltage deviation) is consistent across multi-

ple blinks of a single user, and also across different users. We can see this from Fig. 3.3,

that the similarity (correlation) of blink templates without considering amplitude deviation

in correlation metric is similar for intra-subject blinks (multiple blinks of a single user)

and inter-subject (blinks across users). In reality, state-of-the-art technologies present EEG

waves inter-weaved with high-power noise (including inherent signal noise and measure-

ment sensor noise). The variability across user-specific blink waveforms are so high across

users (considering the amplitude deviation for blink waveforms) that if compared on the

same scale, what looks like a blink waveform for one user is simply noisy perturbations for

another user. The high variability is not just limited to across users, but also is exhibited

across different blink waveforms of a specific user (Fig. 3.3 shows that when amplitude

deviation is considered in the correlation metric, the correlation drops significantly in the

case of blinks across users (inter-subject))3. This high variability among the blink patterns

poses the first challenge of designing a single universal algorithm that can account for

the user and state variability, without an explicit requirement of fine-tuning algorithmic

parameters.

3For this result, we used EEG-VR dataset (Table 3.1)
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One might simply argue for the deployment of supervised training based approaches

(e.g., neural networks, deep learning) to tackle the user-variability and noise issues like in

the image or speech recognition problems. However, such a solution strategy is undesirable

for wearable BCIs, where user comfort is an important consideration. Supervised training

based approaches require users to go through an extensive training phase that directly im-

pacts the usability and hence the consumer adoption of such devices. The second challenge,

thus, is to devise solutions that eliminate the user-training phase (essentially eliminating

all supervised training based approaches).

The above challenges when coupled with the small form-factor constraints (usage of

fewer channels), and high accuracy requirements with low false positives (high precision

- robust detection to avoid user frustration), considerably elevates the complexity of this

problem. In summary, the key challenges in developing a blink detection algorithm are

the following: (i) universality, (ii) no supervised training, (iii) small form-factor and (iv)

accurate performance.

3.1 The BLINK Detection Algorithm

We propose an algorithm BLINK that is capable of robust blink detection without requiring

any training from the user. BLINK is presented in Algorithm 1 along with subroutine 1.

3.1.1 Assumptions

BLINK operates on two assumptions

Consistency of eye-blink patterns

It assumes that the eye-blink patterns are consistent for a single user for a short period

(i.e., during data recording). However, no such assumption is made for different users (or

different recordings) and hence allows for user and session variability. To validate this

assumption, we utilize the EEG-IO dataset (Table 3.1), which provides us with the times-

tamps of true eye-blinks. For the user EEG data with given eye-blink waveforms, we extract

23



correlation

-0.5 -0.25 0 0.25 0.5 0.75 1

C
D

F

0

0.2

0.4

0.6

0.8

1
Intra-subject, w/ amplitude deviation

Intra-subject

Inter-subject

Inter-subject, w/ amplitude deviation

Figure 3.3: Correlation of eye-blink waveforms

Subject ID

0 5 10

C
o
rr

e
la

ti
o
n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Subject ID

0 5 10

C
o
rr

e
la

ti
o
n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Subject ID

0 5 10

C
o
rr

e
la

ti
o
n

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Correctly detected blinks (True Postivie)

Incorrectly detected blinks (False Negative)

Correctly detected noise (True Negative)

Incorrectly detected noise (False Positive)

Figure 3.4: Correlation with template eye-blink waveform for given eye-blinks and
trough-shaped noise
(i) template is constructed independently with amplitude deviation (intra-subject with
amplitude deviation) , (ii) template is constructed together for all subjects with amplitude
deviation (inter-subject with amplitude deviation), (iii) template is constructed
independently without amplitude deviation in correlation (intra-subject)

24



a template eye-blink signal (or fingerprint) based on the given eye-blinks, and compute the

correlation of template with (a) noise waveforms (but similar to trough pattern) shown as

crosses and (b) the given eye-blink waveforms shown as circles in Fig. 3.4. Based on the

correlation threshold comparison4, if the waveforms are classified as eye-blink or noise

using a threshold, we mark the corresponding incorrectly classified waveforms using red

ink. The template extraction and correlation is done for users separately (total 10 subjects

are shown in Fig. 3.4, best-5 and worst-5 are shown) in Fig. 3.4(i) and Fig. 3.4(iii), and fi-

nally for all the subjects together i.e., one template eye-blink waveform for all users (global

fingerprint) in Fig. 3.4(ii). When subjects are treated separately, eye-blink waveforms can

be assumed consistent i.e., a single template can represent all the eye-blink waveforms ro-

bustly and hence can distinguish from the noisy trough patterns. However, this is not true

for multiple users due to the high overlap between eye-blink and noise correlation with the

template, as in Fig. 3.4(ii). Similarly, if amplitude deviation is not considered, the overlap

between noise and eye-blink waveforms is significantly high, adversely affecting the detec-

tion performance (Fig. 3.4(iii)). This establishes the consistency in eye-blink patterns for a

particular user and can be leveraged to detect eye-blinks from the raw EEG feed efficiently.

No other repetitive waveforms

There are no other repetitive waveforms in the input signal that present the same character-

istics as an eye-blink waveform. This is a valid assumption, as frontal electrodes are mostly

corrupted by eye-blinks, eye movements, facial muscles, and head movements. The pat-

tern of other waveforms is either non-repetitive and random or dissimilar to the eye-blink

waveform (trough-shaped).

3.1.2 BLINK algorithm

Some properties of BLINK algorithm are, (i) BLINK relies on the natural frequency of

occurrence of eye-blinks to self-learn brainwave profiles for each specific user’s blinks, and

4A threshold was selected to minimize the number of incorrect classifications. For each waveform, its
correlation was compared with the threshold to label as eye-blink waveform or noise waveform
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Algorithm 1: BLINK5: an eye-blink detection algorithm based on feature detec-
tion and cluster-analysis

Input : E: EEG raw data, fs: Sampling frequency
Output : [tstart ]: start time of all eye-blinks, [tend]: end time of all eye-blinks

1 Preprocess: lowpass filter E
2 [tpeaks]← peak detect(E,delta = 0)
3 [tstart ], [tmin], [tend]← identi f y stable points(E,delta = 0, [tpeaks])
4 for i = 1,2, · · · ,size([tmin]) do
5 for j = i+1, i+2, · · · ,size([tmin]) do
6 siga← E[t(i)start : t(i)min : t(i)end]

7 sigb← E[t( j)
start : t( j)

min : t( j)
end]

8 corrmat [i, j]← correlate(E,siga,sigb)

9 powermat [i, j]← max( std(siga)
std(sigb)

, std(sigb)
std(siga)

)

10 [indexblinks]← high corr comp([[corrmat ]], [[powermat ]])
11 stableth,delta← blink typi f y([tstart ], [tmin], [tend], [indexblinks])
12 [tpeaks]← peak detect(E,delta)
13 [tstart ], [tmin], [tend]← stable points(E,stableth, tpeaks)
14 Repeat steps 5 to 15
15 return [tstart ], [tend]

hence does away with any user training requirements (it performs unsupervised learning);

(ii) BLINK requires raw EEG data as input and returns the start and end positions of the

blinks in the EEG data. Thus, BLINK can easily provide insights into the blink duration

and blink interval; (iii) BLINK design requires only single-channel data. However, in the

case of multiple channels the results can be combined to achieve more accurate results;

Subroutine 1: Subroutine peak detect for BLINK algorithm
Input : E: EEG raw data, delta: threshold for peak detection
Parameters: w : size of the moving window

1 Initialize [tmin] with all local minimas in E
2 if delta is 0 then
3 return subset of [tmin] such that consecutive elements are separated by w units

in time-domain
4 else
5 return subset of [tmin] such that consecutive elements are separated by delta

units in voltage-domain

5[] and [[]] represents 1-D and 2-D array respectively in the algorithm, std represents the standard devia-
tion
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Algorithm Explanation: The pre-processing step (line 1) is to apply a low-pass filter

to suppress high-frequency noise and smoothing the signal. The first step of the algorithm

is to find local minimas and stable points (Fig. 3.1). Subroutine 1 (peak detect) finds the

local minimum points in the signal separated at least by 2w units in the time-domain (line

2). With each minimum point found, the algorithm searches for nearby stable points (line

3), where the signal fully recovers from the eye-blink trough (as shown in Fig. 3.1). This is

performed in function (stable points) where the vicinity of each local minima is scanned

to estimate the noise power (or stableth), which in turn is used to compute aforementioned

stable points such that the signal power from minima to a stable point crosses stable th, but

is limited after stable points. If, for any particular minima two stable points are not found

(one on the left, and the other on the right), such local minimum points are discarded for

further eye-blink investigation, and a set of stable points are returned for every other local

minimum.

At this point (line 3), the algorithm has a set of trough patterns (each pattern consists of

one local minimum and two stable points), which are further interpolated (as time length

is different for each pattern) and linearly correlated on a one-to-one basis (line 4-11) to

compute the cross similarity matrix in the time-domain (eye-blink shape) and the voltage-

domain (eye-blink amplitude).

Further, highly correlated components of such patterns is computed (line 12, high corr comp)

based on the time-domain similarity and a correlation threshold (which is kept low for ro-

bust detection) to find the matching repetitive patterns. The repetitive patterns might look

similar (in the time-domain) but could correspond to eye-blink waveform (high amplitude)

or simply noise (less amplitude), which is further separated into two different clusters, and

the high trough amplitude cluster is returned as potential eye-blinks. To make the algo-

rithm more robust, resultant eye-blink patterns are profiled (smartly characterized) to have

a better estimate of the noise power and the eye-blink amplitude (line 17 blink typi f y). Fi-

nally, a second pass is done to recover any missed eye-blink patterns (line 14-16), with the
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additional information of eye-blink SNR (signal-to-noise ratio) and user eye-blink profile.

Thus, in the end, BLINK algorithm robustly detects all eye-blink patterns along with their

start and end times.

Subroutine peak det detects the minimas in the signal data separated at least by 2w

units. The subroutine, if provided with a non-zero delta threshold, identifies the minimas

which have at least of delta-amplitude difference with immediate maximas.

A careful inspection of the algorithm reveals that the parameters of the BLINK algo-

rithm (and corresponding subroutines) are filter orders, different moving window sizes

(time-domain), and correlation thresholds, which are not required to be tuned to different

users, and thus allowing for the user-agnostic universality of the algorithm.

3.2 Evaluation

In this section, we first explain the user experiments conducted along with the correspond-

ingly collected EEG data. We then evaluate the BLINK algorithm to validate its near-zero

detection error with low false positives.

3.2.1 Experimental protocol and EEG dataset description

We have conducted four different user experiments to evaluate the robustness of the BLINK

algorithm under a variety of EEG headsets and tasks. All the research protocols for the

user data collection were reviewed and approved by the Institutional Review Board of the

Georgia Institute of Technology. The subjects for the study were recruited from mixed

demographics with an age range between 22 to 30 years old and were either full-time

students or full-time employees. Upon arrival, the experimental protocol was explained

to the subjects, and the subjects were provided with consent forms and a demographic

questionnaire. They were compensated with Amazon gift cards (10 USD value) for their

successful participation in the study. The experimental paradigms and the collected EEG

datasets are explained below:

A. Guided single eye-blink experiments: We collected raw EEG traces from 20 subjects
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in a guided (i.e., software instructed) environment where subjects were asked to perform

a single eye-blink when instructed. Subjects were asked to sit comfortably in front of a

computer screen and wear a BIOPAC 100C electrode cap [181]. Electrode gel was used

to ensure the surface contact between the Fp1 and Fp2 (as per the 10-20 electrode sys-

tem) electrodes on the scalp and forehead. Two silver ear-clip electrodes were additionally

placed on the left and right earlobes to serve as a reference and to aid in the noise can-

cellation. The electrode cap was attached with the OpenBCI platform, which sampled

the raw EEG at 250Hz. The digital signals were shipped to a desktop machine over the

wireless channel. We used OpenViBE software (developed by Inria [182]) to present the

on-screen stimulations and collect the user EEG data with synchronized timestamps. We

also recorded a video of the subjects performing the experiments. The subjects were asked

to perform a single eye-blink ONLY if a green plus appears on the screen (Fig. 3.2). One

experimental session presented 25 such external stimulations to perform eye-blinks every

3-4s depending on the subject’s preference, resulting in the experiments lasting for 75 to

100 seconds per user. We repeated the same experimental protocol with Muse headset

[183]. Muse headset is a dry-electrode headset and does not require a sticky gel to main-

tain the scalp contact. The Muse electrodes were moistened with water before the headset

was worn by the user. We used the Muse Monitor application [184] on an Android plat-

form to collect the user EEG data, however, the stimulations on a computer screen were

still provided using the OpenViBE platform6. For both of the experiments, the video feed

was manually reviewed, and true labels of the eye-blinks were marked for providing the

ground truth7. These datasets collected from OpenBCI and Muse headsets were termed as

EEG-IO and EEG-IM (Table 3.1), and were used to evaluate the performance of BLINK on

involuntary eye-blinks and different EEG headsets.

B. Unguided eye-blink experiments: We also conducted uncontrolled user experiments

6OpenViBE software does not provide the drivers of Muse headset for collecting EEG directly from the
headset and hence, we used the Muse Monitor application.

7We performed the manual labeling as we found from the video feed that subjects blinked their eyes even
when the green plus was not shown on the screen
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(a) Accuracy (b) Precision (c) F1 Score

Figure 3.5: Detection performance results of BLINK algorithm on involuntary blinks

(a) Accuracy (b) Precision (c) F1 Score

Figure 3.6: Detection performance results of BLINK algorithm on voluntary blinks

with 12 subjects for the OpenBCI device where subjects were asked to (i) watch a video,

and (ii) read an article, each for 5 minutes. These datasets were termed as EEG-VV and

EEG-VR (Table 3.1). In unguided experiments, no external stimulations were provided.

Other experimental and annotation methodologies were similar to the previous experiment.

As the manual annotation process was time demanding, we annotated only the first 200

seconds of the unguided data, to use it for evaluating BLINK on voluntary eye-blinks and

different user activities.

For all the collected datasets, ground truth, i.e., the annotation was performed before

evaluating the BLINK algorithm to ensure an unbiased evaluation.

3.2.2 BLINK algorithm performance

We evaluate the performance of BLINK algorithm using three different metrics. Accuracy

measures the percentage of correctly detected eye-blinks out of total given eye-blinks (true

positives). Precision refers to the number of correctly detected eye-blinks out of the total
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detected eye-blinks. F1 score represents the harmonic mean of precision and recall. An

ideal detection algorithm would perform with 100% accuracy, with precision and F1 score

of 1 and 1 respectively8.

The collected EEG datasets were analyzed offline by implementing BLINK algorithm

(Algorithm 1) in Python. We analyzed the results for two frontal channels (Fp1 and Fp2)

whose results were combined in an OR fashion. We used a 4th order Butterworth low pass

filter (algorithm 1: line 1) with a frequency of 10 Hz. The w of subroutine 1 was set to

0.5 fs, and w1,w2,w3 of subroutine 2 were set to 0.5 fs, 0.1 fs, and 5 fs respectively, where

fs is the sampling frequency of EEG devices (250Hz for OpenBCI, and 256Hz for Muse).

The correlation threshold for computing highly correlated components (high corr comp,

algorithm 1: line 12), was kept to 0.2 (low value), to allow more potential eye-blinks for

robust profiling.

Involuntary eye-blinks

We compute and present the detection performance of the BLINK algorithm on involuntary

eye-blinks (i.e., EEG-IO and EEG-IM dataset from Table 3.1) in Fig. 3.5 in the form of

cumulative distribution for both platforms. The mean algorithm accuracy for all 20 sub-

jects is near perfect (98.96% for OpenBCI, and 99.2% for Muse). The mean accuracy of

(top-5, worst-5) subjects is (100%, 96.00%) for OpenBCI traces, and (100%, 97.2%) for

Muse traces. The top-5 and worst-5 accuracies do not differ much, which validates the

universality of the algorithm. Mean precision is above 0.9 for both the devices (0.951 for

OpenBCI, 0.913 for Muse). Similar (top-5, worst-5) precision scores are (1.0, 0.858) for

OpenBCI and (0.993, 0.801) for Muse. F1 score assigns a weighted score of accuracy

and false positives. We received an average F1 score of 0.968 and 0.944 for OpenBCI

and Muse, respectively, which confirms the robustness of the algorithm. Moreover, the

results for Muse and OpenBCI do not differ much, which validates the extensibility of the

8The detection problem is posed as detecting eye-blinks every time instant. It should be noted that the
detection problem is not a binary classification problem, hence, the random baselines would not be 50%
accuracy
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Dataset Accuracy Precision F1 Score

EEG-IO 98.96 (± 2.32) % 0.950 (± 0.062) 0.968 (± 0.031)
EEG-IM 99.2 (± 1.92) % 0.913 (± 0.079) 0.944 (± 0.046)
EEG-VV 98.47 (± 2.44) % 0.922 (± 0.083) 0.950 (± 0.046)
EEG-VR 98.32 (± 2.86) % 0.952 (± 0.043) 0.967 (± 0.022)

Table 3.2: A summary of BLINK performance over collected datasets

Accuracy Precision F1 Score

BLINK 100% 0.952 0.97
BLINKER[28] 44.05% 0.558 0.69

Table 3.3: Performance comparison with BLINKER

algorithm across other BCI platforms.

Voluntary eye-blinks

EEG-VV and EEG-VR datasets (Table 3.1) were used to evaluate the performance of BLINK

algorithm on natural eye-blink patterns when users were watching a video or reading an

article. Fig. 3.6 presents the performance of BLINK to detect involuntary eye-blinks in

the form of cumulative distribution for both user activities. Averaged over 12 subjects, we

achieved an accuracy of 98.4% and 98.3% for video and read activities respectively. The

corresponding average precision measures and F1 scores are (0.92, 0.94) for video, and

(0.95, 0.96) for reading activity. The consistent performance of BLINK on natural eye-

blinks over different activities show the robust performance and applicability of BLINK in

practical uses.

A summary of the BLINK performance is presented in Table 3.2 over the collected

datasets.

3.2.3 Comparison of BLINK performance with related work

Comparison with BLINKER[28]

For comparing the algorithm performance with BLINKER[28], we look at the mean of

accuracy, false positive rate and F1 score for 7 subjects in EEG-IO dataset. BLINKER
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Accuracy Precision F1 Score

BLINK 98.15% 0.951 0.96
SVM 46.49% 0.559 0.69
k-NN 67.82% 0.664 0.75

basic threshold 6.83% 0.441 0.66

Table 3.4: Performance comparison with learning approaches

requires long EEG traces, and runs successfully only on the dataset from 7 subjects, hence

we use 7 subjects out of 20 for result comparison in Table 3.3). We can see the significant

difference in eye-blink detection performance of BLINK and BLINKER (Table 3.3). BLINK

performs perfectly (100% mean accuracy, 0.952 precision), but BLINKER[28] performs

44.05% accurate with the precision of 0.558.

Comparison with the basic threshold approach

While we know that threshold-based comparison approaches are highly ineffective, a cu-

rious reader might be interested in the merits of the proposed algorithm. Hence, for

completeness, we implemented a naive statistical algorithm to detect eye-blinks (used fre-

quently in EEG community [185, 186]) by comparing the signal variance (or standard de-

viation) with a threshold. For EEG-IO dataset of 20 subjects, the best threshold value was

learned (which results in the highest F1 score), and the corresponding accuracy obtained

was 6.83%, precision being 0.441 with an F1 score of 0.66.

Comparison with learning approaches

Having previously established the inadequacy of learning approaches to detect eye-blinks

for our solution (requirement of user training), we compare the BLINK performance with

learning approaches, namely (i) SVM [187], and (ii) k-NN (k-Nearest Neighbors) [188] to

establish a baseline. For this comparison, we use a moving window of 0.5 fs length with a

stride of 0.1 fs to bucket the features as eye-blinks and no-blinks based on the given labels.

We split the EEG-IO dataset in an 80:20 ratio for training and testing. For SVMs, the linear

kernels were used, and the number of nearest neighbors was set to 5 for k-NNs. For SVMs,
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Algorithm Performance Limitations

[120] 87.13% requires training phase
[117] 97.0% TPR (for 10% FPR) not fully automatic
[104] 99.9% sensitivity, 94.7% specificity uses 6 EEG, 2 EOG

BLINK ≥ 98% accuracy

Table 3.5: Reported performance and limitations of the related work

we receive an accuracy of 46.49%, precision of 0.559 and f1 score of 0.69. Similarly, for

k-NNs, the obtained metrics are 67.82%, 0.664, and 0.75, respectively.

Reported performance comparison with the related work

After attempting to run codes released with previous works [28, 117], we concluded that

every proposed algorithm is followed by the process of optimizing the algorithm param-

eters on their collected dataset. Hence in Table 3.5, we present the reported performance

metrics of the selected related works (optimized on their collected dataset) along with their

limitations and compare against the BLINK performance. We can see that although [117]

and [104] report comparable accuracies, they have limitations of not being fully automatic,

or requiring multiple EEG and EOG electrodes respectively.

3.3 Summary

In this work, we study the problem of eye-blink detection in EEG signals. In our literature

review, we find that regardless of the abundance of research in this area, the applicability

of the proposed algorithms is limited due to one or more requirements of multiple EEG

channels, EOG channels, user-training phase and manual inspection for robust detection. In

this context, we propose a fully automated unsupervised algorithm, BLINK, to detect eye-

blinks in the EEG data. Our approach self-learns brainwave profiles for each specific user’s

eye-blinks, and hence does away with any user training or manual inspection requirements.

BLINK capable of functioning on a single channel EEG accurately, estimates the start and

end timestamps of eye-blinks very precisely. We collected four different EEG datasets to

evaluate the robustness of the algorithm across various EEG headsets, user activities, and
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eye-blink types, and show that BLINK performs with an accuracy of over 98% in all cases

along with an average precision of 0.934.
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CHAPTER 4

LIGHTWEIGHT EEG-BASED WAKE-UP COMMAND DESIGN FOR BCI

(a) (b) (c) (d)

Figure 4.1: BCI wearable headsets and battery life (a) Emotiv EPOC+ , (b) Neurosky
Mindwave, (c) OpenBCI system. In (d) we present the advertised battery life and
battery capacity of currently popular BCI wearables in the consumer market.

OpenBCI system is also our experimental testbed where we implement the wake-up
command detection and evaluate the system performance. (Images for EPOC+ and

Mindwave headsets are obtained from https://www.emotiv.com/epoc/, and
https://store.neurosky.com/ respectively.)

EEG-based BCI platforms conform to a typical architecture. The user wears an elec-

trode array (typically ranging from 2 to 32 electrodes)1. The electrodes are flat metal

discs that can sense the electrical activity on the surface of the brain that occurs due to

the electro-chemical exchange of signals between neurons. The electrical activity, also re-

ferred to as brainwaves, change from one region of the brain to another and are in response

to different types of brain activity that in turn correspond to what the user is feeling or

thinking [189, 190]. Because of the inherent complexity involved in the processing of the

brainwaves to extract meaningful information, very little processing actually happens on

the BCI cap. The brainwave data is shipped over a communication link to the “computer”

where they are interpreted to deduce the user’s thoughts. The link, especially in consumer-

grade commercial solutions, is wireless and typically uses Bluetooth Low Energy (BLE).

This “sense-ship-(remote)compute” model has a significant implication on the energy con-

sumption properties of the BCI headset, and hence its battery life. Since the headset does

1High density EEG sensor arrays can have up to 256 electrodes.
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not know when the user will issue a command through brainwaves, it has to listen on a

continuous basis, capture the brainwaves, and ship it to the computer, for remote interpre-

tation. The always-on mode of functioning limits the typical BCI wearable battery life to

only a few hours. At the same time, numerous studies have established that battery life is

a dominant factor in how users rate their experience with wearables [191, 192, 193, 194,

195].

The advertised battery life for commercially popular wearable EEG headsets are shown

in Fig. 4.1(d) and compared to the total battery capacity in mAh [196, 197, 198]. The bat-

tery life of even a relatively simple 8-electrode cap, is less than 3.5 hours, requiring users

to charge their headsets multiple times a day, which is undesirable and severely impacts us-

ability [199, 200, 201]. We believe that a longer battery life between consecutive recharges

can be a critical feature to the end-user [194, 195]. Note that for non BCI wearables, the

problem of battery life is heavily impacted by the display, and hence solutions tend to focus

on intelligently switching off the display when not in use [202, 203, 204]. However, BCI

headsets do not have a display and require a different solution to extend battery life.

Thus, in this chapter, we tackle the battery life problem for the BCI headset. We present

the design of a wake-up command for BCI that allows the headset to operate by default in

a near-sleep mode, and transition to a normal mode only when the user issues the wake-up

command. The key challenge that we address is how the headset can operate in a near-sleep

mode, but yet reliably detect and interpret a wake-up command (based on brain activity)

from the user. Toward addressing the challenge, we pursue a solution strategy that is built

upon the user’s eye blinks.

We rely on three different user EEG datasets collected (Table 4.1) to evaluate and val-

idate the performance of the Trance algorithm. We also implement the Trance algorithm

on OpenBCI and demonstrate the detectability and power-requirements of Trance (in a

resource-constrained environment). We have made the source code for the implementation
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Dataset Blink type Users Activity

EEG-MB Involuntary 16 external stimulation
EEG-VV Voluntary 12 watching a video
EEG-VR Voluntary 12 reading an article

Table 4.1: EEG datasets collected for Trance evaluation

and an anonymized version of the dataset publicly available2. We experimentally validate

that for typical active usage rates of wearables (2%, [205]), Trance can extend battery life

by approximately 2.7x, or to approximately 10 hours, allowing the headset battery to last

for practically an entire day of use.

In summary, the following are our contributions,

• We perform a micro-power analysis on the individual components of a typical BCI

wearable device, to identify the components that consume significant battery life3.

We believe that such an experimental analysis could be useful for system designers.

• We design a new wake-up command that relies on eye-blinks as the command modal-

ity. Trance enables the detection of wake-up commands in a heavily resource-constrained

environment through simple signal processing techniques.

• We perform an array of system and user experiments to evaluate and validate the sys-

tem and the wake-up command performance. We study the interaction consequences

through the lens of end-user usability.

• Finally, we provide a pointer to the data sets and implementations presented in this

chapter. We believe that this will allow fellow researchers in the area to reproduce

the findings and to build upon our contributions.

2https://github.com/meagmohit/Trance
3The detailed experimental power analysis of wearable BCI headsets is presented in the appendix (section

4.10)
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4.1 Motivation

We perform a detailed experimental analysis to verify that (a) there is a limited battery

life problem with BCI headsets, (b) there are meaningful control knobs to improve battery

life, and (c) those control knobs are tunable to the optimal settings by using a wake-up

command. We present the entire experimental methodology and analysis in the appendix

section (section 4.10) and outline the salient learning below,

There is a limited battery life problem with BCI headsets: We verify with the power

experiments that a typical wearable BCI headset battery life is 3.4 hrs. The experimenta-

tion involved the average current measurement and approximate battery life projection by

assuming the constant voltage.

Control knobs are available to improve battery life:

• We identify six different control knobs i.e. reconfigurable micro-components of the

BCI hardware which could have a potential impact on BCI battery life, namely (i)

micro-controller (µC) clock rate, (ii) ADC clock rate, (iii) ADC channels, (iv) data

rate, (v) Programmable Gain Amplifier (PGA), and (vi) radio module. Based on the

datasheet based power-impact analysis and allowed reconfigurability, we eliminate

three control knobs - ADC clock rate, data rate and radio module.

• We run an exhaustive experimental study of all combination of settings of remaining

three control knobs, (i) µC clock rate, f, (ii) number of ADC channels, c, and (iii) pro-

grammable gain, g. We measure power for a specific (fi,cj,gk) in an exhaustive man-

ner from, fi ∈{48,40,30,20,10,6}MHz, gj ∈{24,12,1} and ck ∈{8,7,6,5,4,3,2,1},

and conclude that PGA does not significantly impact the battery life.

• For the uC clock rate and ADC channels, we capture their contribution to power

consumption in the form of a linear equation.

The case for wake-up command:
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(i) we show that it is possible to achieve over 10 hrs of battery life for a BCI wearable

if the impactful control knobs are tuned down to their lowest setting, when the headset is

not being used and (ii) the main challenge that remains is to reliably detect the wake-up

command in the lowest parameter setting of the BCI headset (low CPU frequency, and

sampling only a few electrodes).

4.2 Rationale for Using Eye-blinks

The first issue we tackle in designing the wake-up command is the choice of the basic

building block, or modality, for the command. For e.g., 'Amazon Echo' and 'Google Home'

harness natural voice (or speech) as their command modality. We build the foundation of

our command solution in this work on eye-blinks. Alternative control modalities have been

proposed for wearable computers. The requirement of these modalities has been laid out

in the relevant literature [206]. Building upon these existing works and our use case, we

formally list out the desired properties of an ideal modality for the wake-up command -

(i) it should be easy, comfortable, inconspicuous and natural for the users, (ii) it should

require no external aids or stimulations (e.g., flashing strobes), and (iii) the impact on the

EEG signal must be pronounced enough to be quickly and robustly detected in a low-power

mode and hence easy to detect.

Schaffer et al. [207] highlight the importance of input performance, for modality usage.

In [206], Calhoun et al. argue that the input device needs to be inconspicuous (thus, avoid-

ing any negative social consequences) while being obvious, natural and should require little

to less training. Simultaneously, it should be oblivious to the environmental factors, e.g.,

ambient noise, light, temperature, etc. Simpson et al. [208] reflects on the unwillingness of

users to use the intrusive modalities attracting attention. Additionally, users tend to prefer

modalities that avoid inconvenient interaction steps, even if it increases the interaction time

[209, 210].

The key benefits of relying on eye-blink based command are as follows:
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• Signal consistency: The act of eye blinking affects the EEG in a distinct manner as

compared to the other modalities. The opposite electric polarity between the cornea

and retina essentially turns the eye into an electric dipole, distorting the electric field

around the eyes. This electric field change captured at the frontal electrodes in EEG,

manifests a consistent change in EEG, and thus makes it feasible to detect without

any user-training and data-driven learning [211].

• Absence of the hardware control: A survey of off-the-shelf BCI headsets (e.g., Emo-

tiv EPOC+, Insight, Muse, Mindwave mobile 2, Intendix Speller, Neocomimi, Mind-

flex, etc.) shows that the headsets do not readily come equipped with other input

modalities like buttons or touch interfaces. Thus, relying on EEG and Eye-blinks

which the BCI hardware is already equipped to support, is considerably more desir-

able from the standpoint of necessary hardware modifications.

• Competition for the action: In mobile scenarios (e.g., running, driving, etc.), users

need to pay attention to the environment, and taking hand-based actions might be

dangerous [212]. Eye-blink based command provides a convenient way to wake-up

the BCI device in such scenarios.

• Non-intrusive: One of the central goals of the BCI wearable is to allow a non-

intrusive way of communication between users and computers. Relying on button

or touch, gestures, or natural voice disrupts the environmental state around the user.

Huang et al. [141, 137] support the non-intrusiveness of eye-blinks as a communica-

tion modality.

The act of blinking can be performed without any external aid. Such qualities make eye

blink a perfect fit for the command modality. We now provide a qualitative comparison with

the other possible wake-up command modalities. The candidate space for the command

modality can be broadly classified into two categories, (i) user-action based commands,

and (ii) user-thought based commands.
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Input Natural User Hardware Cognitive Competition Intrusive
Performance FPR Training requirement effort for action

Tactile input    #  # #
EMG (Facial/Jaw) #  # G# # G# #

Gestures G# G# # G#  # #
Natural Voice   # #  G# #

Table 4.2: Preference for different wake-up command modality (in comparison to
eye-blinks) over various design parameters.
 : Preferred #: Not Preferred G#: Comparable or can’t say

Comparison with user-action based modalities

Calhoun et al. [206] describes the hands-free input interfaces for the wearable devices.

Within user-actions, we consider (i) tactile input (e.g., button or touch), (b) EMG based

facial, jaw or head movements, (c) gestures (motion-sensor based), and (d) natural voice.

Schaffer et al. [207], presented various factors considered by the users for input modality

selection. We select multiple user- and system- based factors to provide a qualitative com-

parison for the preference of user-action based modalities against the eye-blinks in Table

4.2.

Tactile input provides the best input performance with the fastest task completion time

[210, 213, 214, 215]. However, it requires hardware modification on the BCI wearables and

is intrusive to the user-environment. Convenience to deliver command plays a significant

role in user adoption in hands-free approaches [216] against button or touch modalities.

Facial muscle contractions, raising an eyebrow, clenching the jaw are detectable through

electromyography (EMG) sensors, which can also be picked up by EEG electrodes [217,

218, 219]. These qualities make EMG based muscle movement compatible with existing

BCI headsets. They are inherently inconsistent in terms of the signal signatures across users

and across time, even for a single user. Hence, true proportional control is difficult and

requires training [206]. Such inconsistencies are typically addressed through sophisticated

algorithms [220, 221] that cannot be accommodated by limited computational capabilities.

Thus, we argue that such user-actions are also not firmly suitable candidates for the wake-up
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command modality. Another issue is to select a body (or muscle) movement that does not

interfere with the normal functions of the user or can be discriminated robustly against the

inadvertent one. Additionally, the anticipated frequency of use must be taken into account,

as frequent uses of jaw clenches can aggravate Tempero-Mandibular Joint (TMJ) disorder

[222].

Existing BCI headsets are equipped with motion-based sensors (e.g., accelerometer, gy-

roscope), hence, compatible with detecting movement-triggered gestures. Kela et al. [223]

suggested gestures as a natural modality for commands with a spatial association in design

environmental control. Voice-based systems are the most natural way of human-computer

interaction, as it is similar to the ways humans interact with each other [224]. They are

easy to perform and present a comparable time for command delivery. For BCI headsets,

the primary issue is the installation of additional hardware on the BCI headsets. They must

perform in highly noisy and dynamic environments, and should not interfere with regular

human communication. Considering privacy, speech or gestures may not be appropriate to

use [206]. Noronha et al. [134] showed that users perceived eye-wink based modality at

least as or more safe, easy and effective to use as the other modalities (i.e., voice, EMG

gesture control) through subjective assessment and user questionnaires in a Human-Robot

Interaction (HRI) task. Novanda et al. [225] found no significant difference between human

efforts for completing a task in HRI over voice, touch and gestures. However, a significant

difference was found in terms of human enjoyability, where touch as the input modality

was least enjoyable for the users. Rudnicky et al. [210] showed users’ strong preferences

towards voice-based systems despite them being less efficient in terms of error and task

completion time, over tactile input interfaces.

4.2.1 Comparison with user-thought based commands

In the context of BCIs, user-thought based commands can either be aided (or triggered)

by an external stimulus (e.g., strobe light flashing at a certain frequency) or based on only

thoughts (e.g., imagining limb movements). Any user-thought modality that is dependent
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on an external stimulus will not satisfy the independence requirement i.e., users would not

be able to issue wake-up commands unless the external stimulus exists in the environment.

The detection of pure user-thoughts (e.g., motor imagery [226], P300, etc.) is heavily

dependent on statistical learning methods due to the inconsistency in the features exhibited

across the users. Hence, the detection of such modalities [227, 228, 229, 230, 231, 232,

233, 234, 235, 236, 237] demand extensive user-training and require highly sophisticated

filtering and machine learning algorithms. The limited hardware capability in a typical off-

the-shelf BCI hardware makes it infeasible to train and run such algorithms directly on the

hardware especially when operating in low-power mode. This is in accordance with the

detection latency of over 300ms [238] on a GHz scale machine. The latency of command

detection in an MHz scale processor in the order of seconds, is not desirable for real-time

detection. The buffering aspect in the continuous processing raises broader issues, when

the detection time is more than the time the user takes to issue the command. Hence, such

thought modalities (from the perspective of their state-of-the-art) are not practical for the

wake-up command detection in a resource-constrained environment.

An Ultra-low Power Digital Signal Processor (ULP DSP) could be used to tackle the

battery life problem in BCI headsets. If the ULP DSP were to support a thought-based

wake-up command (e.g. motor imagery), the challenges discussed earlier would still re-

main significant - burdensome user-training, lack of consistency in signals across time, the

computational complexity of the detection mechanism, and the need to sample from a large

number of electrodes [239, 240]. While more exploration of this approach is needed, we

believe that a ULP DSP system based on thought-based wake-up commands is unlikely to

be easily realizable. On the other hand, if the ULP DSP were to be designed for use with

eye-blinks, the system presented in this paper could serve as a candidate design for the

implementation.
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Figure 4.2: Study of blink patterns

4.3 Trance: Wake-up Command and Algorithm

We now proceed to tackle the challenge of designing a wake-up command and a robust

detection strategy, i.e., how BCIs can detect wake-up command in the resource-constrained

environment. The next subsection explains the inefficacy of the single blink as a wake-up

command and presents the design choice based on the multiple eye blinks.

4.3.1 Learnings from natural eye-blink patterns

According to the various studies [241, 242], it is estimated that a healthy adult blinks every

3-4 seconds. The blinking rate is highly variable across different people and tasks. In [242],

Bentivoglio et al. state that the blinking rate is 17 blinks/min at rest, 4.5 blinks/min while

reading, and 26 blinks/min while talking. We use the EEG-VV and EEG-VR dataset (Table

4.1) to study natural blink characteristics. We show the blink rate statistics in Fig. 4.2a.

We also conducted uncontrolled experiments on 7 adult subjects to study such blink-

ing patterns. We asked the subjects to (i) watch a video, and (ii) read an article, each

for 5 minutes. During the experiment, we recorded EEG data and video feeds simulta-

neously. We later analyzed these recordings offline to locate the blinks within the EEG.

From these experiments, it can be easily noticed that the natural blinking rate is very high.

(8.57 blinks/min averaged on both activities). This is in accordance with our day-to-day
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experience, and thus a standalone single blink is an unfeasible candidate for the wake-up

command.

We analyzed the recorded data for blink duration and frequency of the multiple blinks.

Fig. 4.2a also shows the variation in blink duration. We notice that this deviation is high

(standard deviation is greater than 30% of the mean blink duration), thereby restraining

us from fiddling with blink duration for the command design. Fig. 4.2b presents the cu-

mulative frequency of multiple blinks. We labeled a group of single-blinks as multiple

blinks if the gap was less than one second between the consecutive blinks. For e.g., three

single-blinks were termed as “3-blinks” when the time gap between adjacent single-blinks

was less than one second. It is evident from the above result that multiple blinks can be

leveraged for the command design, which is researched in detail in the next subsection.

4.3.2 Wake-Up command design rationale

In the last subsection, we learned that the multiplicity of the blinks could be used as one

degree of freedom for the command design to decrease the natural false positive rate. We

consider an array of multiple eye-blinks based commands as the candidate space for wake-

up commands, and analyze them in terms of their False Positive Rate (FPR) to select a

default wake-up command. The natural FPR is the frequency with which the wake-up

command will be detected due to the natural blinking pattern of the user, i.e., the user per-

forms the wake-up command without any intention of using the wearable device. We study

the natural FPR for video ( EEG-VV) and read (EEG-VR) datasets (Table 4.1). For 2-blinks,

natural FPR was 42.86 and 17.14 (per hour) for video and read tasks respectively. The nat-

ural FPR for 3-blinks dramatically reduces to 2.86 and 0 for video and read, respectively.

Comparing the average natural FPR of 2-blinks (29.99 per hour) and (1.43 per hour), as

also analyzed later in Fig. 4.10, we select 3-blinks as our default wake-up command. In

section 4.5, we conduct user studies to establish that 3-blink command is comfortable for

the users to perform (Fig. 4.8).

The default wake-up command presents a very low natural fpr, while being moder-
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ately comfortable to the users. However, due to the individual differences between user

preferences [243], we provide the users with the choice of switching to other multiple-

blink commands. This enables the BCI wearable users to tune the wake-up command

according to their natural blinking patterns, comfortability and performance (discussed in

section 4.5). Hence, in the following sections, we provide a generic algorithm to detect

k-blinks (k-consecutive eye-blinks) wake-up command and later evaluate the performance

for 2≤ k ≤ 6.

Design Goals: (i) universality: a single universal algorithm that can account for the

user and state variability, and would not explicitly require training or fine-tuning, (ii) small

form-factor: must function on one or two EEG channels, (iii) lightweight: the algorithm

has to be simple (lightweight) and yet effective and should be able to operate in real-time

(online) while relying only on limited hardware resources4.

4.4 Trance Algorithm: Wake-Up Command Detection

We present our lightweight and online command detection algorithm, Trance, in Algo-

rithm 2. Trance is a simple yet effective online algorithm, capable of detecting a series

of blinks in the EEG data. In order to build an eye-blink fingerprint in an online fash-

ion, Trance leverages the fact that the issued wake-up command will always have two or

more consecutive blinks. Trance is built upon the robust noise handling and peak detection

methodologies proposed in the signal processing literature [244]. Trance takes raw EEG

data and the chosen wake-up command k as an input, and returns True if the input data

contains the k-blinks command.

It identifies the candidate blink signals using a peak detection methodology based on

a threshold parameter (delta). These candidate blink signals are identified and validated

4As discussed in section 4.10, we use OpenBCI micro-controller unit (MCU) PIC32, in low-power set-
tings as a representative for the target resource-constrained environment. PIC32 has a 128KB program mem-
ory size with a 32KB SRAM and 3KB auxiliary flash memory. In the low-power mode, the clock frequency
of PIC32 is 6MHz.

5[X] represents a set (an array) of elements X (1),X (2), · · ·X (size(X)) where size(X) operation denotes the
total number of elements in [X]
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Algorithm 2: Trance Algorithm
Input : E: EEG raw Data , k: number of blinks in command, fs: sampling

frequency
Parameters: delta init : initial threshold for peak detection, in f : influence factor,

corrthresh: correlation threshold
Output : True if command is present otherwise False

1 Initialize: delta← delta init, f ound← False
2 Preprocess: lowpass filter (using moving average) E with cut-off frequency of

10Hz
3 [tpeaks] = peak detect(E,delta)
4 if size([tpeaks])|5 < k then return False; ;
5 [tstart ], [tmin], [tend]← identify blink candidates(E, [tpeaks], delta)
6 valid← validate blink candidates(E, [tstart ], [tmin], [tend])
7 if not valid then return False; ;
8 for i = 1,2, · · · ,size([tmin]−1) do
9 corr← correlate(E, t(i)start : t(i)min : t(i)end , t(i+1)

start : t(i+1)
min : t(i+1)

end )
10 if corr ¿ corrthresh then
11 blinkamp← compute amplitude(E, t(i)start : t(i)min : t(i)end , t(i+1)

start : t(i+1)
min : t(i+1)

end )
12 delta← blinkamp · in f +delta · (1− in f )
13 else
14 f ound← False

15 return f ound

based on their unique characteristics (e.g., pattern, slope, etc.) when the signals recover

from the blink trough. The consecutive blink signals are correlated to perform blink detec-

tion. Further, the threshold value (delta) is dynamically updated according to the ampli-

tude of detected blinks to adapt for the future wake-up command detection. In this manner,

Trance detects a pair of blinks, and groups k−1 consecutive pairs to detect k-blinks.

The parameters of this algorithm are (i) initial peak detection threshold (deltainit), (ii)

influence factor (in f ), and (iii) correlation threshold (corrthresh). deltainit initializes the

threshold to detect local peaks (between minima and maxima). A low value of this parame-

ter successfully works for all users and blinks, as the threshold value is updated with an in f

factor with each successful detection of a blink pair. The correlation threshold controls the

trade-off between the accuracy and the false positives. A very low value of this threshold

provides near-perfect accuracy with high false positives. These parameters can be set and

48



Figure 4.3: User evaluation setup

fixed offline as per the device noise level (during the device testing) and according to the

required trade-off in detection performance, before releasing the firmware for use. Trance

is agnostic to the user and state with respect to parametric changes, and thus is a univer-

sal algorithm. For the reproducibility of our work, we have released the dataset and code

in the public domain6. For implementation and evaluation of Trance on OpenBCI device,

the deltainit parameter in the Trance algorithm was initialized to 200µV. The correlation

threshold and influence factor were set to 0.6 and 0.05, respectively.

4.5 Evaluation

We conducted several system and user experiments to (i) evaluate the performance of

the wake-up command and Trance algorithm, (ii) overall system performance in terms

of latency and power savings, (iii) the broader interaction consequences in terms of user-

comfort, time taken by the user to deliver the command and implications of false positive

rate on the user-experience and system.

4.5.1 EEG-based user experiments

First, we conducted two EEG-based user experiments to evaluate the algorithms, wake-up

commands, and prototype presented in this work. In this study, we decided to focus on

two experiments, with one task for a controlled environment and two tasks for an uncon-

trolled environment, as it allowed us to study the user characteristics and assess the system

6https://github.com/meagmohit/Trance
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performance in controlled and uncontrolled environments.

Participants

All the research protocols for the user data collection were reviewed and approved by the

add Georgia Tech Institutional Review Board. A total of 20 subjects were recruited for the

first task, and 12 subjects for the other two tasks. The subjects for the study were recruited

from mixed demographics with a mean age of 26.75 years old (± 2.17) and were either

full-time students or full-time employees. 30% of the recruited subjects were females. All

participants could communicate well in English and understood the experimental protocol.

They were compensated with $10 Amazon gift cards for their participation in the study.

The experimental paradigms and the collected EEG datasets are explained below,

Apparatus

For the EEG data collection, we used BIOPAC 100C electrode cap7 The electrode cap was

attached with the OpenBCI platform, which was further connected to a desktop machine

over the wireless channel (using BLE). A Windows system (Dell Precision T3610) with a

27” monitor was used. We used OpenViBE software (developed by Inria [182]) to present

the on-screen stimulations and collect the user EEG data with synchronized timestamps. A

Logitech webcam was used to record the video of the subjects performing the experiments.

We used Flashback Express, a screen recording software, to record the screen output along

with the webcam output.

Task and stimuli

In the first task, the raw EEG traces were collected from 20 subjects in a guided (i.e.,

software instructed) environment. Subjects were asked to perform multiple-blinks when

instructed. A green plus marker was shown to guide the user to perform two sets of triple-

blinks with a small gap in between i.e., 3-blinks followed by 3-blinks. The frequency of

the green plus was once in every 15-25s, and a total of 10 such stimulations were provided.

7https://www.biopac.com/product/eeg-caps-for-cap100c/.
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In the second task and third task, twelve subjects were asked to (i) watch a video, and (ii)

read an article, respectively. The duration of each task was five minutes. While users were

watching the video and reading an article, their EEG data was collected and the video feed

was recorded. Users were asked to select a video and reading article of their choice, which

would take at least 5 minutes to watch or read, respectively. Uncontrolled user experiments

were conducted for 12 subjects to study the natural blink characteristics and test the natural

and Trance false positive rate in such an uncontrolled environment.

Procedure

Upon arrival, the experimental protocol was explained to the subjects, and the subjects were

provided with consent forms and a demographic questionnaire. Subjects were asked to sit

comfortably in front of a computer screen and wear the electrode cap. Electrode gel was

used to facilitate the surface contact between the Fp1 and Fp2 (as per the 10-20 electrode

system) electrodes on the scalp and forehead. After setup, an OpenBCI GUI software was

used to verify the signal quality manually. Task-specific applications were initiated along

with the camera feed and screen recording. After the completion of the experiment, users

were asked to take off the electrode cap.

For both experiments, the video feed was manually reviewed, and true labels of the

eye-blinks were marked for providing the ground truth8.

For the first task, upon analyzing the video feed, we rejected the dataset of 4 sub-

jects due to excessive head movements (essentially corrupting the EEG data), or improper

placement of the electrodes for the controlled experiments. We term this EEG dataset of

16 users with multiple-blinks in controlled environment as EEG-MB (Table 4.1). For the

second and third tasks, no external stimulations were provided, hence, manual annotation

was done through the video feed. As the manual annotation process was demanding, we

annotated only the first 200s of data for the evaluation. We term datasets obtained from

8We performed the manual labeling as we found from the video feed that subjects blinked their eyes even
when the green plus was not shown on the screen
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Figure 4.4: Detection performance of Trance on default wake-up command (3-blinks)

these two tasks as EEG-VV and EEG-VR (Table 4.1).

4.5.2 User comfortability survey

We performed an experimental survey to study the user-comfort level of eye-blink based

wake-up commands. We prepared an instructional survey form on Qualtrics where we

explained the motivation of the study, and instructions to perform the series of blinks.

In the questionnaires, the participants were presented with three different blink patterns

to perform, and rate them on a Likert scale ranging from 1 to 5 with 5 being extremely

comfortable9. The three different blink patterns were chosen randomly from 1-blink, 2-

blinks, · · · , 6-blinks. The survey was designed to take less than two minutes to complete.

To ensure that participants were paying attention (and performing the tasks), we included

two validation questions, (i) the number of blinks the participant performed in the first

question, and (ii) to re-rate its comfortability score. The participants were recruited through

Amazon MTurk10, and were each compensated with $0.02 conditioned upon the successful

pass of the validation questions. A total of 209 responses were received; we removed 21

responses, due to incorrectly answering the validation questions.
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Figure 4.5: Trance performance on k-blinks wake-up command

4.6 Results

4.6.1 Trance algorithm performance

The performance of the Trance algorithm is evaluated using three different metrics, namely

recall, precision and F1 score. Recall measures the percentage of correctly detected k-

blinks out of the total given k-blinks. Precision refers to the number of correctly detected k-

blinks out of the total detected k-blinks. F1 score represents the harmonic mean of precision

and recall. An ideal detection algorithm would perform with 100% recall, with precision

and F1 score of 1.0 and 1.0 respectively.

Performance over the default wake-up command

The multiple-blink EEG dataset (EEG-MB, Table 4.1) was used to evaluate Trance algo-

rithm on the default wake-up command (3-blinks) mode. The dataset contains the ground

truth labels for multiple eye-blinks in the form of the timestamps of each single-blink. As

our default wake-up command is defined as 3-blinks with consecutive blinks within one

second, we mark the ground truth in a similar manner. Specifically, in the ground truth

labels, we mark 3 single-blinks (with consecutive blinks happening within one second) as

one wake-up command. We present the cumulative distribution of (i) accuracy, (ii) preci-

sion, and (iii) F1 score in Fig. 4.4 for 16 subjects. The mean recall obtained for the default

9The five rating choices were- 1: Extremely Discomfortable 2: Slightly Discomfortable 3: Neutral 4:
Slightly Comfortable 5: Extremely Comfortable

10https://www.mturk.com/

53

https://www.mturk.com/


wake-up command detection is 0.89%, with (top-5, worst-5) subject mean being (0.97%,

0.74%). We obtain a mean precision of 0.99, with a precision of 1.0 and 0.967 for the top-5

and the worst-5 subjects. Similar results are obtained for the F1 score, i.e., 0.93 averaged

over all subjects, and the top-5 and worst-5 F1 scores are 0.99 and 0.85. For the wake-up

command, we can see that there are moderate user variations in the best-5 and worst-5 for

all three metrics. The users can tune the wake-up command as per their comfortability and

performance.

Performance over the k-blinks wake-up command

In Fig. 4.5, we compare the recall and precision of k-blinks wake-up commands. The total

false positive rate for a wake-up command is the sum of Trance false positive rate (per hour)

and natural false positive rate (per hour). The 2-blinks command has the highest recall of

0.95, with a precision of 0.98. Recall decreases with an increase in k, as for detecting a

k-blink command, Trance has to detect k−1 consecutive pair of blinks accurately. For the

3-blinks command, we obtain a recall of 0.87, which decreases to 0.86, 0.82, and 0.78 for 4-

, 5- and 6-blinks respectively. We obtain a very high precision value for all k- commands,

which indicates that the false positives are very rare in Trance based wake-up command

detection. For 3-blinks, precision is 0.97, and ≥ 0.98 for the other wake-up commands.

4.6.2 System performance

We implement the Trance algorithm on the OpenBCI board (Software platform: Arduino,

Coding Language: C) to experimentally verify the overall system performance in terms of

(i) latency in command detection, (ii) memory requirements, and (iii) power implications.

For this experiment, we modify the OpenBCI architecture to run at (6MHz, 2 electrodes),

and to receive raw EEG trace from the computer via RFDuino, instead of the electrodes.

The trace-based analysis enables the correct measurement and replication of results which

would not have been possible if evaluated directly on the prototype.
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Latency in command detection

We fed the OpenBCI board with 10s snapshots of collected EEG traces (from the guided

experiments), and measure the time taken by the algorithm to declare command or non-

command (absence of command). We start the timer as soon as the OpenBCI receives the

last bit of externally fed EEG trace. We repeat this experiment for multiple snapshots of

commands and non-commands. Trance takes an average of 121.4 ms (± 19.06) to detect

a command. Detecting a non-command is significantly faster (due to the multiple earlier

exit routines), i.e., 24.13 ms (± 17.4 ms). The quick blink detection in order of a few ms,

enables the real-time operation without adding any detectable lag for users. Along with

latency measurement, while passing randomly interspersed EEG traces, we also re-verified

the correctness of the Trance algorithm on the OpenBCI board. Thus, Trance is certainly

viable on a lightweight platform (in terms of both computational power and memory) to

perform real-time command detection.

Memory requirements

The memory required by the Trance algorithm on the OpenBCI hardware is 106.71 KB

as compared to the default OpenBCI firmware (94.36 KB) out of a maximum possible

128KB. The dynamic memory requirement of our program is 11.73 KB, which is also only

a slightly higher (and feasible) than the default value of 11.23 KB. This shows that Trance

memory requirements are only marginally higher than default OpenBCI firmware (due to

the additional Trance code) and within the maximum capacity of OpenBCI architecture.

Power implications

We transfer a 40s trace of previously collected user data (corresponding to Trance perfor-

mance) to an OpenBCI device running the Trance algorithm. The trace contains two wake-

up commands (randomly picked from 10 available commands from each user) interspersed

randomly in the interval of 40s. The rest of the trace contains the noisy (non-command)

data randomly sampled from the specific user data. This trace is processed by the Trance
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Figure 4.6: Battery life comparison for Trance

algorithm running on the OpenBCI (low-power mode) and generates the timestamps when

the command is detected on the board. To measure the energy savings when using Trance,

we run the OpenBCI device on low-power mode, and switch it to the high-power mode for

a time duration corresponding to activity ratio (the percentage of the time, the wearable de-

vice is on high-power mode) for each detected command. We measure the average current

drawn during the experiment duration (for different activity ratios) and compare it with the

average current drawn in the absence of our solution (i.e., always in high-power- mode,

43.85mA). Fig. 4.6 shows the battery life of OpenBCI for various activity ratios. With the

power experiments, average current consumption over the users was found to be 16.22mA

( 9.3hrs for 2% activity ratio), experimentally verifying that with Trance, BCI wearables

can last for single day usage. This compares to a theoretical projected lifetime of 11 hours

for a 2% activity ratio. Liu et al. [205] establishes that wearable wake-up periods account

for only 2% of the overall usage.

4.6.3 The study of usability

In this subsection, we look at the Trance solution through the lens of end-user usability.

Specifically, we investigate (i) user-comfortability with the proposed wake-up command,

(ii) time taken by the user to deliver the command, and (iii) false positive rate of the system.

56



C
om

fo
rta

bi
lit

y 
Sc

or
e

1

2

3

4

5

0.0000 0.0326 0.2151 0.4239 0.6979 1.0000

6-Blink 5-Blink
3-Blink 4-Blink
2-Blink 1-Blink

Figure 4.7: User comfort CDF over k-blinks

C
om

fo
rta

bi
lit

y 
Sc

or
e

1

2

3

4

5

1-blink 2-blinks 3-blinks 4-blinks 5-blinks 6-blinks
2.743.213.253.694.174.29

Neutral

Extremely Comfortable

Slightly Comfortable

Slightly Discomfortable

Extremely Discomfortable

Figure 4.8: User comfort score over k-blinks

User comfortability

We use the Likert scale ratings from 188 valid responses collected in the user-comfortability

survey. We present the cumulative distribution of 188 responses for each wake-up com-

mand in Fig. 4.7. We also present the mean and standard deviation of the comfortability

score of each wake-up command in Fig. 4.8. 78.05% participants said that the default wake-

up command (3-blinks) was not discomfortable. This compares to the 96.6% of partici-

pants, who did not find the 2-blinks command discomfortable. The average user-comfort

score for 2-blinks was obtained as 4.17, a little higher than Slightly Comfortable. Simi-

larly, for 3-blinks, we obtained a user-comfort score of 3.68, somewhat less than Slightly

Comfortable but considerably higher than Neutral. For 4-blinks and 5-blinks, the com-

fortability score is very close to Neutral. For 3-blinks, 78.05% of participants did not find

the wake-up command discomfortable. This compares to a similar statistic of 96.6% for

the case of 2-blinks. We obtained a mean comfortability score of 3.69 (± 1.11, close to
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Figure 4.9: Action time over subjects

slightly comfortable) and 4.17 (± 0.87) for 3-blinks and 2-blinks respectively. We per-

formed the t-test on responses of two groups (i.e., 2-blinks and 3-blinks) and found the

difference to be statistically significant (p < 0.05). This supports our intuition that the user

comfortability in delivery of the default wake-up command (3-blinks) is less than 2-blinks.

In summary, we found through survey-based user studies, that the wake-up command is

reasonably comfortable to perform for the purpose of waking up the BCI wearables. We

perform a t-statistic test to test whether the difference between the mean comfortability

score of 2-blinks and 3-blinks is statistically significant. We obtain the p-value as 0.0015,

rejecting the null hypothesis at the 0.05 significance level. In summary, the mean comfort-

ability score of 2-blinks and 3-blinks was found statistically significant.

Time to deliver the wake-up command

For each trial, we measure the action time as the duration between the appearance of the

stimulus (i.e., green cross) to the completion of the 3-blinks for the wake-up commands

delivered in EEG-MB task. We present the action time for 15 subjects in Fig. 4.9. Large

variability is observed across subjects. Subject 10 took 1.47 (± 0.43) seconds, while subject

14 took 3.31 (± 0.28) seconds to deliver the command. Across all trials and subjects, a

mean action time of 2.25 (± 0.59) seconds was obtained to deliver the wake-up command.

The command delivery time is comparable to the delivery time of other hands-free control

modalities.
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Figure 4.10: Natural and Trance FPR over k-blinks

False positive rate (FPR)

The false positive rate (per hour) of the system is defined as the frequency with which the

wake-up command is detected without any user request to wake-up the BCI wearable. The

total FPR for a wake-up command is the sum of Trance FPR (per hour) and natural FPR

(per hour). The natural FPR is when the user issues the wake-up command as per their

natural blinking pattern, without any explicit intention of waking up the device. Trance

FPR is the result of Trance algorithm misinterpreting signals as the wake-up command. To

evaluate both, we use the dataset from uncontrolled experiments (Table 4.1) when subjects

were watching a video (EEG-VV) and reading an article (EEG-VR). We present the FPR in

Fig. 4.10. 2-blinks has the highest total FPR of 29.99 per hour (the natural FPR contributes

80.62% of it). With the increase in k, both natural and Trance FPR decreases. For detecting

a k-blink command, Trance has to accurately detect k−1 consecutive pair of blinks, which

results in a drop in the FPR. 3-blinks command performs accurately with a natural and

Trance FPR of 1.43 and 1.46 per hour, respectively. A zero FPR (for both natural and

Trance) was obtained for 4- or more blinks

4.6.4 Implications of the false positive rate

In the previous section, based on the experiment-based evaluation, we concluded that the

proposed system performs with an FPR of 2.89 per hour. Here, we discuss the negative im-

plication of this FPR. Firstly, an important thing to note here is that unlike other command
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Figure 4.11: Implications of FPR on battery life

modalities, the FPR of the eye-blink based command modality does not have any nega-

tive implications on the user experience. In the case of a false positive, the BCI wearable

will wake-up (i.e., switch to high-power mode) and wait for thought-based communication

command from the user. If the system does not detect any ongoing communication, it will

go back to sleep. Hence, a high FPR will have negative implications only on the battery

life of the BCI wearable as the BCI wearable will keep switching to high-power mode

needlessly. To quantitatively evaluate the impact of FPR on the battery life, we assume

a simple scenario where the user is not issuing any wake-up command intentionally, i.e.,

we consider the scenario where the BCI wearables wake up either due to natural FPR or

due to Trance FPR. We define a parameter α, as the duration of time BCI wearable will be

awake (in high-power mode) before going back to sleep (low-power mode). In Fig. 4.11,

we show the projected impact of FPR on the battery life for the different awake duration

(α). This curve is computed based on the current measurements obtained in low-power

mode and high-power mode in (explained in section 4.10). In this scenario (α = 30 sec),

the estimated battery life is 7 hrs and 12.36 hrs, for 2-blinks (total FPR = 2.89 per hour)

and 3-blinks (total FPR = 37.2 per hour) respectively. Similarly, for α = 1 min, the battery

life for 2-blinks reduces to 4.76 hours, while 3-blinks would last for 11.61 hours.
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Natural voice Eye-blink
(state-of-the-art) (Proposed)

Recall 0.963 0.89
FPR (per hour) 0.11 2.91

delivery time (in s) ≤ 2s 2.25 (± 0.59)
processing time (%) 24.82% 5.39%

per delivery time (on 1.4GHz CPU) (on 6MHz CPU)

Table 4.3: Comparing proposed system with state-of-the-art wake-up command
modality

4.7 Discussion

4.7.1 Comparison with popular wake-up command systems

To gauge the social acceptability of a novel wake-up command modality, we compare

the proposed wake-up command system against voice-based wake-up systems (the widely

adopted among the masses). We take Amazon Alexa as a representative example (with

wake-word “Alexa”) for comparison. We reviewed the testing performance of Amazon

Alexa [245, 246] and compare it side-by-side with the proposed system in Table 4.3.

Specifically, we use, recall, false positive rate, delivery and processing time of command.

We can see from Table 4.3 that the recall and command delivery time is comparable. FPR

for Alexa is very low (once every 9.1 hrs) as compared to the proposed system. However,

we argue that the Trance FPR is acceptable and usable as it is not intrusive (no negative

effect on user-experience). As discussed in the previous subsection, FPR presents negative

implications only on the battery life of the system. In terms of processing time, the pro-

posed system is very fast (takes 121ms on an average for 6MHz CPU) as compared to Alexa

on a GHz scale processor. Translating on the same CPU scale, Trance performs an order

of magnitude faster than voice-based wake-up command. Having said that, the proposed

system can be considerably improved in terms of detection performance, interface design

and usability. We believe that the presented system, along with the study and associated

experimental analysis, could serve as a valuable baseline for the designers and researchers

alike in this field of study.
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4.7.2 Rationale for using OpenBCI as an experimental platform

This work is motivated with the examples of commercial BCI headsets (e.g., Neurosky,

EPOC+), while the experimental and evaluation studies have been conducted on the Open-

BCI platform. One might argue the disconnect between these BCI headsets, and hence,

we provide the rationale for using OpenBCI as our experimental platform, and discuss the

applicability of the proposed solution across BCI platforms.

1. While OpenBCI is a research-friendly BCI platform, it is also a genuine consumer-

grade wearable headset that competes against the other commercial platforms [247].

Vourvopoulos et al. [248] compared OpenBCI with Emotiv, in terms of signal qual-

ity (classification accuracy) and usability (comfort, appearance, ease of setup), and

found OpenBCI to be similar to that of EPOC+. Furthermore, in an effort to make

the commercial adoption of OpenBCI easier, the platform’s chipset system compo-

nents for sensing biosignals (except the electrodes) are designed so that they can be

coupled with any other commercially available electrode system or headsets (e.g.,

Ultracortex Mark IV [249]).

2. Second, the hardware architecture of the OpenBCI is quite representative of those

of the other wearable headsets. Specifically, the three key control-knobs (uC clock

rate, ADC channels, and wireless radio) that we rely on to make OpenBCI operate in

low-power mode are all present in Muse [250], EPOC+ [251], and Neurosky [252].

Also, the signal quality provided by devices such as EPOC+ and Muse is rich enough

for eye-blink detection [253, 254]. Hence, we are confident that the contributions in

the paper are applicable to the other wearable headsets.

3. Finally, the critical reason that we did not use any of the other headsets as the ex-

perimental platform is that their firmware is not open source, and they do not have

developer APIs to flash the firmware. The SDKs for Emotiv and Muse are available

for developing applications, but not for firmware re-programming. While we could
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have explored if reverse-engineering and hacking the firmware was a possibility, it

was an ethical boundary that we did not want to cross.

4.8 Scope and Limitations

The context for this work is a scenario where the user wears a single EEG headset through-

out the day (similar to smartwatches) and uses it to interact with multiple applications and

tasks. By default, the EEG headset will be in low-power mode. The user would use the

wake-up command to turn the headset on, before using it to issue an explicit command to

an application. However, when the BCI commands are issued in the context of a specific

application (e.g. a BCI-controlled text entry interface, a game or meditation program), the

BCI would likely be active constantly while this application is running and disabled con-

stantly (or not worn at all) while not, hence limiting the scope. The assumed scenarios

do not accommodate all possible BCI applications and hence, its scope can be further re-

fined. Briefly, the scope for the paper’s contribution can be defined along four dimensions

as follows,

1. User-capabilities: Trance applies only to scenarios where users are able to physically

blink. Users suffering from conditions such as Eyelid Coloboma (where the eyelid is

absent) will not be able to use Trance. Further studies have to be done to explore if

Trance can be used by users suffering from other conditions such as Lagophthalmos

or Bell’s palsy disorders that cause weak blinks.

2. Input modality: Trance applies only to scenarios where the user is explicitly provid-

ing input using the BCI, i.e., active BCI. There are BCI applications where implicit

input from the users is used (e.g., evoked potentials). For such applications, the BCI

headset cannot go to sleep or low-power mode since the user does not actively issue

the commands. For passive BCI uses (e.g., meditation), Trance requires an explicit

wake-up signal, and thus, contradicts with the passive BCI paradigm. Trance will

not apply for such applications. Further, input modalities that require the system to
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present stimuli (e.g., SSVEPs, P300), the application can wake-up the device when

the stimulus is shown, and hence, Trance will be irrelevant.

3. Frequency of use: Trance applies to scenarios where the user relies on the BCI head-

set with medium frequency. If the headset is either used all the time without any

downtime (e.g., implicit input) or if used very infrequently (e.g., only two hours a

day, in which case the user is more likely to put on the headset only as needed),

Trance will be irrelevant.

4. Duration of a command session: Trance applies to scenarios where the command

session duration is significant enough for a wake-up command to not become a dis-

proportional burden for the user. If each command session lasts only for a few sec-

onds (for e.g., to send an occasional command to the robot or another BCI-controlled

device), the user might not want to incur the additional burden of having to issue a

wake-up command.

The following are three example applications [with the four dimensions] that fit the above

scope definition are-

1. Elderly assisted living [Capable, Explicit, 8-10 hours, 2-3 minutes] - Provide elderly

persons more autonomy and independence by allowing them to complete otherwise

difficult tasks through a thought.

2. High-consequence workplace training [Capable, Explicit, 2-3 hours, > 15 minutes] -

Leverage brain signals for high-consequence training to protect workers in high-risk

jobs.

3. Brain based security [Capable, Explicit, 2-3 hours, 1-2 minutes] - Using brain signals

for security including in authentication, non-repudiation, and identity-management.

Three example applications that do not fit the scope are -
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1. Neuromarketing [Capable, *Implicit*, 2-3 hours, 4-6 minutes] - Leveraging brain

signals to track user’s reactions to market stimuli.

2. Neurogaming [Capable, Explicit, 4-6 hours, > 15 minutes] - BCI used as the primary

or secondary controller for users to interface with games.

3. Mindfulness [Capable, *Implicit*, 1-2 hours, 15-20 minutes] - Improving mental

concentration and meditation with tracking brain signals.

Further, the scope of our work is restricted to the EEG-based BCI devices, and there

are other BCI platforms (e.g. [255]) that may not fit this paradigm.

4.9 Summary

In this work, we propose a wake-up command detection strategy that enables always-on

BCI platforms to run on low-power mode and transition to active mode only when the user

issues the command, essentially solving the problem of charging BCI headsets multiple

times a day. We use eye-blinks as the building blocks to solve the challenge of designing

command, and detection strategy under the resource-constrained environment. Based on

the user-characteristic analysis, we design a wake-up command for the BCI wearable head-

sets that balances the requirements of accuracy, false positives rate, and is comfortable for

the users to use. We also present the lightweight Trance algorithm and through extensive

experimental user studies, we validate the performance of Trance, and show that Trance

can achieve 2.7x improvement in battery life.

4.10 Appendix: The Case for a Wake-up Command

4.10.1 BCI platforms

A typical BCI architecture consists of three core components: (i) an electrode sensor ar-

ray placed on the scalp, (ii) a hardware platform to digitize, locally process and transmit

the brainwaves, and (iii) an algorithmic processing platform to analyze and decode the re-

ceived brainwaves in an application specific manner. Scalp electrodes provide a conductive
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medium for the signal to reach the hardware interface. Wet electrodes require the appli-

cation of gel to the electrode surface in contact with the scalp skin to reduce resistance,

resulting in improved signal quality, but reduces usability. The hardware platform includes

AFEs/ASICs (Analog Front-End or Application Specific IC) for digital sampling, ADC

(Analog to Digital Conversion), and noise suppression. A wearable device worn by users

embeds the first two components responsible for the acquisition, local processing and trans-

mission of sensor data, and is also referred to as the “cap-end”. The “mobile-end” serves

as the algorithmic processing platform, and is typically either a smartphone or a computer.

Most of the commercially available BCI devices are application oriented e.g., Muse for

meditation 11, Aurora for sleep analysis12, etc. However, some of the devices are general-

purpose and/or research grade devices e.g. Emotiv 13, OpenBCI 14. Usually, BCI devices

are evaluated in terms of their signal quality, usability index, form-factor, cost, etc. Com-

pared to medical or research-grade BCI devices, wearable BCI devices are inferior mostly

in terms of signal quality, but are cheaper and easier to use. A list of all the available

consumer devices in the market that cost less than $1000 is available15. Several of the

available BCI hardware either do not perform well in terms of available signal quality and

usability, or provide severely restricted access to the system design and raw EEG data.

Moreover, most of them only provide an SDK to develop applications at the mobile-end

with a non-programmable hard-coded firmware at the BCI cap. We use the OpenBCI plat-

form as the representative BCI hardware for our study as it bundles all the required features

(transparent hardware design and software algorithms along with full access to raw EEG

data) in a single piece of hardware. However, we also experiment with the Muse headband

to demonstrate the feasibility and extensibility of our analysis to the other available BCI

platforms.

11https://choosemuse.com
12https://sleepwithaurora.com/
13https://emotiv.com
14https://openbci.com
15http://www.autodidacts.io/neurotech-hardware-roundup-eeg-bci-tdcs-neurofeedback/
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Figure 4.12: OpenBCI architecture
(Image taken from http://openbci.com)

4.10.2 OpenBCI architecture

OpenBCI is an open-source, low-cost, programmable interface to access raw EEG signals.

It has the capability to connect with upto 16 electrodes at a time, amplifying and digitizing

the signals at 250Hz. As shown in Fig. 4.12, the architecture of the OpenBCI board consists

of three major components.

1. Analog Front-End (ADS1299): Designed and manufactured by Texas Instruments

16 for bio-signal measurements, this IC is responsible for digitizing and amplifying

the EEG signals. It is a low-power, 8 channel, 24-bit ADC with built-in PGA (Pro-

grammable Gain Amplifier).

2. Microcontroller (PIC32): This Microchip PIC32 17 Micro-controller is the central

component of the OpenBCI board. It configures and coordinates with all the other

ICs on the board to get data, arranges it, and transmits it to the radio module for

forwarding to the “mobile unit”. It is capable of executing instructions at 50MHz

(default for OpenBCI is 40MHz). The program memory size and RAM is 128KB

and 32KB respectively. PIC32 enables the local processing on the OpenBCI board.

3. Radio (RFDuino): It is a finger-tip sized, low-cost, radio module, enabled with

16http://www.ti.com/product/ADS1299
17https://www.microchip.com/wwwproducts/en/en557425
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a µC to transmit the sensor data to the mobile-end through Bluetooth Low-Energy

(BLE). The OpenBCI uses RFD22301.

Other components include an accelerometer (LIS3DH) and an SD card slot for 3-axis mo-

tion detection and external storage respectively.

4.10.3 Power analysis

Macro power analysis

The OpenBCI board, in its default development form, requires 4 AA (1.5V, 2300mAh each)

batteries. However, using 4 AA sized batteries is clearly not suitable for wearable devices

due to weight and safety considerations (as the platform is being worn on a user's head).

Thus, we first perform power analysis on the platform as-is, and then extend the analysis

for a typical wearable battery. Specifically, we use the battery specifications of an Apple

Watch (250mAh, 3.8V, 0.94Wh) 18 and convert it into OpenBCI voltage requirements (6V,

equivalent to 150mAh). To estimate the default battery life, we measure the current drawn

in the hardware module and project the approximate battery life by assuming a constant

voltage till the battery discharges 19. Our experiments show that the battery life is only

3.42 hours. The advertised battery life for Emotiv EPOC+ (6 hrs on 680mAh) and Muse

2014 headset (5 hrs) also confirms our analysis of battery life for wearable BCI devices.

Micro power analysis

We now take a deeper look to identify the main source of power drain for a wearable BCI

device. We identify the micro-components of the board along with their default settings,

reconfigurability, and individual power requirements. We define “control-knobs” as those

micro-components that are re-configurable inside the OpenBCI board, and could possibly

create a significant impact on battery life. We tabulate such micro-components in Table 4.4

20 and explain them below.

18http://www.onefruit.co/blog/2015/06/29/how-big-is-the-42mm-apple-watch-battery/
19We turn off the accelerometer for this particular analysis.
20The list is not exhaustive.
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Settings Default Configurable Power

µC Clock Rate (MHz) 40 6 - 80 20mA (@3.6V)

ADC Clock Rate (MHz) 2.048 No 120µW

ADC Channels 8 1 - 16 -

Data Rate(SPS) 250 250 - 16k -

PGA 24x 1x-24x -

Radio (RFDuino) ON ON/OFF 11.8mA (@3V)

Table 4.4: Potential control knobs in OpenBCI board
*(-) the information is not available in the datasheet

• µC/ADS Clock rate: This represents the operating frequency of PIC32 microcon-

troller and ADS1299 IC respectively, which directly affects their processing speed.

As we can see from Table 4.4, the power consumed by the ADS clock oscillator is

very low but high for µC (Remember from the previous section that OpenBCI draws

an average current of 43.78 mA). So, we consider µC clock rate as one of our control

knobs.

• ADC Channels: This denotes the form-factor of the device, i.e. the total number of

channels from which EEG data is sampled simultaneously. Power consumption data

per channel is not reported in the ADS 1299 datasheet, hence we consider this as our

control knob for the power consumption analysis.

• Data Rate: The number of EEG samples recorded per second is known as the data

rate. Following Nyquist Sampling Theorem, decreasing the data rate results in alias-

ing of the frequency components higher than half of data rate. However, in the case

of OpenBCI, it is set to 250 SPS which is at its minimum value set by ADS1299.

• PGA (Programmable Gain Amplifier): PGA is an electrical amplifier with a control-

lable gain through external digital or analog signals. We consider PGA for the power

consumption analysis.

Thus, for the power consumption analysis, our focus is on (i) µC clock rate (f), (ii) number
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Figure 4.13: Impact of different control knobs on current drawn, and hence power
consumption

Control
Knob

Mean Power
Deviation

Relative
Importance

f 7.5554 62.90%

c 0.3804 3.17%

g 4.0757 33.93%

Table 4.5: Power analysis

of ADC channels (c), and (iii) programmable gain (g). The radio module will be turned off

in the “low-power” mode, and hence we do not consider it for the power analysis.

To evaluate the impact of each parameter on the OpenBCI battery life, we run an ex-

periment to measure the average current drawn (in mA at constant voltage) for a specific

(fi,cj,gk) from, fi ∈{48,40,30,20,10,6}MHz, gj ∈{24,12,1} and ck ∈{8,7,6,5,4,3,2,1}.

For each (f,c,g), we take 5 snapshots and average them to reduce the measurement noise

variations, and repeat for all such possible (fi,cj,gk) i.e.a total of 142 data points. Once we

have the average power consumed for all permutations, we define a metric “average power

deviation” to evaluate the impact of each knob on the battery life.

For fi, we calculate the average power deviation over the other two variables as,

1
|I|∑j,k

Vari(fi,cj,gk) (4.1)

i.e. we fix (cj,gk), and calculate the variance over all possible fi, and average over (cj,gk).

We calculate a similar metric for cj and gk and report in Table 4.5 along with their percent-

age contribution.
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Fig. 4.13 shows the relationship of power consumed with each control knob. The col-

ored lines in each plot represents the different possible values of the free parameters (e.g.

f and PGA in fig. 4.13(a)). From the trend and relative average power deviation, it can

be clearly seen that PGA(g) has a very low impact on battery life. Hence, we maintain

its default value (i.e. 24x) to keep the signal quality unaltered. As the trend of power

consumption is linear with both f (validates the PIC32 claim of 0.5mA per MHz power

drainage) and c, we fit a linear curve for power characteristics of OpenBCI,

Current (mA) = 0.4534× f+1.6615× c+12.8704 (4.2)

The obtained R2 statistic and p-values are 0.9994 and 0.0404 respectively for the above fit

(eq. 4.2) which substantiates the goodness of the fit.

In the low-power mode (f=6MHz,c=1, radio=OFF) operation for 90% of the time [205],

the estimated average current drawn will be 14.78mA, resulting in 10.14 hrs of battery life.

This clearly shows that it is possible to achieve 3x improvement in the battery life provided

the device is in the low-power mode when not actively used.
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CHAPTER 5

TRACKING USER PREFERENCES USING BRAINWAVES

Knowledge of a user’s preferences can be quite useful in several different contexts. For

example, Amazon, the online retailer, sells over 600 million products. The Amazon land-

ing page, on the other hand, can reasonably present only 50− 60 different products on a

computer, and fewer on a mobile device. When a user arrives at the landing page, Amazon

would ideally like to present those products that are of relevance to the user. Knowing the

user’s preferences at that point in time can help Amazon do so effectively.

Sophisticated user personalization models are routinely employed today by a retailer

such as Amazon based on cues such as past purchases, searches, and items saved in cart.

There are other contexts as well beyond online commerce where the ability to understand

user preferences has significance.

Meanwhile, over the last couple of decades, rapid strides have been made in the do-

main of sensing and interpreting brain activity using electroencephalogram (EEG). Unlike

its more involved counterparts such as magnetic resonance imaging (MRI) and functional-

MRI, one of the distinct advantages of EEG is that the sensors can be used in a non-

obtrusive user-friendly fashion. This advantage makes EEG a prime candidate for main-

stream applications that reliably rely on brainwaves for understanding user thoughts. Ad-

vances in the understanding of brain architecture and functioning, coupled with sophisti-

cated signal processing techniques, have allowed for EEG-based detection of user actions

(e.g. blinks) and thoughts (e.g. motor imagery and error response).

In this work, we consider the intersection of the aforementioned domains. Specifically,

we consider the detection and interpretation of user preferences using only the brain waves

of the user detected using an off-the-shelf EEG wearable.

We consider this problem in the specific context of ranking a given set of objects based

on a user’s preferences. Thus, given a set of objects OS = {o1,o2, . . . ,oN}, we consider
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the problem of determining the respective ranks of the objects RS = {r1,r2, . . . ,rN}, where

1 <= ri <= N, by only relying on the brain activity of a user who is wearing an EEG

headset wearable. The following is a summary of our key contributions:

• Using an EEG dataset obtained from 14 users observing 10 different objects (prod-

ucts), we first establish the feasibility of object ranking based on an EEG wearable.

We do so by relying on a brute-force trial and error based analysis of the EEG sig-

nals and comparing it to the ground truth of how the users explicitly ranked the

corresponding objects.

• We then present a machine learning algorithm, Cerebro, that given a training set

of EEG waveforms along with rankings from a specific user, can learn the specific

nuances of the user’s waveforms for preferences, and when provided with only the

waveforms for a new set of objects can rank those objects accurately. The key novelty

of Cerebro lies in the combined use of multiple aspects of the EEG signals (N200

mean, N200 minima, and Event-related Spectral Power (ERSP)) to rank objects ac-

cording to user preferences, and a mechanism to self-determine when the algorithm’s

ranking is accurate enough to be actionable.

• We evaluate the Cerebro solution by training the algorithm with 7 objects for the 14

users, and evaluating the accuracy with which it ranks the remaining 3 objects as

compared to the user-specified rankings.

5.1 Background and Problem Definition

5.1.1 User preferences

A user’s preferences influence everything from mundane purchases to social behavior to

moral decisions. The neurobiology of preferences is still an emerging area of study, but it

is understood that preferences are influenced by both genetics and the environment. Since

preferences heavily determine a user’s actions, having visibility into the preferences can
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help in several different scenarios. While we delve into some example scenarios later, we

now briefly discuss some approaches to determine a user’s preferences.

An obvious approach to learn a user’s preferences is to ask the user for explicit input.

For example, presenting a set of options to a user and having the user vote or rank on the

options explicitly. An advantage of this approach is that the user’s stated preferences are

directly known. However, there are a few drawbacks: first, when user’s share preferences

they might not be entirely truthful and represent accurately their real preferences - this is

observed routinely in pre-election polls; and second, since this approach requires explicit

user involvement, it cannot be used frequently and for a large number of options.

An alternative to the explicit approach is to implicitly observe user actions and infer the

user’s preferences based on those actions. This is the preferred approach especially for en-

vironments such as e-commerce platforms where observing a user’s actions is significantly

easier than explicitly interacting with the user. A platform like Amazon observes a user’s

actions such as searches, clicks, time spent on a product page, additions to cart, and actual

purchases to form a composite view of user’s preferences and use this to appropriately op-

timize the options presented to the user. Video platforms such as Netflix and YouTube also

rely on similar techniques to understand user preferences in order to present suggestions for

users to watch next. YouTube’s recommendation engine has a remarkably high success rate

- over 70% of a user’s watch behavior is directly from the recommended videos presented

to the user 1.

There are some specific scenarios where it is neither possible for users to explicitly

indicate preferences, nor is it possible to reliably track user actions to make meaningful

inferences. For example, consider the problem of learning the preferences of a user with

disabilities that preclude both explicit communication and any pertinent actions that would

allow for meaningful inferences. Similarly, learning about the true preferences of young

kids is a challenge.

1https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
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Figure 5.1: EEG electrodes and associated neural activity

In this work, we focus on implicit observations, but not on the user’s actions that can

be somewhat infrequent, but on the user’s thoughts. Thoughts as a unit of observation are

far more frequent, and more seamlessly accessible, than actions. Hence, there is consid-

erable merit in considering the observation of thoughts using EEG in order to infer user

preferences.

5.2 Target Scenario and Problem Statement

We consider a setup where a user is wearing an EEG headset while browsing through the

e-commerce platform on her computer or phone. The electrode sensors continuously read

raw brain signals, and the hardware platform transforms them into digital signals. The

digitized brainwaves are transferred to the cloud over a wireless link for computational

processing. The raw EEG signals are pre-processed (to increase the signal-to-noise ratio)

and are dissected into fundamental frequency components (primarily theta and beta waves)

in the cloud to search for specific patterns. The processed features are then subjected to

learning algorithms to interpret their meaning. Thus, with such analysis, conscious or
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subconscious user preference toward the browsed or recommended item can be inferred. If

multiple objects are shown at the same time, attribution methodologies are required to tie

user preference to a specific item. The user-specific model in the cloud is updated based

on the learned preferences of the known item, which delivers the updated personalized

recommendation to the user device.

An interesting and important aspect of this research is the incentive models for the user

to wear EEG headsets in some specific use cases. A user incentive model is crucial when

the targeted applications do not directly provide the innate value to the users. Targeted ad-

vertisements, personalized recommendation systems for e-commerce and digital media are

a few examples that fall into such category. A trivial strategy is to provide rewards or mon-

etary benefits (discounts) to users. However, providing additional benefits like assessing

cognitive abilities, and understanding preferences while tracking focus and attention could

be of more fundamental value to the users.

Our goal in this paper is to determine the preference ranking for a set of objects by only

relying on the brain activity of a user who is wearing an EEG headset wearable. We define

the mathematical formulation of the problem as follows,

Problem Definition: Consider a user U presented with a set OS of N objects, OS =

{o1,o2, . . . ,oN}. S = {s1,s2, . . . ,sN}, represents the corresponding recorded neural mea-

sures while a user is browsing objects from the set OS. There exists a ranking (or permu-

tation) function σ, s.t. σ(o1) ≥ σ(o2) ≥ ·· · ≥ σ(oN) in accordance with the preferences

of the user. We explore the practical feasibility of designing an algorithm A, such that

A(S,OS) ∼ σ. Specifically, in this work, we consider N to be 3, and present the ranking

algorithm and its performance on ranking 3 consumer objects.
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5.3 Feasibility of Object Ranking using EEG

5.3.1 Dataset

We rely on the dataset obtained through the experiments in [154] to perform our analysis.

In [154], the experimental design involves a pairwise classification task where 14 subjects

were shown 10 unique consumer products2 and their neural activity was recorded simulta-

neously. Later in the experiment, the subjects were shown 2 random products side-by-side

(out of 10) and were asked to choose and label the preferable product. The first part of

the experiment was repeated 50 times for each product (per subject) and provided the raw

neural signals. The latter part of the experiment included 45 unique product-pairs, and

each product-pair was repeated 6 times to tackle the stochasticity in consumer preferences,

which serves as ground truth labels for ranking and preference scores of the products (out of

54). In [154], the acquired EEG dataset was re-referenced to the ground electrodes (located

behind the ear), and was filtered offline in the frequency band of 0.05Hz to 40Hz. For each

external stimulus, epochs were extracted from the data for 800ms relative to the 200ms

pre-stimulus baseline. Further, Independent Components Analysis (ICA) was employed to

compute the independent components, and components corresponding to muscular and eye

artifacts were manually removed from the signal to receive a cleaner signal.

5.3.2 Feature design

The source of the neural signals associated with the user preferences is known to be located

in the fronto-central region. Hence, we performed the channel selection with F3, C3, P3,

Pz, Fz, Cz, C4 electrodes according to the 10-20 electrode system. A cleaner ERP signal

is obtained by decomposing the channel data in the independent components and obtaining

the top component through the FastICA algorithm (Fig. 5.2). The top part of Fig. 5.2

shows the data from selected 7 channels, and the top independent component (IC-1). For

simplicity, we will use the term waveform to mention IC-1 component of the EEG signal.

2In the conducted experiment, the objects were consumer products. In the rest of the work, we use the
terms products and objects interchangably

77



Figure 5.2: EEG waveform and features
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From this waveform, we extract three features to capture the user preference information

for predictive analysis:

• N200 mean: The mean amplitude of the waveform is computed in the time interval

of 200ms to 300ms (Fig. 5.2).

• N200 minima: We also consider the minimum amplitude of the N200 interval as an

additional feature.

• Event-Related Spectral Power (ERSP): The power spectral density of the waveform

is calculated in the time interval of 100ms to 400ms in the beta frequency range i.e.

13 to 26 Hz (Fig. 5.2). This PSD is calculated relative to the pre-stimulus baseline of

500ms.

We compute the Pearson correlation coefficient to explore the relationship between N200

and ERSP features. We obtained a correlation coefficient of 0.0025 for N200 mean and

ERSP indicating that the features are uncorrelated (p-value = 0.0237 < 0.05 ). As shown

in Fig. 5.3, N200 and ERSP features are uncorrelated to each other. N200 mean and N200

minima have correlation coefficient of 0.73, as they present the similar time-domain aspect

of ERPs (200ms - 300ms), i.e. average in the N200 duration is dependent on the minimum

during the duration to some extent. However, we consider N200 minimum separately, as in

several cases, the effect of N200 minima is masked due to other baseline activities.

During our brute force trial and error analysis, we found that the combination of these

features presents the most distinctive variability in the predictive analysis. The utility of

N200 mean and ERSP in the beta band for predicting user preferences is also reported in

[154, 153] and [256] respectively.

5.3.3 Establishing feasibility

In this subsection, we first validate the predictive capabilities of the selected EEG features

through a pairwise choice classification task. Simply, we use the features as mentioned
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Figure 5.3: Correlation among the selected features

above in the EEG signals to determine pairwise preference with two objects at a time. We

thus establish the feasibility of rank-ordering the objects using the pairwise results.

The task of pairwise choice classification involves mapping the neural measurement

orderings to the preference amongst the consumer products. Thus, each neural feature (i.e.,

N200 mean, minima and ERSP) is independently used to predict the more preferred product

in each product-pair. Specifically, the products having higher ERSP or higher magnitude

of N200 mean were found to have a lower preference, and the products with higher N200

minima had a higher preference. These comparison rules provide an accuracy of 63.38%,

64.01%, and 59.40% respectively for N200 mean, N200 minima, and ERSP (Fig. 5.4). A

voting classifier combining all three features performed with an accuracy of 66.7%. These

metrics were computed on all pairs of products. As the difference between the preference

scores between the two products compared increases, the accuracy increases as well (as can

be seen in Fig. 5.5). The maximum accuracy achieved is 82%. The accuracy of the decision

classifier goes as high as 82% when the difference in relevance score is higher than 45.

Once pairwise preference can be determined, a naive ranking algorithm can be designed

based on the relative ordering of one of the neural features. However, combining all of the

three features is not as trivial as designing the decision classifier for the pairwise classifica-
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tion task. In addition, a fixed-comparison rule-based ranking algorithm will be oblivious to

the individual differences (e.g., users with higher ERSP variations in comparison to N200),

and hence, will not be able to generalize over a large set of users. We address these issues

in the next section by presenting the Cerebro solution.

The pairwise classification results presented above validates and establishes the pre-

dictive capability of the chosen features for preferences. A ranking scheme can be easily

defined based on the ordering of neural features. However, it presents two challenges,

(i) how to combine the neural features for ranking, (ii) how to determine which features

work better for which subjects (i.e. some subjects have significant predictive capabilities

in ERSP as compared to N200). We explore the learning algorithms in the next subsection

to tackle these challenges.

5.4 The Cerebro Solution

Having established the feasibility of object ranking based on an EEG wearable, in this sec-

tion, we present Cerebro, a machine learning algorithm that can learn the specific nuances

of the user’s waveforms for preferences, and is thus capable of ranking objects accurately.
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5.4.1 Ranking algorithm

The feature designing approach explained in section 5.3.2, provides us with the rank-

ordered neural features. The central idea behind learning paradigms is to understand and

identify the individual differences and stochasticity among the users in their preferences.

Learning algorithms adapt to the user-specific characteristics through training samples in

order to reliably predict and rank the new products.

As described in section 5.3, the processed data for user u and product i, is a vector

of neural features (Xu,i) and the preference score (yu,i). N200 mean and N200 minima are

transformed using function, f (x) = 10log(1+ x2), to express N200 features on the same

scale as of ERSP. We build on the pairwise transformation ideas of learning to rank [257],

and transform our dataset for each subject as,

{X
′
u,k,y

′
u,k}= {Xu,i−Xu, j,sign(yu,i− yu, j)}, i 6= j (5.1)

i.e., for each product-pair, we use the relative differences in neural features, as our trans-

formed set of features. The labels are also transformed to +1 or -1 indicating if the ith

product was preferred more or less. This pairwise transformation enables the prediction

of the relative order of products (which is critical in ranking) rather than the pointwise

approach, which approximates the preference scores using neural features. The pairwise

approach also helps in data augmentation as it creates N ∗(N−1) samples from N samples.

Here, Xi represents the vector of 3 neural features for ith product described in the section

5.3.2, and yi is the relevance score for the tth product.

Based on the results in section 5.3.3, the relative order of the products is assumed to

be linear with the given neural features. Hence, we fit a linear regression model3 on the

transformed set of features to predict the products with higher preferences. The regres-

sion model outputs a scalar value, which if positive, can be interpreted as the ith product

is preferable (or vice-a-versa, if negative). The linear model parameter β, on a conceptual

3A classification model (e.g. RankSVM) is also an appropriate alternative.
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level models the individual differences in terms of the importance of each feature for com-

prehending the user preferences. In the loss function of linear regression L(β), we add a

linear combination of L1 and L2 penalties for regularization in order to achieve a robust

prediction.

L(β) =
1
|K|

|K|

∑
k
||y
′
k−X

′
kβ||2 +λ1||β||1 +λ2||β||2 (5.2)

L2 penalty (also known as Ridge regression) regulates the magnitude of the parameter β

to tackle the over-fitting issue. L1 penalty (also known as Lasso regression) shrinks the

coefficients of less important features to zero, thus, acts as a feature selection step. The

optimal β∗ is learned by minimizing the overall loss function eq. (5.2) over the training

samples, β∗ = argminL(β).

We learn a unique and optimal β∗u for each subject u. Now, for user u, given the neural

measure of a new product p (i.e., X
′
u,p), the preference score can be calculated by projecting

the neural feature vector onto β∗u i.e.,
X
′
u,p.β

∗
u

||β∗u||
. The predicted preference scores are then

compared to rank order the products.

5.4.2 Evaluation

Methodology: The ElasticNet [258] model was used to combine the L1 and L2 penalties

in the linear regression model. λ1 and λ2 were set to 0.5. For each subject, we train the

algorithm with 7 products, providing 42 training samples with pairwise transformation for

the linear regression model. The algorithm was evaluated on the remaining 3 products by

comparing the predicted ranking with the user-specified rankings. A total of 120 different

training-testing sets are possible, hence, we present the performance metrics averaged over

all the possible combinations.

Metrics: To evaluate the performance of Cerebro, we use two metrics, namely (i)

MHD Score (Mean Hamming Distance), and (ii) NDCG Score (Normalized Discounted

Cumulative Gain).

• MHD Score: MHD score computes the mean hamming distance between the pre-
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dicted rank and the ground truth. For e.g., if a ground truth rank of yrank =[1,2,3]

is predicted as ŷrank = [3, 1, 2], the MHD score would be 1.33. For 3 elements, the

best, the worst, and random change MHD would be 0, 1.33 and 0.87 respectively.

• NDCG Score: It measures the ranking quality by accounting for the preference of

the products ranked. This metric is highly used in information retrieval and web

search, as it gives a higher preference to the preferred products. NDCG is computed

by normalizing the DCG score (Discounted Cumulative Gain), ∑
N
i=1

reli
log2(i+1) , with

ideal DCG score. Here, reli represents the preference of the ith product. An ideal

DCG score would be the DCG score of products when ranked according to their

preferences. For e.g., if the products with preference scores of yrel =[30,20,10] are

ranked as ŷrank = [3, 1, 2], the DCG score would be 41.31, with an ideal DCG of

47.61, giving NDCG as 0.867. An NDCG score of 1.0 is ideal. For the preference

scores in our dataset, a random chance NDCG is 0.87.

Performance: Fig. 5.6 and 5.7 show the ranking performance on NDCG and MHD

scores respectively. On average (14 subjects, 120 training combinations), the ranking al-
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gorithm performs with an NDCG score of 0.92 (± 0.11) and an MHD score of 0.67 (±

0.03). The considerable standard deviation in the ranking performance is due to the high

variability of ranking performance across subjects and training combinations. Hence, we

also evaluate the performance of top-5 subjects and top-5 training combinations. For top-5

subjects, the performance jumps to 0.973 (± 0.0007) NDCG, and 0.429 (± 0.052) MHD.

Similarly, for top-5 training set combinations, we achieve 0.961 (± 0.02) and 0.477 (±

0.02) respectively.

5.4.3 Determination of confidence in ranking

Note that Cerebro requires user-training to understand and subsequently predict user pref-

erences. One of the key questions that arise is the following - when is the algorithm trained

enough such that it can start recommending objects according to the user preferences (i.e.

when the neural signal based estimated preferences are actionable in real-world deploy-

ment)?

From the discussions thus far, we can observe that the performance of the ranking

algorithm depends on the subjects and the set of product combinations chosen for training

the algorithm. In this subsection, we explore whether it is feasible for the algorithm to self-

determine if it has encountered the right set of products to be effectively trained. If such

self-determination is feasible, the algorithm can begin predicting ranks for new objects only

when it is sufficiently confident of its training.

Fig. 5.8 shows the average MHD score (over all 14 users) with respect to the mean rank

of the 7 products used in the training. With a larger spread of product ranking in the training

set (mean training rank close to 5.5), it performs significantly better than with training

products that are heavily biased towards top (or bottom) ranks. If the top 7 products are

considered for training, it performs 20.1% worse than a uniform spread of training products

(with a mean ranking of 5).

For practical self-determination of its confidence, the confidence measure should be

solely based on the set of training products encountered thus far. In our dataset, we find
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Table 5.1: Confidence in training

Top-10 Worst-10
Training MHD 0.731 0.199
Testing MHD 0.476 0.876
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Figure 5.9: Use-case setup

that the combinations performing comparatively poor (in terms of training score of MHD

or NDCG), tend to perform highly accurate on the testing data. A possible reason for this

trend could be that the algorithm is exposed to the data with more variations, hence the

training fit is reasonable (no overfitting), but more generalized to the unseen data.

Table 5.1 presents the MHD score of training combinations which has top-10 and worst-

10 training accuracy. These results, while preliminary, shed light on an approach to predict

confidence in performance for unseen products. When the training accuracy is tracked over

time (with more number of products), the training and testing accuracy converge, indicating

confidence. Our analytical approach is limited because of the small size (10 products) of

the dataset. Another ideal approach to obtain confidence is through cross-validation [259].

The verification of this methodology is left for future work.

5.4.4 System architecture

In this subsection, we describe the system design allowing Cerebro to understand user pref-

erences. There are three main components of the system architecture, namely, (i) wearable
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device, (ii) mobile software, and (iii) cloud server. The wearable device detects EEG sig-

nals and ships the digitized signals to the user’s mobile device through a wireless link

(Fig. 5.9). The mobile software running on the user’s mobile device processes the raw sig-

nals and extract neural features related to the user preferences as described in section 3.1

and 3.2. The computed features are sent to the cloud server which executes the Cerebro

algorithm to understand the user preferences and thus, ranks the objects. Finally, the an-

alytical summary of the user preferences and ranking is sent to the concerned application

server (e.g. Amazon personalization engine).

5.5 Summary

This work considers the potential of tracking neurobiological changes through wearable

EEG headsets to understand user preferences. We study the detection and interpretation

of user brainwaves to rank a given set of objects based on user preferences. We present

Cerebro, a machine learning algorithm to enable objects ranking merely through the neural

data based on user preferences. The performance of Cerebro is attractive, with an NDCG

score of 0.92.
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CHAPTER 6

ON USING BRAINWAVES AS IMPLICIT HUMAN FEEDBACK IN
REINFORCEMENT LEARNING

Reinforcement learning (RL) is a class of approaches where an agent learns what action

to perform for a given situation so as to maximize a numerical cumulative reward signal.

RL is especially suited to uncharted territories where prior examples of correct actions are

not readily available to the problem at hand. The agent is thus left to interact with the

environment and learn from its own experience. The use of a reward signal to formalize

the idea of a goal is one of the most distinctive features of reinforcement learning. While

the notion of a simple reward signal has the advantages of being flexible and widely ap-

plicable, there still remains the challenge of defining an effective reward function in the

first place. Engineering such a reward function can at times be non-trivial or noisy even

when designed (for example, learning to backflip for a bipedal robot). In such scenarios,

the RL algorithms might need to be supplemented with other strategies such as learning

through demonstrations by an intelligent agent or human feedback. Methods like inverse

RL (or learning through demonstrations), explicit human feedback (through labels, ratings,

etc.) could reduce the search space or supplement the rewards, making the algorithm train

more efficiently [260]. Human assisted machine learning, when combined with the need

for RL to have access to rich reward functions, raises some significant challenges. This in-

cludes the conflict between the need to increase the richness of the reward function, while

minimizing the burden placed on the human to generate the rewards.

In this work, we explore an interesting solution paradigm that allows humans to assist

machine learning algorithms to substantially increase the richness of the reward functions,

while not severely burdening the human-in-the-loop. Specifically, we study the use of

electroencephalogram (EEG) based brain waves of the human-in-the-loop to generate the

reward functions that can then be used by the machine learning algorithms. Such a model
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benefits from the natural rich activity of a powerful sensor (the human brain), but at the

same time does not burden the human since the feedback being relied upon is intrinsically

generated. This paradigm is inspired by a high-level error-processing system in humans

that generates error-related potential (ErrP). As such, while a human naturally monitors the

performance of an agent, the erroneous behavior of the agent can be recognized intrinsically

by the ErrP in the human EEG signals which we can build into the reward function of the

RL algorithm of the machine to improve its intelligence.

This broad paradigm of using implicit feedback through brainwaves is broadly applica-

ble to any application where a human can observe the agent in action and hence generate

the intrinsic reactions. However, in order to systematically study different aspects of the

paradigm, we use computer games as proxies for real-life environments that agents might

need to operate in. The use of games as proxies for real-life environments is an interest-

ing strategy in itself, as it has some distinct advantages including a highly controllable and

replicable environment that offers clear control knobs that together can accelerate the pace

of investigation and discovery.

In order to systematically study and design the practical framework to allow ErrP based

implicit human feedback to accelerate RL algorithms, we provide our contributions in four

research thrusts:

1. Human experiments and systems research: We develop custom-built game envi-

ronments, experimental protocols and system framework to perform IRB approved

human experiments. We identify and discuss key system issues with broader appli-

cability, and conduct studies to quantitatively show the benefits of implicit feedback

over manual human feedback.

2. Error-potentials (ErrP) research: We first provide experimental evidences for the

ErrPs. We discuss state-of-the-approach to detect error-potentials and its major draw-

backs. We propose Trinity, an algorithm to reliably detect error-potentials, and com-

pare the performance over the collected datasets. Further, we provide additional
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experimental analysis to gain an in-depth understanding of error-potentials.

3. Integration with RL algorithm: We discuss how we model the human feedback

and the approaches to integrate the ErrP based feedback with RL algorithms namely

action biasing, control sharing and reward shaping1. We evaluate the approaches in

terms of their acceleration, and provide a sensitivity analysis of the reward shaping

approach.

4. Towards a practical solution: We discuss methods to improve the practicality of

the proposed system. Specifically, we explore two directions, (a) transfer learning in

error-potentials, and (b) inverse RL approach for integrating the human feedback1.

NOTE: The methodologies explained in this chapter to integrate error-potentials with a

reinforcement learning algorithm, namely (a) reward shaping (section 6.5.1), and (b) learn-

ing from imperfect demonstrations (section 6.5.2), are contributions from our collaborators,

Duo Xu and Dr. Faramarz Fekri. Their contributions are explained here in a very succinct

manner for completion purposes. We thank our collaborators for their outstanding work

and for providing us the permission to present their work in this thesis.

6.1 Background and Motivation

6.1.1 A primer on RL algorithms

Reinforcement Learning (RL) is a class of algorithms where an agent learns to make a good

sequence of decisions (or act) in a given uncertain environment. The core idea in RL is to

enable the agent to map situations to actions, in order to maximize a cumulative reward

signal. The basic entities of RL are,

• State(st): State is the representation of the current situation or environment. For

example, in a chess game, the state is the location of all the chess pieces on the

board. A state can be modified when the agent performs an action.
1The research contributions are from our collaborators, Duo Xu and Dr. Faramarz Fekri. Their contribu-

tions are explained here in a very succinct manner for completion purposes. We thank our collaborators for
their outstanding work and for providing us the permission to present their work in this thesis.
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Figure 6.1: Reinforcement Learning (RL)

• Action(at): Actions are defined as the possible way the agent can act to modify the

state in the environment. In the chess example, moving any piece within the set rules

for the chess game is considered an action. Actions space refers to all the possible

actions an agent can take within the given game environment.

• Reward(rt): Rewards are the utility scores (scalar values) the agent receives upon

performing the actions. The rewards in the chess game could be +1 for the win, and

0 for loss.

In this context, the agent interacts with the environment by taking an action at at time t,

and the environment provides the next state st and reward rt (Fig. 6.1). The goal of the RL

algorithm is to learn what actions to take in the given situation (or states) maximizing the

total cumulative rewards. RL algorithms are suitable for situations where it is impractical

to obtain examples of desired behavior that are representative of all the situations in which

the agent must act.

Optimal policy in RL

As discussed before, the goal of the RL algorithm is to learn to map the situations to actions

in an optimal manner (i.e., maximizing the total cumulative rewards). The mapping of

states to actions defines the agent behavior, known as policy(π).

π(a | s) = P(at = a | st = s) (6.1)
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The policy is known as deterministic if the mapping from states to actions is fixed. In case,

the action mapping is probabilistic (e.g., in equation 6.1), the policy is known as stochastic.

Total return (Gt) are the discounted sum of rewards, i.e.,

Gt = rt + γrt+1 + γ
2rt+2 + · · · (6.2)

γ is known as the discount factor in the range of [0,1]. γ = 0 makes the agent myopic, i.e.,

focusing solely on the immediate rewards rather than the long-term goals. γ = 1 imparts

the far sighted abilities to the RL agent. Moreover, the discount factors also helps to sum

the infinite number of rewards in a tractable manner (i.e., in a finite manner).

For a given policy π, the goodness of a state can be defined using the state-value func-

tion vπ(s) which provides an estimate of the expected return starting from the state s, and

following policy π,

vπ(s) = Eπ(Gt | st = s) (6.3)

Action-value function (qπ) decouples the state and actions in the state-value function,

and provides the expected return from state s, taking action a, and following policy π,

qπ(s,a) = Eπ(Gt | st = s,at = a) (6.4)

Using Bellman equation [261], the action-value function and state-value function can be

written as,

vπ(s) = ∑
a∈A

π(a | s)qπ(s,a) (6.5)

Optimal state-value function (v∗(s)) is defined as the maximum value function over all

policies,

v∗(s) = maxπvπ(s) (6.6)

Similarly, optimal action-value function (q∗) is defined as the maximum action-value

function over all policies,

q∗(s,a) = maxπqπ(s,a) (6.7)
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Figure 6.2: DQN architecture
Image taken from [262]

An optimal policy (π∗) can be derived by acting greedily according to the optimal

action-value function (q∗),

π∗(a | s) =


1 if a = argmaxa∈Aq∗(s,a)

0 otherwise
(6.8)

Thus, an optimal policy can be easily derived for any complex environment, if the

optimal Q-function (i.e., q∗) is known.

Deep Q-Network (DQN)

Deep Q-Network or DQN [262] applies supervised learning-based function estimation

techniques in reinforcement learning. It attempts to learn (or approximate) the optimal

Q-value function (Q∗) with a deep neural network, i.e. Q(s,a) = f (s,a,θi), where θi rep-

resents the parameters or weights of the deep neural network. DQN takes input state (s)
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of 4 RGB snapshots of the game stacked together2, and outputs the Q-value for all 19 ac-

tions. The architecture of the network consists of two convolutional layers [263] and one

fully-connected layer (Fig. 6.2). The first convolutional layers consist of 16 8x8 filters with

Rectified Linear Unit (ReLU) activation. The second convolutional layer consists of 32

4x4 filters with ReLU activation. There are 256 hidden units present in the fully-connected

layer.

DQN plays one step in the game, i.e., takes action at at state st , and receives reward

rt+1 and new state st+1. DQN stores the tuple (st ,at ,rt+1,st+1) in replay memory D. DQN

makes use of experience replay to remove the correlations present in the sequential ob-

servations. While training, the labels (or tuples) are uniformly sampled from the replay

memory, and used for training through Stochastic Gradient Descent (SGD). The loss func-

tion for the training is defined as the difference between estimated Q-value function, and

target Q-value function based on the off-policy Temporal Difference (TD) control,

Li(θi) = E[rt + γmaxat+1Q(st+1,at+1,θi)−Q(st ,at ,θi)] (6.9)

However, in practice, the training is not stable, hence two separate networks are kept, one

for playing the game (θi), and other for the target θ
−
i , hence, the loss function becomes,

Li(θi) = E[rt + γmaxat+1Q(st+1,at+1,θ
−
i )−Q(st ,at ,θi)] (6.10)

Every C steps, the parameters of the target network are updated with the Q-network. DQN

also employs the use of epsilon-greedy strategy to allow the agent to reap the benefits

of exploration and exploitation trade-off. In this strategy, at each time step t, an action is

taken random with probability εt , and greedily according to the Q-network with probability

1− εt . With t, the εt is linearly reduced from 1.0 to 0.1 over 1M steps. DQN surpassed the

performance of previous, and achieved human level performance on 57 Atari games from

2Input to the DQN is 84x84x4, where 84x84 is the downsampled and greyscaled snapshot (from
210x160x3 dimensional RGB snapshot), and 4 sequential frames (skipping 3 frames, i.e., considering ev-
ery fourth frame) are stacked together
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Atari 2600 suite.

6.1.2 Computer games and Atari benchmark

With the confluence of the considerable advancements in sensor technologies and process-

ing power and the lowering of their respective costs, the use of machine learning solutions

for cyber-physical systems (CPS) has indeed shown great promise. The broad paradigm

of using implicit feedback through brainwaves to accelerate the learning of machine learn-

ing algorithms is broadly applicable to any application where a human can observe the

agent in action and hence generate the intrinsic reactions. The machine learning solutions

integrated with implicit human feedback (via brainwaves) are particularly useful for the

monitoring, instrumenting, and optimization of complex CPS. One example of a complex

CPS is Surgical Robots. A robot in this context is equipped with sensors that can sense

the target environment (human body), a control architecture that processes the sensory data

and generates actions, and end effectors or actuators that help the robot perform the actions.

The key learning problem in this application is the mapping function from the perception

of the environment to an action that needs to be performed in order to reduce the total cost

incurred. This learning can be facilitated by one of several different approaches: the robot

could learn on its own by evaluating the appropriateness of its own actions to reach par-

ticular target states; the robot could learn by observing human surgeons in action; or the

human surgeon could also intervene and guide through the observation of the robot actions

[264].

However, to systematically study different aspects of the paradigm, we use computer

games as proxies for real-life environments that agents might need to operate in. The use of

games as proxies for real-life environments is an interesting strategy in itself, as it has some

distinct advantages including a highly controllable and replicable environment that offers

clear control knobs that together can accelerate the pace of investigation and discovery.

Consider a simple CPS example of a robotic vacuum cleaner that can detect when spills

and messes occur inside a home, find its way to the location of the spill, and clean it up.
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There are multiple learning problems embedded within this simple CPS example. The

robot has to learn how to detect that a spill has occurred inside that specific home, learn its

way around the home to get to the spill and learn how to clean up a spill based on what has

been spilled. Consider specifically the navigation problem. Several RL algorithms can help

the robot learn its way around the home to a specific goal [265, 266, 267]. However, these

algorithms all require an external reward function from an oracle or an external system such

as a camera rig that can provide distance-based rewards to the robot when it is navigating.

While these assumptions are highly constraining in themselves, the latency required for the

robot to learn its environment within its home is non-trivial and likely reoccurring given

that obstacles will require re-learning by the robot. In this setting, consider a human-in-the-

loop observer inside the home who is outfitted with a BCI cap to help with the robot’s RL.

As the robot is navigating its way through the home toward the spill, the passive human

observer will naturally react to an observed subset of the robot’s moves. This intrinsic

reaction can be captured through the ErrP of the EEG signals captured by the BCI cap, and

fed as a reward function back to the robot’s RL algorithm.

Hence, using a game as a proxy for a real-life environment is beneficial in the context of

human-assisted RL algorithms. Games are fertile ground for the definition, understanding,

and improvement of RL algorithms in low overhead and speedy fashion. Games have

now evolved to help understand the world around us and make optimal strategies to tackle

various difficult and high-risk real-world situations. For example, Foldit is an online puzzle

video game about protein folding. The users of the game helped to solve the structure of a

protein-sniping enzyme critical for the reproduction of the AIDS virus. This was a problem

that had stumped scientists for over a decade, and it took the game users three weeks to

generate the insights that went into solving the problem. A curious planet with four stars

was discovered through another game, Planet Hunter, along with the discovery of 40 other

planets with the potential of having life-forms [268]. Motivated by these studies, we use

games as environments for gathering ErrP data from humans to accelerate the off-the-shelf
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RL algorithms.

Atari 2600 benchmark

Atari 2600 is a second-generation gaming console, massively popular for its more than 500

games including space invaders, Pong, Pacman, SeaQuest, etc. The games present a wide

variety of challenges, encapsulating various real-world issues and thus requiring human-

level control. The Atari console had a 1.19MHz CPU with 2-4kB cartridge ROM, and 1024

bit console RAM. The screen output resolution is 210 pixels in height, and 160 pixels wide

with a 128 color palette. Total 19 actions are provided as an input to the games through

the joystick including the NOOP (No Operation). More than 50 games from the Atari suite

have become the standard benchmark to research and evaluate the reinforcement learning

algorithms, to measure progress and successively build more intelligent agents, pertaining

to their challenging and diverse set of tasks which could also be difficult for the human

players.

OpenAI Gym

OpenAI Gym is a toolkit and software package developed by OpenAI for research and

evaluation of reinforcement learning algorithms. It combines the benchmark collections

(e.g., Atari games, robotic environments, etc.), and has a universal and accessible interface

to interact with these environments. OpenAI module can be imported in Python to run and

evaluate the agents driven by reinforcement learning algorithms. OpenAI Gym includes the

Atari module emulating Atari games, built upon the Arcade Learning Environment (ALE).

Along with the software library, OpenAI Gym also maintains a website to maintain the

scoreboard for all the environments on RL algorithms submitted by the RL community.

6.1.3 Motivation

Reinforcement Learning (RL) algorithms have become an integral part of end-user appli-

cations, including autonomous systems (e.g., recommendation engines, self-driving cars,

etc.), and robotics where the primary purpose of such systems is to understand and act in
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unseen environments. Learning to make a good sequence of decisions in order to optimize

rewards (a metric score, e.g., user satisfaction for personalized recommendations, revenue

for advertisements, and scores for the computer games) forms the crux of RL algorithms.

State-of-the-art algorithms (e.g., DQN [262], Rainbow [269]) perform with human-level

control or superhuman performance, however, exhibit slow convergence rate [270]. This

can be seen with the training time of DQN on simple Atari-games like Pong and Space

Invaders. The training of DQN requires 1 million frames for Pong, and 10 million frames

for Space Invaders. 10 million frames are equivalent to 46.27 hours of gameplay expe-

rience 3. The slow convergence rate makes the RL algorithm inapplicable for real-world

environments including robotic systems and autonomous vehicles.

One of the primary reasons for the slow convergence rate (or sample inefficiency) of

RL algorithms is reward sparsity. Environments with sparse rewards or underspecified

rewards, makes it extremely challenging for the agents to estimate the specific state-action

pair leading to positive (or negative) rewards in a long sequence of actions. In this con-

text, human feedback is shown to significantly improve the convergence of RL algorithms.

Specifically, curriculum learning [271], auxiliary tasks [272], learning from experts [273],

imitation learning [274], and inverse RL [275] are few approaches to solve the reward

sparsity problem with the aid of external feedback from humans. In fact, human feedback

based ML is quite ubiquitous around us (examples including Google Captcha training AI

with human feedback, or ratings/reviews on Amazon, Netflix etc., for improved recommen-

dation models). Several works identify the benefits of human feedback in the training of

RL algorithms [276, 170]. However, in these works, human feedback is provided through

keystrokes, touchscreen or using natural voice interfaces. The explicit requirement to take

actions to communicate the feedback, burdens the human involved in the training loop of

the RL algorithms, severely limits the applicability and scalability of such solutions. Thus,

motivated from such limitations, in our work, we explore novel modalities to communicate

3human is playing the game rendered at 60 frames per second
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Figure 6.3: The left figure shows the Anterior Cingulate Cortex (ACC), the point of
origin of the error-potential. The right figure shows the error-potentials over time-
domain captured through a wearable EEG headset.
The colored lines represent the recordings from different subjects, and the solid black line
represents the average over all the subjects.

or record human feedback to accelerate the training of RL algorithms.

6.1.4 A primer on error-related potentials

The electric potential elicited as a result of some specific activity in the brain typically re-

flecting a sensory, cognitive, or motor event, manifests as Event-Related Potentials (ERPs)

in the human EEG. Numerous ERPs (e.g., N100, P300, N400, and P600) have been studied

in detail, and causal relationships to external stimuli have been established with reasonable

certainty in several cases. For example, the P600 ERP, which is a positive potential, is

elicited when subjects detect a linguistic syntactic anomaly around 500 ms after the on-

set of the stimulus. Of particular interest to our application is the Error-Related Potential

(ErrP), a negative potential elicited when a subject is presented with a stimulus that she per-

ceives as an error [159] ((Fig. 6.3 (right)). [277] analyzes the generality of the definition of

“error” in the context of triggering ErrP and concludes that this brain potential is elicited

for both errors of choice and errors of action. The authors also make the distinction that

ErrPs are not triggered in response to the process of error correction in the subject’s brain

but as a result of the process of error detection. According to [278], the elicited ErrP is

maximally negative at around 50 ms after the occurrence of the perceived error. The origin

of ErrP has also been mapped to the Anterior Cingulate Cortex (ACC) in the brain [279]

(Fig. 6.3(left)). It has also been established that ErrP can be modulated by affective and
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motivational factors [280]. In general, the amplitude of the elicited potential corresponds

to the level of “startle response” that the error potentiated [280], meaning that it is possible

to deduce the severity of the error algorithmically to some extent. Taking advantage of the

nature of this brain wave, there have been numerous research attempts to exploit ErrP to aid

in machine learning. For instance, in [281], the authors use the elicited ErrP as reward sig-

nals from a subject while a robot is solving a task. Further, the authors also demonstrated

the feasibility of distinguishing different levels of errors from single-trial experiments. Ex-

tending further from this, [282] studies the feasibility of utilizing ErrP in online learning.

There have also been attempts to infer and learn the strategy of a user using ErrPs [283].

Characteristics of error-related potentials

The signal is known to have two components, error-related positivity (PE) and error-related

negativity (NE or ERN) [159]. In earlier studies, the NE component was also found in

correct trials [284]. Recent studies have found NE to be more correlated to the errors and

seem to reflect comparison processes [159]. As the source of NE was found localized to

the Anterior Cingulate Cortex (ACC), it is believed that the component reflects emotional

and attention processes. However, PE was found to be connected to the conscious error de-

tection [285]. These components have different spatial distributions (NE in fronto-central

maximum, while PE in centro-parietal maximum). In error-potentials, typically it is as-

sumed that the error-potentials are the only signals that are time- and phase-locked to the

stimulus. Hence, averaging multiple trials of these signals will provide insights into the

template characteristic of the error-potentials.

6.2 System Overview and Data Collection

6.2.1 Game environments

We have first carefully designed and developed three discrete grid-based navigational games

in OpenAI Gym Atari framework, namely Wobble, Catch, and Maze (Fig. 6.4), summa-

4NOOP (No Operation) - the agent does not take any action at a particular time-step
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Game Environment Goal Action
space

Start/restart sequence

Maze 10x10 grid with an agent
and a target

2D navigation to
a fixed target in
minimum number of
steps

←, ↓, ↑,
→

Maze is fixed for all in-
stances.

Catch 10x10 grid with an egg
and a basket, The egg
falls one grid at each time
instance

1D navigation by the
basket to catch the
egg at the right time.

NOOP4,
←,→

The egg starts at a random
horizontal position from
the top.

Wobble 1x20 grid with a cursor
and a target

1D navigation to
reach the target in a
minimum number of
steps

←,→ Cursor spawns at the cen-
ter of the screen and target
within 3 blocks of the cur-
sor.

Table 6.1: Description of the game environments

rized in Table 6.1, and explained below. We use the default Atari dimensions (i.e., 210x160

pixels with RGB color palette) with rendering at 60 frames per second. The games are

designed in a way such that for any possible action that the agent takes, it is evident from

the visual rendering of the game screen. The games are developed on Python and OpenAI

Gym framework, with TCP/IP protocol to continuously transmit the state-action informa-

tion from the game. The source codes of the games can be found in the public repository5,

and can be used with the OpenAI Gym module.

Wobble: We first designed Wobble, a simplistic 1-D cursor-target game, where the

middle horizontal plane is divided into 20 discrete blocks. The cursor is shown with a big

green square and the target is shown with small red (or blue) acquiring one block. At the

beginning of the game, the cursor appears at the center of the screen, and the target appears

no more than three blocks away from the cursor position. The action space for the agent is

moving one step, either to the left or to the right. At each time step, the cursor can move

one block in either direction. The game is finished when the cursor reaches the target. Once

the game is finished, a new game is started with the cursor in place. The goal of the agent

is to catch the target in minimum steps. Since the agent can take only left or right actions,

5https://github.com/meagmohit/gym-maze
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Figure 6.4: Game environments Figure 6.5: Experiment bench

it is easy for humans to see if the agent took correct or incorrect action.

Catch: We increased the complexity in our game environments by designing a new

game, Catch, allowing the target to perform vertical movements in addition to the horizon-

tal movements. The Catch game is a simplistic version of Eggomania6 (Atari 2600 bench-

mark), where we display a single egg on the screen at a time. The Atari screen dimensions

are divided into 10x10 grid space, where the “egg” and the “basket”, both occupies one

block. The action space of the agent consists of “NOOP” (no operation), “moving left”

and “moving right”. At the start of the game, the horizontal position of the egg is chosen

randomly. At each time step, the egg falls one block in the vertical direction, and the goal

of the agent is to catch the egg.

Maze: Our third game is Maze where we consider all four directional movements for

the agent. Maze is a 2-D navigational game, where the agent has to reach a fixed target

(shown with a plus symbol) in a minimum number of steps. The screen is divided into

10x10 square blocks. The action space consists of four directional movements. The maze

architecture is kept fixed for this work. The only reward here is the result of the episode,

i.e., win or lose. If an agent moves but hits a wall, a quick blinking of the agent is displayed,

to render the action taken by the agent.

6https://en.wikipedia.org/wiki/Eggomania
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Game Device # users # Stimulations
Maze OpenBCI 12 ≈ 7500
Catch OpenBCI 8 ≈ 5500

Wobble OpenBCI 6 ≈ 3700

Table 6.2: Error-Potentials: data collection

6.2.2 System overview and equipment

We designed and developed an experimental protocol, where a machine agent plays a com-

puter game, while a human silently observes (and assesses) the actions taken by the ma-

chine agent (as shown in fig 6.5). These implicit human reactions are captured by placing

raw electrodes on the scalp of the human brain in the form of EEG potentials. For capturing

the raw analog brainwaves, we used the BIOPAC electrode cap (BIOPAC CAP-100C) with

16 EEG electrodes. The sixteen electrodes were Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, C3,

Cz, C4, P3, Pz, P4, O1, and O2. Two additional Ag/AgCl electrodes were also clipped

to the user’s earlobes to provide the reference and additional noise correction mechanism.

An electrode gel was injected to maintain the contact between the electrode and the scalp.

The electrode cap was attached with the OpenBCI Cyton7 platform, which was further con-

nected to a desktop machine over the wireless channel. We used daisy module extension

with OpenBCI Cyton to allow continuous sampling of brainwaves from 16 electrodes at

125 Hz. ADS1299 designed by Texas Instruments, the heart of OpenBCI, converts the raw

analog signals to digital samples. We used OpenViBE [182], a software platform devel-

oped in INRIA, France, to collect the digitized sampled brainwaves and synchronize them

with the game status. OpenViBE continuously listens to the TCP port (for state-action

pairs), and timestamps the EEG data in a synchronized manner. A detailed step-by-step

procedure to conduct the human experiments is provided in section 6.9 along with the key

system-level synchronization issues in section 6.10.

For the first phase of the experiments, we conducted more than 25 experiments with

6 subjects common (mean age 26.8 with a standard deviation of 1.92, 1 female) for all

7http://openbci.com
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the three games (Table 6.2). We used standard recruitment and consent procedures for

enrolling the human subjects in this study. For each subject-game pair, the experimental

duration was less than 15 minutes. The agent took action every 1.5 seconds during the

experiment. The Georgia Tech Institutional Review Board reviewed and approved all the

research protocols for user data collection. This data is anonymized and stored for further

analysis.

6.3 Benefits of ErrP based Implicit Feedback

6.3.1 Qualitative benefits of obtaining intrinsic feedback via error-potentials

Relying on error-potentials for obtaining intrinsic feedback provides two primary benefits

- (a) generalized notion of error-detection instead of application specific, (b) strong signal-

to-noise-ratio due to evolutionary significance.

Generalized notion of error-detection

Error-potentials are elicited when a user is presented with an incongruent (or erroneous)

stimulus in a diverse set of tasks [286] implying that the error-processing system is generic

(i.e., not specific to the task or sensory organ). Error-potentials are observed across a wide

variety of input modality (e.g., audio [287], visual [288], somatosensory [289], etc.). This

is in contrast to other elicited potentials in the brain which cater to the stimuli of a specific

category. For instance, the P600, N300, P300, and N200 are elicited when a subject is

presented with syntactic anomalies in sentences [290], semantically inconsistent word and

picture pairs [291], interruption of a stimulus with another divergent stimulus [292], and

detection of mismatch in a stimulus [293] respectively. Thus, the generalized mechanism

for eliciting ErrPs is one of the characteristic advantages that it offers, unlike other brain-

potentials specific to a stimulus or modality.
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Evolutionary significance

Error-potentials in primates are well-founded and universal (exhibiting similar behaviors

across individuals) as they have an evolutionary significance due to their importance in

cognition, learning, and survival. Error-potentials enable the learning process via the ad-

ministration of rewards and punishments in the Anterior Cingulate Cortex (ACC) [294]. In

monkeys, error-potentials were generated in the anterior cingulate sulcus, when monkeys

made errors in a simple response task. [295] found error-recognition units in monkeys’ an-

terior cingulate sulcus that were activated when the animals received negative feedback in

the form of the absence of an expected reward. Similarly, [296] found that when monkeys

made errors in a simple response task, error-related potentials were generated in the ante-

rior cingulate sulcus, thereby advocating that ErrPs link human and non-human primates

based on error monitoring. The universality of ErrPs guarantees that it occurs naturally in

humans and the evolutionary importance of ErrPs in learning points toward them being a

foundational element in human cognition.

6.3.2 Motivational study for using error-potentials over manual labeling

In this section, we describe the experimental study we conducted to quantitatively compare

the benefits of intrinsic feedback (obtained via error-potentials) over manual feedback in

terms of accuracy, latency, and cognitive burden.

Experimental methodology

We designed a web-based interface to conduct the experiments and to collect the data for

quantitatively evaluating the manual feedback over intrinsic feedback. In the experiments,

the subjects were presented with a Maze game screen (Fig. 6.6) and were asked to label the

actions taken by the computer agent in the game. The subjects were instructed to press the

“left arrow” for incorrect action (taken by the computer agent) and the “right arrow” for the

correct action. In total, 3 such instances of the game were designed, where each instance got
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Figure 6.6: Experimental interface for evaluating manual feedback

progressively faster (to study the impact of time pressure on mental comfort and accuracy).

The first instance had a time delay of 1.5 seconds between successive actions of the agent

while the second and the third had a delay of 1.0 and 0.5 seconds respectively (we use these

delay values as they lie around the latency value we have used in the EEG experiments

and they also help us know the variation of manual labeling accuracy with respect to the

latency). For each instance, every subject provided manual feedback over 3 trials (thus, 9

trials in total). The sequential order of the instances was randomized across users to remove

any biases due to the ordering of the instances. In the maze game, the computer agent made

the correct moves with a probability of 0.8. Upon the completion of all 3 trials for each

instance of the game, the subjects were redirected to a Qualtrics survey where they were

asked to provide subjective feedback (Table 6.3) about the experiment. Thus, there were 3

forms that each subject had to fill (one per instance). We used Amazon’s Mechanical Turk

to request anonymous workers to complete this task, and every worker was compensated

10 US cents upon successful completion of the task. The study was approved by Georgia
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Q1 Name
Q2 Email
Q3 Age
Q4 Rate the comfort scale of the experiment. Comfort scale refers to the cognitive

load or the mental burden incurred upon you during the experiment (from 1 to 7)
Q5 Rate the comfort scale of the EEG experiment (If you participated in the EEG

experiment earlier). Leave blank otherwise. (from 1 to 7)
Q6 Were you able to correctly mark *ALL* the actions taken by the agent within the

time interval? (options: Yes, No, Not sure)
Q7 If no, at what time delay in between the agent actions, would you have been

able to label it comfortably? [Options: (a) Greater than 1.5s but less than 3s (b)
Greater than 3s but less than 4.5s (c) Greater than 4.5s but less than 6s (d) Greater
than 6s (e) I was able to label it comfortably]

Q8 How do you think reducing the time interval from 1.5s to 1.0s would impact your
labeling accuracy? [Options: (a) Considerably Increase (b) Slightly Increase (c)
Stay the same (d) Slightly Decrease (e) Considerably Decrease]

Q9 How do you think reducing the time interval from 1.5s to 1.0s would impact your
cognitive load or mental burden? [Options: (a) Considerably Increase (b) Slightly
Increase (c) Stay the same (d) Slightly Decrease (e) Considerably Decrease]

Q10 Any feedback or comments for the experiment?

Table 6.3: Qualtrics Questionnaire for 1.5s instance of the Maze game

Tech’s Institutional Review Board.

Results

We obtained a total of 281 responses for the conducted experiments. Specifically, we re-

ceived 87, 91, and 103 unique user responses for the 1.5s, 1.0s, and 0.5s instances of the

game respectively. On average, for the 1.5s instance of the game, we obtained a True Pos-

itive Rate (TPR) of 56.6% and 41.5% for correct and incorrect actions of the maze agent

respectively. We also obtained a feedback latency of 376ms and 540ms for correct and

incorrect actions of the maze agent respectively. It should be noted that correct and incor-

rect actions of the agent corresponding to the non-Errp and ErrP respectively, during EEG

experiments. For the 1.0s instance, the TPR reduced to 49.8% and 38.8% (for correct and

incorrect actions of the maze agent respectively), and further to 34.9% and 14.1% for the

0.5s instance. The significant decrease in TPR is intuitive as the subjects will not be able to
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respond accurately in an increased time pressure situation. The feedback latency (or reac-

tion time) also decreased significantly, 288ms and 456ms (for correct and incorrect actions

of the maze agent respectively) for the 1.0s instance, and further to 179ms and 207ms for

the 0.5s instance of the game. Upon in-depth analysis of the raw data, we found that some

participants were inert during the experiment, i.e., they were not actively participating in

the experiment. To remove the biases due to such users, we decided to remove such inert

participants for further analysis.

The response rate of the users for all three instances of the game is present in Fig. 6.8.

Here, we can see that the response rate for the slowest version of the game (1.5s instance)

is highest as compared to the faster versions of the game. For each experiment, we re-

moved the users who have less than 50% response rate. In other words, we removed the

trials where participants failed to provide feedback for at least 50% of all the actions. This

concluded in the removal of 22 users from the 1.5s instance of the game (25%), 28 users

from the 1.0s instance of the game (31%), and 44 users from the 0.5s instance of the game

(43%). After this filtering, for the 1.5s instance of the game, we obtained a true positive

rate of 74.1% and 53.4% for correct and incorrect actions of the maze agent respectively.

We also obtained a feedback latency of 364ms and 539ms for correct and incorrect ac-

tions of the maze agent respectively. For the 1.0s instance of the game, we obtained a true

positive rate of 69.8% and 52.6% for correct and incorrect actions of the maze agent respec-
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Time
Interval (s)

Subjects TPR % (± std) Latency (ms) ± std
Correct Incorrect Correct Incorrect

1.5 87 74.06 (± 32.05) 53.37 (± 36.17) 364.26 (± 132.09) 538.59 (± 184.16)
1.0 91 69.79 (± 32.96) 52.56 (± 33.41) 290.50 (± 98.78) 451.79 (± 151.63)
0.5 103 56.36 (± 23.88) 21.60 (± 21.28) 176.56 (± 49.65) 203.44 (± 116.05)

Table 6.4: Accuracy and latency for manual labeling [Maze game]
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Figure 6.9: Comparison of manual labeling with implicit feedback (via EEG)

tively. We also obtained a feedback latency of 290ms and 451ms for correct and incorrect

actions of the maze agent respectively. For the 0.5s instance of the game, we obtained a

true positive rate of 56.4% and 21.6% for correct and incorrect actions of the maze agent

respectively. We also obtained a feedback latency of 177ms and 203ms for correct and

incorrect actions of the maze agent respectively. The TPR and latency results are compared

and summarized in Table 6.4, Fig. 6.9, 6.7.

Insights

As we can see from the Table 6.4, Fig. 6.9, 6.7, the accuracy values for correct and incorrect

actions both decrease with decrease in the time interval. The labeling accuracy for correct

actions is significantly more than that of incorrect actions. The accuracy for both, correct

as well as incorrect actions, decreases as the time latency is decreased (thereby increasing

time pressure). The highest accuracy for incorrect actions is about 53.4% (only marginally

better than random labeling for 1.5s instance). In Fig. 6.9, we have also provided the accu-

racy obtained for implicit feedback obtained (via error-potentials). The implicit feedback
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based accuracy for correct actions is 83.61% (i.e., absence of error-potential), i.e.,12.88%

improvement over manual labeling. Similarly, for incorrect actions, the implicit feedback

accuracy (i.e. presence of error-potentials) is 77.02%, an improvement of 44.31% over

manual labeling.

Based on the qualitative survey responses, on a scale of 1 to 7, the users gave the 1.5s

instance of the game an average comfort rating of 5.4 which declined to 4.9 and 3.9 for the

1.0s instance and 0.5s instance respectively. On being asked if they were able to mark all

actions correctly, 40% of the subjects answered in the affirmative in the 1.5s instance of the

game, which declined to 26% and 14% in the 1.0s and the 0.5s instance of the game. Across

the board, the majority of the participants reported that the ideal time interval for them to

correctly label all actions of the agent would be between 1.5s and 3.0s or larger. 64% of the

participants in the 1.5s instance of the game reported that reducing the time interval of the

game to 1.0s would decrease their labeling accuracy, and 69% of the participants reported

that it would increase their mental burden. 52% of the participants in the 1.0s instance of

the game reported that reducing the time interval of the game to 0.5s would decrease their

labeling accuracy, and 60% of the participants reported that it would increase their mental

burden. In contrast, 64% of the participants in the 1.0s instance of the game reported that

increasing the time interval from 1.0s to 1.5s would increase their labeling accuracy and

decrease their mental burden. 49% of the participants in the 0.5s instance of the game

reported that reducing the time interval of the game further would decrease their labeling

accuracy, and 53% of the participants reported that it would increase their mental burden.

To summarize, the users felt increasing discomfort and cognitive burden as the time latency

reduced from 1.5s to 1.0s and further to 0.5s. They also reported that the optimal time

latency for comfortable manual labeling would be between 1.5s and 3.0s. This was also

evident from the fact that more than 60% of the participants anticipated a reduction in their

accuracy if time latency was to be decreased from 1.5s.
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Figure 6.10: Manifestation of error-potentials in time-domain: Grand average poten-
tials (error-minus-correct conditions) are shown for Maze, Catch and Wobble game
environments.
Thick black line denotes the average over all the subjects.

6.4 Detection and Study of Error-Potentials

In this section, we discuss the algorithms to detect the presence of error-potentials directly

from the captured brainwaves (i.e., EEG). We first validate that the observed neural cor-

relates are error-potentials through various experimental and data analysis in section 6.11.

Further, in Fig. 6.10, we plot the grand average EEG waveforms across three environments

(Maze, Catch, and Wobble), to visually validate the consistency of potentials for the five

subjects. We can see that the shape of negativity and the peak latency is quite consistent

(as per the literature) across the three game environments.

6.4.1 Baseline algorithm for detection of error-potentials

In order to obtain the implicit human feedback, we need to detect the presence or absence

of ErrPs inside the EEG waveform. This requires training a model that can interpret the

EEG signal of a human and classify it as an ErrP or non-ErrP robustly. EEG signals are

inherently very noisy, and when combined with external factors like improper electrode

placements, variance across users pose significant challenges in the reliable estimation of

error-potentials.

We rely on the Riemannian Geometry framework for the classification of a human’s

intrinsic reaction [297]. This framework is state-of-the-art for detecting any event-related

potentials, and provides two primary advantages over other classifiers 8:

8The authors successfully applied the framework and won multiple Kaggle challenges. E.g., https:
//www.kaggle.com/c/inria-bci-challenge. Later, this framework was successfully adapted in many
other error-potential decoding works [48].
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• The estimation algorithm operates in signal space (rather than source space), and

hence minimizes the distortions due to the electrode placements.

• The spatial filtering algorithm maximizes the signal to signal plus noise ratio (SSNR)

to mitigate the interference and noise.

Algorithm 3: Riemannian Geometry based ErrP classification algorithm [164]
Input : raw EEG signals (X)

1 X f ← filtering(X , f req band, f ilter order) ;
2 XC← covariance(X f ) ;
3 XD← electrode select (XC, nelec) ;
4 XT ← tangent space(XD) ;
5 XN ← normalization(XT , norm=”l1”) ;
6 score← elasticnet (XN , λ1, λ2) ;
7 if score > scoreth then return True ;
8 else return False. ;

The algorithm parameters are explained in section 6.4.3

The principal idea in this approach is underpinned on the assumption that spatial distri-

bution and power of the signal remain unaltered for a specific mental activity, which can be

captured using the covariance matrix. Since the space of the covariance matrices is a sub-

space of Symmetric Positive Definite (SPD) matrices, it forms a differentiable Riemannian

manifold. In this manifold, (i) the tangent space has an inner product that varies smoothly,

and (ii) the distance between two points can be computed using Riemannian distance (or

geodesic, δR) defined as,

δR(C1,C2) = ||log(C−1
1 C2)||F =

[
n

∑
i=1

log2(λi)

] 1
2

(6.11)

Here, C1 and C2 represent the covariance matrices (corresponding to different data trials).

||.||F represents Frobenius norm, and λi represents the ith eigenvalue of C−1
1 C2. One of

the unique properties of this space is, δR(W TC1W,W TC2W ) = δR(C1,C2), for all invertible

SPD W , implying that this space is invariant by projection (and hence less prone to noise

and imperfect cap placements). The full algorithm is presented in Algorithm 3 and is

explained below.
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Algorithm Description: (Step 1) The first step is to bandpass filter the raw EEG data

in a frequency range ( f req band) of [0.5, 40] Hz, and epochs of 800ms duration were ex-

tracted relative to the pre-stimulus 200ms baseline. The epochs were then spatially filtered

with “xDAWN Spatial Filter” [298, 297, 165]) to improve the signal to signal plus noise ra-

tio (SSNR), where f ilter order corresponds to the Xdawn components used to decompose

the data for each event type. Such responses (P) are obtained by taking the grand averages

of training samples in each class (i.e. “non-ErrP” and “ErrP”), and a super trial (X̃i) is built

by concatenating the class trials with their prototyped class response.

P =
1
N

N

∑
i

Xi, X̃i =


P

Xi

 (6.12)

(Step 2) A covariance matrix is computed using the super trials (X̃i) accounting for the

spatial distribution of the signal power. (Step 3) To overcome the curse of dimensionality,

the covariance matrix is reduced by applying a channel selection algorithm. The procedure

consists of a backward elimination with the Riemannian distance between the Riemannian

Geometric mean of the covariances of each class as the criterion [299]. (Step 3) As the raw

input signal is high-dimensional, the spatially filtered signals are reduced to fewer relevant

channels (nelec) using a backward elimination principle based on the Riemannian distance

between spatial covariance matrices as the selection criterion [299]. (Step 4) The reduced

covariance matrix is projected into the tangent space, allowing to manipulate features in the

Euclidean space [300, 164]. (Step 5, 6) Finally, the features in the tangent space (XT ) are

normalized using the L1 norm and subjected to a linear regression model with L1 (λ1) and

L2 (λ2) penalties. If the output of linear regression crosses the preset threshold (score th),

the signal is labeled as an ErrP. score th is set offline through maximizing accuracy over

training samples.
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6.4.2 Trinity algorithm

The baseline algorithm relies only on the spatial distribution of the scalp potentials (through

the estimation of the covariance matrix) to classify the error-potentials. Despite the state-

of-the-art performance of the algorithm, there is significant room for improvement. In

practical situations, the error-potentials are not exactly time-locked, and manifest phase

jitters due to the shift in user focus, synchronization issues (section 6.10), etc, resulting

in reduced classification performance. Further, the distribution of power across time- and

frequency-spectrum is known to provide additional information regarding the associated

mental activity. In this section, we present our proposed algorithm, Trinity to supplement

the spatial- domain features along with the time- and frequency- domain features and we

efficiently combine the information across these three dimensions based on a soft-voting

based ensemble approach (presented in Algorithm 4).

Algorithm Description: Pre-Processing: We use the bandpass filtering in [0.5, 15]

Hz, and epoch extractions of 800ms relative to 200ms baseline. The signals were spatially

filtered, projected to source space using “xDAWN spatial filtering”, and were subjected to

three pipelines independently.

Spatial-domain-based: For extracting the spatial features, we rely on the Riemannian

Geometry framework proposed in [297, 165], and explained in the previous subsection.

Instead of regression, we use a squared hinge loss [301] along with L1 and L2 penalties, and

train with Stochastic Gradient Descent (SGD) [302]. In addition, we obtain the calibrated

confidence scores (ps) for spatial-domain based prediction based on [303, 304].

Frequency-domain features: (Step 7) A multi-taper spectral estimation method [305]

within 400ms to 1000ms time window (time f ) after stimulus onset is used to compute

the power densities in 1-15 Hz frequency interval ( f req f ). (Step 8) The obtained power

spectral values are converted to a logarithmic scale (dB). (Step 9) A linear-kernel based

Support Vector Machine (SVM) with a small-margin hyperplane is used to classify the

frequency-based features, and the confidence scores (p f ) are estimated using Platt scaling
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[306, 307].

Time-domain features: (Step 8) The spatially filtered signals are divided into multiple

buckets (bucket size) of 50ms each. (Step 9) We compute the average amplitude of each

bucket as the raw features representing time-domain variations in error-potentials. (Step 9-

10) The mean amplitude-based features are normalized using the L2 norm, before feeding

them to the linear SVM. Similar to the frequency-domain pipeline, we compute the prob-

ability estimations (pt) representing the prediction confidence. The probability estimates

were fed to the ensemble classifier.

Ensemble classification: We use a soft voting based ensemble classification to predict

the “ErrP” or “non-ErrP” class. In this method, we average the classification probability

i.e. pt , p f and ps to compute the final estimation probability, p. To improve the overall

detection performance of the system, we discard the low-confidence predictions. We define

a parameter, probability threshold (pth), to identify the low-confidence predictions. If the

ensemble classifier prediction probability (i.e., p) lies between [1− pth, pth], we discard

the corresponding samples.

6.4.3 Evaluation

We first validate the feasibility of decoding error-potentials using a 10-fold cross-validation

scheme for each game relying on the Riemannian Geometry framework (state-of-the-art

algorithm as explained in Algorithm 3). The code for the state-of-the-art algorithm was

obtained from the public GitHub repository of the authors9. We used the IEEE BCI-NER

challenge pipeline with the algorithm hyperparameters presented in Table 6.5. The algo-

rithms are evaluated on the data collected for three environments, namely Maze, Catch,

and Wobble (as explained in section 6.2.1). A separate classifier is used for each user and

each game, i.e., algorithm learnable parameters are not shared across users and game, to

demonstrate the feasibility of the detection of error-potentials.

In this scheme, we split the state-action pairs of a game into 10-folds for training and

9https://github.com/alexandrebarachant/bci-challenge-ner-2015
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Algorithm 4: Trinity: Proposed algorithm for the classification of error-potentials
Input : raw EEG signals (X)

1 X f ← filtering(X , f req band, f ilter order) ;
/* Spatial Filtering */

2 XS
C ← covariance(X f ) ;

3 XS
D← electrode select (XS

C , nelec) ;
4 XS

T ← tangent space(XS
D) ;

5 XS
N ← normalization(XS

T , norm=”l1”) ;
6 ps← linear classification(XS

N , λ1, λ2) ;
/* Frequency-domain */

7 XF
T ← multitaper PSD(X f , time f , f req f );

8 XF
N ← log normalization(XF

T ) ;
9 p f ← svm(XF

N ) ;
/* Time-domain */

10 XT
B ← time bucketing(X f , bucket size);

11 XT
P ← average power(XT

B );
12 XT

N ← normalization(XT
B , norm=”l2”) ;

13 pt ← svm(XT
N ) ;

/* Ensemble Learning */
14 p← soft voting (ps, p f , pt) ;
15 if p > pth then return True ;
16 else if p < 1− pth then return False ;
17 else return None. ;

The algorithm parameters are explained in section 6.4.3

Table 6.5: Algorithm hyperparameters for the state-of-the-art algorithm for ErrP
detection

Parameter Value
Frequency Range 1-40 Hz

Frequency Filtering Bandpass 4th order
Baseline Epoc window 100ms

Epoc window 1300ms
xDAWN Spatial Filters 4

Backtrack Electrodes (nelec) 8
ElasticNet: L1 Ratio 0.05

ElasticNet: α 0.02
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Figure 6.11: Feasibility of ErrP detection
(state-of-the-art algorithm)

validation of the error-potential decoder. In Fig. 6.11, we show the performance of three

games in terms of Area Under Curve (AUC) score, sensitivity, and specificity averaged

over 6 subjects. Sensitivity measures the true positive rate of a classification scheme. In

our context, sensitivity refers to the percentage of time error-potentials are correctly classi-

fied, i.e., total correctly detected error-potentials out of given ground truth error-potentials.

Specificity measures the true negative rate of a classification scheme. In our context, speci-

ficity refers to the percentage of time non-ErrPs (i.e., states where the agent took the correct

actions) are correctly classified, i.e., total correctly detected non-ErrP out of given ground

truth non-ErrP. Area Under Curve (AUC) computes the area under the receiver operating

characteristic curve and provides a measure of the separability of the two classes. AUC

does not rely on a particular value of the threshold, and hence provides insights into the

goodness of the fit independent of the threshold value chosen. AUC score is 1 for an ideal

classifier.

The Maze game has the highest AUC score (0.89 ± 0.05) followed by Catch (0.83 ±

0.08) and Wobble (0.77 ± 0.09). Sensitivity and specificity follow the same trend. We

obtained a 0.83 (± 0.04) score for sensitivity for the Maze game, and 0.78 (± 0.06) and

0.73 (± 0.07) for the Catch and Wobble game respectively. Similarly, sensitivity scores are

obtained as 0.77 (± 0.06), 0.70 (± 0.09), 0.66 (± 0.09) respectively for Maze, Catch and

Wobble game respectively.
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Trinity performance

In this subsection, we evaluate the performance of the proposed error-potential decoding

algorithm, Trinity, and compare it with the baseline algorithm. For the Trinity algorithm,

we have set the f ilter order to 4 (for xDAWN Spatial Filtering), and, λ1 and λ2 to 0.001

and 0.02, respectively. The proposed algorithm is evaluated over the probability threshold

parameter pth. The algorithms are evaluated on the data collected for three environments,

namely Maze, Catch, and Wobble (as explained in section 6.2.1). The evaluation was

performed using a 10-fold cross-validation scheme, and a separate classifier is used for
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Table 6.6: Algorithm hyperparameters for Trinity algorithm

Parameter Value
Frequency Range 1-15 Hz

Frequency Filtering Bandpass 4th order
Baseline Epoc window 200ms

Epoc window 800ms
xDAWN Spatial Filters 4

Backtrack Electrodes (nelec) 8
[tmin, tmax] [0.4,1.0]
[ fmin, fmax] [1,14]

Frequency bins 16
Time buckets 50ms

ElasticNet Penalty: L1 Ratio 0.05
ElasticNet Penalty: α 0.02

each subject and each game. We also present the overall performance over all the subjects

and the game environments in terms of accuracy, and sample efficiency. Accuracy presents

the average accuracy of both classes (ErrP and non-ErrP) weighted equally. The diagonal

elements of the confusion matrix are averaged to compute the average accuracy. Sample

efficiency provides the percentage of data samples that can be confidently assigned to one

class. Note that sample efficiency is 100% for the algorithms where none of the samples

are dropped. As we increase the threshold to drop samples as per the measured confidence

score, the sample efficiency reduces.

We present the overall detection accuracy of the proposed algorithm and compare it

with the baseline in Fig. 6.12. The proposed algorithm without discarding any samples

(pth=0.5) performs with an average accuracy of 73.71% (± 6.81), an 8.11% improvement

over the state-of-the-art. The accuracy is further boosted to 77.47% (13.6% improvement)

and 79.51% (16.63% improvement) by increasing the pth (dropping the low confidence

samples) to 0.6 0.7 respectively. This improvement is achieved at the cost of sample effi-

ciency of 88% (±6.01) and 72.3% (±13.33), for the pth value of 0.5 and 0.6 respectively (as

shown in Fig. 6.16). Among all three games, the accuracy rate of the Maze game (77.28%)

is higher pertaining to its simple and intuitive user interface.
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Fig. 6.13 presents the cumulative distribution of accuracy over a total of 25 recordings.

It can be noted that for 50% of samples, the baseline algorithm performs over 70%, while

the proposed algorithm (with pth=0.5) performs over 80%. This trend is more clearly seen

in Fig. 6.13, where the cumulative distribution of the proposed algorithm with higher pth

lies over those with lower pth and the baseline algorithm below all others. In Fig. 6.17,

we present the cumulative distribution of sample efficiency over all subjects. The baseline

algorithm and proposed algorithm (with pth = 0.5) perform with 100% sample efficiency

since no sample is dropped. However, increasing the low-confidence threshold range, i.e.,

pth, the sample efficiency reduces. For pth = 0.6, the sample efficiency is above 85% for

at least 75% of the users, making the algorithm practical and universal for subjects. With

pth = 0.7, the classifier performs with very high accuracy, with a sample efficiency of over

50% for more than 90% of the users. This simply translates to the fact that one out of two

error-potential can be effectively labeled with this approach.

There is a clear increase in the average overall accuracy in comparison with the baseline

algorithm (68% to 74%) with pth = 0.5. From Fig. 6.12, an increase is also observed in

accuracy when samples with lower confidence are dropped (that is, as pth is increased to

0.6 and 0.7). Using pth = 0.7 it is seen that the overall average accuracy increase is over

11% and nearly 14% in Maze specifically. This trend is more clearly seen in Fig. 6.13,

where the CDF of the proposed algorithm with higher pth lies over those with lower pth

and the baseline algorithm below all other curves. The performance improvement can also

be observed from Fig. 6.15 in the AUC scores where the overall average over three games

is 74.4% for baseline algorithm and 83.2% with pth = 0.7 for the proposed algorithm (9%

improvement). Since the AUC score is independent of the classification threshold, we can

see that the AUC score of the proposed algorithm for various values of pth is similar. A

similar trend is observed from Fig. 6.14 in the F1 scores with over 20% increase on average

on all three games. A significant improvement in the average F1 score is seen in the game

Maze, where the performance increases from 51% to over 75%. It is also noted that the
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standard deviation of F1 scores for the proposed algorithm (14.6% overall at pth = 0.7) is

higher in comparison with the baseline algorithm (8.4% overall) hinting at a more variable

performance.

6.4.4 An in-depth study of error-potentials

In this subsection, we analyze the effect of experimental variables on the quality of obtained

error-potentials. Specifically, we experimentally evaluate if (a) the speed of the game or (b)

the frequency of agent making incorrect actions has any direct impact on the decoding

performance of error-potentials.

Effect of Inter-Stimulation Interval (ISI): Inter-stimulation interval is defined as the time

duration between two consecutive actions taken by the AI agent in the given game environ-

ment. In all the experiments described above, the agent took actions every 1.5 seconds, i.e.,

an ISI of 1500ms. We configured the environment and repeated the experiments with the

ISI of 1.0s and 0.5s. In Fig. 6.18, we present the decoding performance of error-potentials

for the ISI of 1.5s, 1.0s and 0.5s, in terms of accuracy and AUC score. The performance for

ISI of 1.5s and 1.0s are very similar, 75.67% (± 8.65%) and 75.17 (± 9.51%) for accuracy,

and, 0.84 (± 0.09) 0.83 (± 0.09) for the AUC score. Interestingly, the performance with

0.5s of ISI is significantly high, with an average accuracy of 84.1% (± 6.78%) and the AUC

score of 0.91 (± 0.05). However, the total number of distinct experiments performed for
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0.5s ISI is significantly less (N = 2) than 1.5s ISI (N = 26) and 1.0s ISI (N = 13), hence,

further experiments are needed to support the presented claim.

Effect of trigger error probability (Perr): Error probability is defined as the expected per-

centage of incorrect moves made by the computer agent. In the previous experiments, the

value of Perr was set to default as 0.2. We conducted additional experiments for Perr = 0.4,

and compared the performance of detection of error-potentials in Fig. 6.19. The detec-

tion performance for error probability was found to be similar, i.e. 75.67% (± 8.65%)

and 75.17% (± 9.51%) for error probability of 0.2 and 0.4, respectively. Similarly, the

respective AUC score is found to be 0.85 (± 0.09) and 0.83 (± 0.09).

6.5 Integrating RL algorithms with ErrP based Feedback

In this section, we discuss the methodologies to integrate the human feedback (obtained via

error-potentials) with the reinforcement learning algorithms. Knox et al. [260] proposed

basic frameworks to integrate the human feedback in any RL algorithm driven by action-

value function (or Q-value function) learning. The Q-learning updates are given as,

Q(st ,at)← Q(st ,at)+α[rt+1 + γmaxat+1Q(st+1,at+1)−Q(st ,at)] (6.13)

The agent’s policy based on the Q-values is greedy as given in eq. 6.8. We define the human

feebdack (obtained via eeg-based error-potentials) as follows,

Ĥ(st ,at) =


−1 if ErrP present

0 otherwise
(6.14)

According to [260], the human feedback (Ĥ) can be intergrated with RL during action-

selection step in Q-learning in two different ways,

• Action Biasing: During action selection from estimated Q-value, we select actions

from the modified Q-values (Q′(st ,at)),

Q′(st ,at)← Q(st ,at)+β× Ĥ(st ,at) (6.15)

122



The modification is performed only during the action selection, and not while updat-

ing the Q-learning values.

• Control Sharing: In control sharing, the probability of selecting actions is influ-

enced as follows,

P(at = argmax[Ĥ(st ,at)]) = min(β,1),otherwise base RL agent action selection

(6.16)

Here, β is a parameter that is exponentially decayed over time.

6.5.1 Reward shaping1

A very naive and heavily used approach to integrate any external feedback with RL algo-

rithms is reward shaping. In reward shaping, additional rewards are provided to augment

the environmental rewards enabling the RL agent to learn optimal behavior in an accel-

erated manner. This allows the RL agent to deduce the optimality of the actions taken,

especially during the early training process. In this context, if the goal of the RL algorithm

is to learn the environment with MDP, M = (S,A,T,γ,R), and R′ refers to the additional

reward function (obtained via human feedback or any other external means), the RL algo-

rithm is trained on MDP, M = (S,A,T,γ,R+R′). In other words, at time t, the training agent

receives the reward rt + r′t instead of rt . As we saw in the previous subsection, learning in

DQN is based on off-policy Temporal Difference (TD) control, where the loss function is

given by,

Li(θi) = E[rt + γmaxat+1Q(st+1,at+1,θ
−
i )−Q(st ,at ,θi)] (6.17)

In DQN or any other Q-learning based RL training, reward shaping is achieved by trans-

forming the loss function as,

L′i(θi) = E[rt + r′t + γmaxat+1Q(st+1,at+1,θ
−
i )−Q(st ,at ,θi)] (6.18)
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Under certain circumstances, reward shaping preserves the optimality of the learned policy

[308].

In the context of Maze game, we define r′t as below,

r′t =


−δ if ErrP detected

0 otherwise
(6.19)

We set δ as 0.75 for evaluation purposes. Since this approach requires human feedback

on every state-action pair while training, we call it as full-access approach. Full-access

approach has the highest convergence rate, however, requests a large number of queries to

be labeled from the human observer (via their error-potentials).

6.5.2 Evaluation1

In this subsection, we evaluate the training performance of the RL agent when integrated

with implicit human feedback (obtained via error-potentials). We evaluate the performance

for reward shaping or full-access method, and compare them with the action biasing and

control sharing approaches. We evaluate and present the training acceleration of the RL

agent on the Maze game for 5 users in terms of success rate and complete episodes. The

success rate is used to measure the convergence rate of the RL algorithms. The success rate

is defined as the ratio of successful plays (win) in the last 32 episodes. Complete episode is

another metric we use to measure the convergence rate of the RL algorithms. The training

converges and terminates at complete episode, when the success rate reaches to 1. We used

Bayesian Deep-Q Network, BDQN as the reinforcement learning algorithm to train the RL

agent [309].

We present the evaluation performance for the reward shaping based full-access method

in Fig. 6.20. “No ErrP” refers to the training of the RL agent without any human feedback.

From Fig. 6.20 (left), we can see that the training performance with ErrP for all 5 subjects is

significantly accelerated as compared to the “No ErrP” case. Without human feedback (i.e.,

“No ErrP”), the agent takes 274.63 (± 34.11) episodes to learn the optimal policy. With
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Figure 6.20: RL with full access to ErrP feedback

Subject 01 02 03 04 05
# Queries 1879.4 2072.1 2293.7 1975.4 2130.1

Table 6.7: Number of queries for reward shaping

human feedback from S01, the number of episodes reduces to 124.67 (± 31.49) episodes,

achieving an acceleration of 2.20x. Averaged over 5 subjects, the number of episodes

required are 142.04 (± 12.51), amounting to the acceleration of 1.94x. Since the implicit

human feedback is provided on every state-action pair, a very high number of queries are

made to get labeled from the human observer via their error-potentials. The total number of

queries requested for the human feedback for each subject is given in Table 6.8. Averaged

over 5 subjects, 2070.14 (± 140.67) queries were requested from the implicit feedback

from human subjects.

Evaluation on Q-learning with epsilon-greedy: We also evaluate and compare the hu-

man augmentation performance of action biasing and control sharing with reward shaping,

and present in Fig. 6.21. Averaged over 5 subjects, action biasing and control sharing

achieve 1.125x and 1.25x acceleration respectively, while reward shaping performs with an

average acceleration of 1.52x.

Further, for the learning curve shown in Fig.6.23, we fit 1− e−λt curve, and compare

the λ and slope (i.e., λe−λt) for learning with and without human feedback in the loop.

For non-errp case, we obtained λ as 0.011, and slope at 40 episodes as 0.007. For S04
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Figure 6.21: Comparing the acceleration per-
formance on Q-learning with epsilon-greedy

Figure 6.22: Learning curve
for reward shaping with epsilon-
greedy

Figure 6.23: RL with full access to ErrP feedback

(highest convergence rate), the obtained λ and slope is 0.0221 and 0.0091, exhibiting a

clear increase in the learning rate.

6.5.3 Sensitivity analysis

We evaluate the importance of reliable detection of error-potential with the goal of accel-

erating the convergence rate of the RL algorithm for the Maze game. As described before,

a negative penalty is provided as the auxiliary feedback to the RL agent upon the detec-

tion of an error-potential. The reliability of the detection of such auxiliary feedback (i.e.,

error-potential) is detrimental to the convergence rate of the RL algorithm.

Incorrect detection of error-potential leads to noisy feedback to the RL algorithm, which

could confuse the agent in determining the optimality of actions if the magnitude of the

noisy feedback is really high. We run a simulation-based sensitivity analysis to quantita-

tively evaluate the convergence rate in the presence of noisy feedback. Specifically, we

design an artificial (and external) oracle to simulate the auxiliary feedback (in the form of

error-potentials) with a given accuracy rate. We train the RL algorithm to measure the num-

ber of complete episodes taken by the RL algorithm to converge to the optimal policy. We

present the sensitivity analysis in Fig. 6.24 for reward shaping based full-access method.

Without the presence of human feedback, the RL algorithm takes 170.8 episodes to
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converge. It can be seen from the figure, that an accuracy rate below 65% results in in-

creasing the number of complete episodes, and hence, reducing the training convergence

rate. At 68% accuracy of error-potential detection (performance of the baseline algorithm),

the number of episodes decreases to 129.4 achieving a training acceleration of 1.22x. For

80% decoding accuracy (similar to the proposed algorithm), the number of episodes re-

duces further to 102.2 episodes, with an acceleration of approximately 1.8x. Similarly, the

sensitivity analysis on Q-learning with epsilon-greedy is presented in Fig. 6.25.

6.6 Transfer Learning of Error-Potentials

The algorithms for detection of error-potentials (discussed in section 6.4) are trained in a

supervised manner. Specifically, labeled examples for each state-action pair are obtained

in the format of the presence of error-potentials (if the action is sub-optimal) or absence

of error-potentials (if the action is optimal). However, such information (i.e., whether an

action is optimal or sub-optimal in the given state) is not available for the novel or un-

seen environments. This poses severe practicality issues with the applicability of the pro-

posed framework for novel environments, since labeled examples for error-potentials are

not available to train the detection algorithms. Hence, for both practicality and efficiency

purposes, it is desirable to explore if ErrP detection can be learned in one setting and the

learning is transferred across game environments.

We adopt a solution approach of transfer learning, where we obtain the samples from
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known (or seen) environments to train the classification algorithms, and use the trained

classier as-is on the new (or unseen) environments without requiring re-learning of the

ErrP. Particularly in our work, we assume that we know the optimal actions for the Wobble

and Catch game, and use the labels to train our ErrP classification algorithm. Now for a

novel or complex environment (e.g., Maze), we use the already trained classifier to infer the

presence or absence of error-potentials. This is notably different from previous approaches

[178, 48], where the labeled ErrPs are obtained in the same environment (where the RL

task is performed). For any new and unseen environment, it does not require the human

to go through the training phase again and assumes no prior knowledge about the optimal

state-action pairs of the environment.

We make the case for the generalizability of the ErrP waveforms owing to their univer-

sality across humans and other primates in section 6.3.1. We observe that the manifestation

of these potentials across these paradigms are found quite similar in terms of their general

shape, negative and positive peak latency, and frequency characteristics [158, 178]. This

prompts us to explore the consistency of the error-potentials across different environments

(i.e., games, in our case) within the observation ErrPs. In Fig. 6.10, we plot the grand

average waveforms across three environments (Maze, Catch, and Wobble), to visually val-

idate the consistency of potentials. We can see that the shape of negativity and the peak

latency is quite consistent across the three game environments. We show that by training

error-potentials on one game, we can cover the variability of error potentials in other games

as well which suggests that error-potentials are indeed generalizable across environments,

and can further be used to inform deep reinforcement learning algorithm in new and unseen

environments.

6.6.1 Evaluation

To evaluate the transfer learning (i.e., generalization capability) of error-potentials and the

decoding algorithm, we train on the samples collected from the Catch game and test on the

Maze game. As Catch is a simple game, we assume the optimal action for each state is
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pared with 10-fold cross validation performance
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already known (providing the labeled examples to train the ErrP decoder). Since informa-

tion about state-action optimality is given for the Catch game (can be assumed for simpler

game environments), and thus labeled examples are obtained for the Catch game to train

the ErrP decoder. However, the Maze game needed to be solved, hence, we do not make

any assumptions about the optimality of the actions. In Fig. 6.26, we compare the detection

accuracy of the baseline and proposed Trinity algorithm over the Maze game for 6 subjects.

For 10-fold cross-validation (i.e., train and test on Maze), the proposed algorithm performs

with an accuracy of 84.4% (± 5.91 %). The 10-fold cross-validation scheme serves as

an upper bound for the generalizability performance. When trained on samples from both

Wobble and Catch games, the proposed algorithm performs with an accuracy of 70.86% (±

10.65%), an improvement of 7.75% over the baseline algorithm. When trained individually

on Wobble and Catch game, the proposed algorithm performs with an average accuracy of

65.63% (± 8.41 %) and 67.9% (± 9.47 %) respectively. When trained on samples using

both Wobble and Catch game, the algorithm is able to capture the 84% variability in the

decoding of error-potentials for the Maze game.

We also present the generalizability performance over all combinations of the game

environments for the proposed algorithm in Fig. 6.27. It should be noted that a 10-fold

cross-validation scheme is used for the evaluation part with the same game environment

employed for training and testing (i.e., orange bars in Fig. 6.27), and serve as an upper

bound for the generalization performance. We can see from the figure that generalizability

performance increases when trained on samples from two games instead of on a single

game. For Maze, the decoding accuracy is 70.86% (± 10.65%) when trained on both

games, namely Wobble and Catch. The Maze performance drops to 67.90% (± 9.47%) and

65.63% (± 8.41%) when trained individually on the Catch and Wobble game. Similarly,

when tested on Catch, the decoding accuracy is 68.7% (± 9.55%) when trained on both

Maze and Wobble game. Compared across three games, Maze has the highest accuracy

pertaining to its intuitive and user-friendly design and short duration experimental trials.
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Figure 6.29: ErrP decoding
accuracy: across Maze states

These experiments validate that the error-potentials can be learned in a generalizable

manner to avoid re-training of the human feedback (via EEG) decoder.

Performance across users

In this subsection, we analyze error-potential performance across human subjects. We

present the accuracy of ErrP detection individually for 6 subjects in Fig. 6.28. In this analy-

sis, the subjects are evaluated on samples from Maze games, when trained on samples from

both games Wobble/Catch (generalizability) and on Maze itself (10-fold cross-validation

scheme). Subject 01 and 04 have the highest 10-fold CV accuracy of above 90.1% and

90.9%, while Subject 02 has the lowest 10-fold CV accuracy of 75.2%. We obtain a 10.6%

standard deviation across six subjects. For generalizability performance (i.e. when the al-

gorithm is trained on samples from both Catch and Wobble game and tested on samples

from Maze game), subject 04 presents the highest accuracy of 84.0%, while subject 02

has the detection performance close to random, 54.9%. We obtained a standard deviation

of 5.91% for the generalizability performance across six subjects. The high variability in

the transfer learning performance could be due to factors including significant change of

electrode cap placements across sessions, affective and environmental state of the subject,

etc.
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Maze performance across states

We also analyze the average performance of 6 subjects across different states of the Maze

game, and present in Fig. 6.29. The performance across the states is quite consistent. It

should be noted that in one particular state (row: 8, col: 2), we have two optimal actions

(moving UP, and RIGHT), and hence the ErrP detection accuracy is very close to random.

On averaging accuracy numbers over all possible states in the Maze game, we receive an

aggregate accuracy of 78.91% (± 8.65).

Performance over importance of errors

In the maze game, there are two types of errors possible,

• Errors of commission: The agent makes an incorrect move to a new cell

• Errors of omission: The agent makes an incorrect move where it hits a wall, such

that the final position of the agent remains same.

We analyze the difference in detection accuracy of error-potentials individually for errors

of commission and omission. For such analysis, we train our classification algorithm on

the samples obtained from the Wobble and Catch game, and use samples of Maze game for

evaluation purposes (Fig. 6.30). The average accuracy for all actions is 66.82% (± 6.89).

For commission errors, the average accuracy is 79.02% (±), while the omission errors have

accuracy of 55.74% (± 14.20).
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In the context of the Maze game, the commission errors adds two step lags (i.e., the

agent has to take two additional steps to finish the game), while the omission errors add

only one step lag (since the agent is in the same position). Hence, the commission errors

are more important than omission errors, which reflects accordingly in the ErrP detection

results.

Transfer learning over actions

We study the transfer learning (or generalizability) in the action space. Specifically, we

train our classification algorithms on the samples obtained from the Wobble game, and

compute the difference in accuracy on catch game for two cases - (a) when movement

actions are considered (Left/Right), and (b) when only no-movement (i.e., no-operation)

action was considered. Recall from the previous section that in the Wobble game, the

agent can take only left and right actions, while the agent in the Catch game can take three

different actions (moving to the left, moving to the right, or stay in the same grid). From

this analysis, we are particularly interested in studying if the error-potentials are transferred

from one set of actions to a different set of actions across environments. We present the

results of this analysis in Fig. 6.31. The aggregated accuracy for the Catch game (for all

actions) is 63.86% (± 9.34). The accuracy for movement actions (i.e. left, and right)

is 64.26% (± 13.62), while for non-movement actions (i.e., no-operation) is 54.56% (±

11.0). The significant accuracy difference in the two cases indicates that the movement to

non-movement actions are not easily transferable. We notice a similar trend in Fig. 6.31
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Figure 6.33: Functional architecture of combining human feedback with RL algo-
rithm through imperfect demonstrations

when the classification algorithm is trained on the Catch game, and tested on the Wobble

game.

We perform a similar analysis on the Maze game (trained on Wobble game) and divide

the two cases as (a) moving left or right, and (b) moving up or down. Since the classification

algorithm is trained on the samples obtained from the Wobble game (where the agent takes

left and right actions), we are interested in studying if the one set of movement directions

(i.e. left and right) are transferable to other set of movement directions (i.e., up and down).

The accuracy over all actions was obtained as 66.03% (± 7.44). For the horizontal actions

(i.e., left and right), and vertical actions (i.e., up and down) we received the accuracy of

65.6% (± 11.6), and 67.5% (± 9.9) respectively. We obtained similar results on flipping

the training and testing dataset (i.e., training on Maze game, and testing on Wobble game).

From the above analysis, we conclude that movements to non-movements are not easily

transferable, however, different movements are easily transferable.

6.7 Learning from Imperfect Demonstration1 for RL integration

Our collaborators proposed a practical approach to combine human feedback with RL al-

gorithms in an efficient manner, i.e. without querying every state-action pair for human

feedback. The proposed approach is derived from the principle of learning from imperfect

demonstrations, where a quality function (Q) is learned acting as the proxy for implicit hu-

man feedback. Specifically, prior to the training of the RL algorithm, the humans are shown
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the imperfect trajectories (i.e., the trajectory followed by the agent includes sub-optimal be-

havior) of an agent playing the game. These trajectories are designed with the help of an

expert human. Human subjects are asked to silently observe and assess the actions of the

agent in the shown imperfect trajectories, and their brainwaves are simultaneously recorded

to estimate error-potentials. With the estimated error-potentials, a quality function (Q) is

learned offline (and prior to the training of the RL algorithm). Further, based on the quality

function, an alternative reward function (r′) is learned, acting as a proxy for the human

feedback to augment the environmental rewards, during the training of the RL algorithm as

shown in Fig. 6.33.

Since the human feedback is queried on the state-action pairs encountered in the trajec-

tory, and prior to the RL algorithm training, the number of queries are significantly less as

compared to the full-access method.

The alternative reward function is learned using the maximum entropy policy learning

principles [310, 311]. In the maximal entropy learning principle, the goal is to maximize

the cumulative discounted sum of rewards and entropy, i.e.,

πentropy = argmaxπ ∑
t

γ
t [Rt +αH(π(. | st))] (6.20)

leading to the optimal policy (π∗) as follows [310],

π∗ (a | s) = exp((Q∗ (s,a)−V ∗ (s))/α) (6.21)

where Q ∗ (s,a) is the state-action value function of the optimal policy, and optimal state-

value function (V ∗ (s)) is given by,

V ∗ (s) = αlog∑
a

exp(Q∗ (s,a)/α) (6.22)

For the learned policy π, the Q function is trained by applying Maximum Likelihood (ML)

on positive state-actions pairs (πQ(a | s)) and negative state-action pairs (1 - πQ(a | s)).

Further, a baseline function t(s) is added, to stabilize the training of the Q function.
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Subject 01 02 03 04 05
Full access 1879.4 2072.1 2293.7 1975.4 2130.1

Imperfect demonstrations (20 trajectories) 505.7 394.7 587.1 681.4 361.3

Table 6.8: Comparing number of queries for the human feedback for integration
frameworks - full-access method, and method based on imperfect demonstrations

0 100 200 300 400
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

No ErrP
sub01
sub02
sub03
sub04
sub05

01 02 03 04 05
Subject

0

25

50

75

100

125

150

Co
m

pl
et

e 
Ep

iso
de

Figure 6.34: RL with proposed framework: learning with imperfect demonstrations
on 10 trajectories

6.7.1 Evaluation

For the proposed framework based on learning from imperfect demonstrations, the train-

ing performance is provided in Fig. 6.34 and 6.35, respectively for 10 and 20 trajectories

(shown to the user prior to the RL training). For 10 trajectories, it took 111.67 (± 37.86)

episodes to learn the optimal policy based on feedback from S01, achieving an acceler-

ation of 2.46x. Averaged over 5 subjects, the optimal policy was learned in 122.55 (±

9.35) episodes, with an average acceleration of 2.25x (± 0.167x). The acceleration fur-

ther boosted with 20 trajectories, converging in 81.17 (± 17.65) episodes, an acceleration

of 3.38x for S01 feedback. Averaged over the 5 subjects, the RL algorithm converged in

88.93 (± 7.50) episodes, with an average acceleration of 3.28x (± 0.43x). We also present

the number of queries required for the 20 trajectories in Table 6.8, and compare them with

the full-access method. Averaged over the 5 subjects, the number of queries made were

506.04 (± 118.88), approximately 75.56% less as compared to the full-access method.
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Figure 6.35: RL with proposed framework: learning with imperfect demonstrations
on 20 trajectories

6.8 Summary

We researched and developed a framework to tackle the slow convergence issue with RL

algorithms by introducing implicit human feedback in the loop obtained via EEG-based

error-potentials. We conducted IRB approved user trials where users observe an agent

learning to play the games and their ErrP signals are being monitored using an EEG head-

set. We then use the dataset to show that there is a strong inverse correlation between the

human observer’s ErrP signal and the correctness of the agent’s actions, thus validating the

candidacy of ErrP as a potential feedback signal for the reinforcement learning algorithms.

We present Trinity, an error-potential decoding algorithm leveraging multi-dimensional as-

pects of the EEG (namely, spatial, frequency, and time-domain) to increase the accuracy

of detecting ErrP. We then integrate the ErrP signals into the reward function of the RL

algorithm and study the acceleration achieved with respect to the algorithm’s convergence

time to a success rate of 1. We show that significant acceleration can be achieved by the

integration of human feedback with the default reward function that the game provides. We

study the transfer learning of error-potentials over environments, and actions, removing the

requirement of obtaining labeled training examples, and hence the system can be used for

unseen and novel environments. Further, an advanced approach is discussed to improve

the acceleration in convergence rate while reducing the number of queries made for the
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implicit feedback.

6.9 Appendix I: Experimental Protocol

In this section, we explain our experimental protocol collection of EEG data (specifically,

error-related potentials) of human subjectsin detail.

Material list

• EEG Acquisition Software (OpenBCI–GUI10 and OpenViBE11). Both softwares are

available to download for free.

• Hardware (OpenBCI Cyton Board)

• Electrode Cap (BIOPAC-CAP 100C), and 2 Ag-AgCl ear-clip electrodes

• 1 Computer System (We use Linux environment)

• Electrolyte Gel (BIOPAC Electro-Gel)

• Chest Strap Band and Plastic Syringe (without needle)

• Tissues

• Human Participants

Preparation [before the subject setup]

• Make sure the cap, ear electrodes and syringe is clean.

• Make sure that the transmitter (Tx) and receiver (Rx) of OpenBCI are kept at a mini-

mum distance from each other (ideally the Tx and Rx modules should be placed next

to each other)

• Setup the connections of the system.

10https://docs.openbci.com/docs/06Software/01-OpenBCISoftware/GUIDocs
11http://openvibe.inria.fr/

138



– Connect OpenBCI channels 1-16 to Electrode Cap channels.

* Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4, O1, and O2

– Connect Reference (or SRB2 pin) of OpenBCI with white ear electrode

– Connect BIAS pin of OpenBCI with blue ear electrode

• Design experimental paradigm such that

– The trials are short ( 100s). This allows subjects to remain focused during the

trial.

– One experiment should contain multiple trials, allowing to collect a large num-

ber of data samples.

– Add the 10 seconds delay in the script to allow them time to setup the screen.

Subject preparation

• Explain the experimental protocol to the subject, obtain and document the informed

consent of the research subjects. It is imperative to use the IRB approved consent

forms for explaining and obtaining the informed consent form.

• Ask the subject to play the game in manual mode. Further, show the demo of the

game to the subject as it will be seen by the subject during data collection. This

enables the subjects to get acquainted with the goals of the given game environment.

• Close lab doors and ask other lab members to remain silent and stationary during the

experiment. Any external noise and interferences should be minimized to the extent

possible.

• Select the correct cap size for the subject based on the scalp size and fit. The electrode

cap should be snug-fitting, although not extremely tight such that it is uncomfortable

for the subject.
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Figure 6.36: OpenViBE settings
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– We have a small and medium cap. We select the cap directly based on fitting.

• Instructions for the subject

– Restrict the head movements as much as possible.

– Be focused during the experiment and pay attention to the stimuli (i.e. actions

taken by the computer agent). Take longer breaks if feeling fatigued or drowsy.

• Mount the cap on the human participant

– Roughly check that the Fp1 and Fp2 locations lie directly above the eyebrows.

– Additionally, verify the placements of O1 and O2 electrodes.

– Use the syringe to insert a little gel inside the ear electrodes, and clip the white

electrode to the left earlobe and blue electrode to the right earlobe of the human

subject.

– Secure the cap with a chest strap.

• Apply abrasive electrode gel using syringe between electrode and scalp to minimize

the impedance.

– Make sure to put ‘enough gel’. Too much gel reduces the spatial locality of

the EEG, and too little of the gel would fail to maintain low-impedance contact

between the scalp and electrodes. If the gel is provided in excess, it tends to

flow out and spread to a larger area of the scalp, reducing the spatial resolution.

This results in averaged recording EEG activity over the neighboring locations

(neighboring locations of the particular electrode where the gel is in excess)

reducing the signal-to-noise ratio, as it will include EEG corresponding to more

unwanted activities.

• Make sure the OpenBCI transmitter (Tx) module is close to the receiver (Rx) module.

In OpenBCI, the Rx module is always attached to the PC. The reasoning behind the
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distance between Tx and Rx module is explained in detail in section 6.10. A USB

extending cable can be used to decrease the distance between Tx and Rx module.

• Use OpenBCI GUI to validate the connections of the EEG cap

– All electrodes must be around 10 uV in the rest state.

– Ask the subject to blink their eyes. Eye-blinks should be clearly visible on the

amplitude vs. time-domain EEG for Fp1 and Fp2 electrodes in the OpenBCI

GUI.

– Ask the subject to close her eyes for 3-4s, and a peak should be visible around

10Hz in the frequency spectrum. This validates the connections at O1 and O2

locations.

• Start OpenViBE acquisition server and OpenViBE designer for ErrP data collection

(Make sure the settings are as shown in Fig. 6.36).

• Connect and play to check the device drift. A drift of 1 correction per 8 seconds is

normal (i.e., one packet offset every 8 seconds). If the device drift is significantly

higher, check connections, the distance between Tx and Rx, and try to reset and re-

connect the device. Further, turn off any other environmental components operating

at 2.4 GHz spectrum (e.g., Microwave, other Bluetooth devices, etc.)

During the experiment

• In the OpenViBE designer, edit the filename for the raw data (“.csv” in our case) and

start the scenario. Visually check the signal appearance with the eye-blink test in the

OpenViBE signal visualization.

• Start the python script (agents/record EEGdata.py), and set up the screen (close all

other monitors and background applications to remove the distractions)
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Between the subject trials

• Disconnect OpenBCI every time the trial is finished, and re-connect before resuming

the next trial.

• Ask the subject to be in the rest state for 30 seconds.

• Re-connect OpenBCI and ensure to change raw data filename (“.csv” file) and start

recording data.

After the experiments

• Check the files are saved properly and move them to a secure location.

• Anonymize the recorded data and add all metadata and notes (e.g., variables in the

experiment)

• Ask the subject to fill any post-experimental survey, if there is any.

• Clean the equipment.

6.10 Appendix II: System-related Issues with Low-cost EEG-based BCIs

Event-Related Potentials (ERPs) are fluctuations or responses reflected in the EEG that are

both time- locked and phase- locked to the event. The amplitude of the scalp recorded

ERPs is low, making the single-trial estimation a very difficult task. Since the ERP signals

are time- and phase- locked to the stimulus, N number of signals can be averaged to boost

the SNR (rhythmic or quasi-rhythmic activity averages out, while time- and phase- locked

activity receives achieves additive effect). Specifically, if the signal power is P, and zero-

mean noise variance is σ2, the SNR of a single-trial ERP is,

SNRold =
P
σ2 SNRnew =

P.N
σ2 (6.23)

Where P is the signal power, and σ2 is the variance in noise. Such an approach is used in

the ERP detection algorithms to improve the classification accuracy [312]. For example,
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obtaining the prototype response in the baseline ErrP detection algorithm is based on the

same principle (as explained in Algorithm 3).

Since the signal detection pipeline for event-related potentials relies on the prototyping

(leveraging the precise time-locking), it could be highly sensitive to the jitter time (or ac-

quisition drift), i.e., the delay between the actual presentation of the stimulus to the user,

and the time instant where the stimulus is marked with the EEG signal. If the jitter is

constant, it would pose no harm to the signal processing pipeline, however, if the jitter is

variable it could have significant impacts on the detection accuracy.

Low-cost EEG-based BCIs, specifically, OpenBCI uses Bluetooth Low Energy (BLE)

to transmit the raw EEG signals from the OpenBCI board to the computer (or mobile)

device. In our experiments, we used 125Hz sampling rate over 16 channels. In practice,

2000 samples per second over BLE causes packet loss in case of increased distance b/w

Tx/Rx or due to channel interference issues. We performed an empirical study to conclude

that the packet drop rate indeed increases with the distance between Tx and Rx modules.

The packet drop rate is proportional to the distance. Further, [313] also concluded the

delayed arrival of packets, and the presence of jitter while recording data from OpenBCI.

OpenViBE acquisition server continuously monitors the incoming sample rate (between

comparing the number of samples arrived and the theoretical sample count based on the

device frequency). If the difference between the number of arrived packets and the ideal

count is significant, the OpenViBE acquisition server initiates a drift correction mecha-

nism by adding dummy packets. This equates to the tempering of data and has serious

implications on the synchronization offset between ERP signals and the stimulus mark-

ers. To quantitatively evaluate the impact of such added jitter, we performed a simulation

based analysis, where for some fixed jitter interval length jt , we generate a random offset

uniformly between [− jt/2,+ jt/2], and compare the accuracy by varying the jt . We per-

formed monte-carlo simulations for such analysis, and present result for an average on 10

runs in Fig. 6.37.
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Figure 6.37: Impact of jitter on ErrP detection accuracy

From the figure, we can see that a jitter of upto 20ms reduces the accuracy from 73.17%

to 70.8%, a 3.23% reduction in accuracy for 20ms jitter. Further, an 80ms of jitter reduces

the accuracy from 73.17% to 64.07%, a 12% reduction. For BLE based communication, a

20ms and 80 ms offset could be incurred by a mere dropping of 2.5 and 10 packets in one

second respectively. Since the packet drop rate was found to be proportional to the distance

between the Tx and Rx module of the OpenBCI board, they should be kept at a minimum

distance from each other while recording any ERP data.

6.11 Appendix III: Experimental Evidence for Error-Potentials

In this section, we first provide the visual evidence of the presence of error-potentials in

our experiments. In several works, the origin of the error-potentials is believed to be from

Anterior Cingulate Cortex (ACC), with the highest activity in fronto-central region (e.g.,

Cz, FCz, etc.) [178, 174, 176, 160, 314, 315]. Our hypothesis is that if the observed signal

(error-related potentials) is originated from the Anterior Cingulate Cortex (ACC), source

of error-related negativity (ERN) and error-positivity (Pe), it should arrive at the closest

electrode first (Cz). The order of arrival at different electrodes should follow the same
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order as per the distance from the source of the signals. In [316], sLORTEA method was

used to localize the source of the signals as shown in Fig. 6.38b. The identified source

location is marked in red color, and the EEG electrode pattern is overlayed on the brain

scan image.

We analyze the data recording of Maze for subject S07 (highest accuracy set) to provide

visual evidence of the presence of error-potentials in our experiments. From the particular

experiment, we filter all the brain potentials corresponding to the incorrect stimulus (i.e.,

when the agent took an incorrect action). We analyze the Error-Related Negativity (ERN)

peaks at different electrode locations in Fig. 6.38a. Here, 0 seconds represents the stimulus

marker. The ERN peak for Cz is recorded at a delay of 408ms. Electrodes located in the

fronto (Fpz, Fz)- and parietal (Pz)- region are distant from ACC (as compared to central

Cz). The ERN peak for fronto- and parietal- band is achieved at approximately 416 ms

with less intensity. Additionally, inion electrode positions (O1 and O2) are more distant

from the ACC as compared to the fronto-, central- or parietal- region. The ERN minima

recorded at ERN is further delayed (424ms, with very less amplitude strength) validates

our hypothesis. In summary, the above analysis provides preliminary evidence that the

signals are indeed generated from the ACC, by measuring the time instant and amplitude

intensity of ERN peaks recorded at different electrodes. Since the sampling frequency in

our experiments is 125 Hz, we achieve a granularity of 8ms (1/125 Hz) in the time-domain.

We plot the average waveforms for 16 channels for erroneous stimulus (i.e., presence of

error-potentials) and non-erroneous stimulus (i.e., absence of error-potentials) in Fig.6.39a

and Fig.6.40a. We apply Independent Component Analysis (ICA) to separate the averaged

waveforms into the individual components. For this analysis, we decompose the signals

into four additive subcomponents, and backtrack the individual components into their spa-

tial distribution using topography maps. For each ICA component, the contribution strength

from each electrode is computed to create the topographic map12.

12We use MultiVariate Pattern Analysis (MVPA) library in Python (http://www.pymvpa.org/) to gen-
erate the topographic maps
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(a) Arrival order of error-potentials on different EEG elec-
trodes (b) ErrP source localization

[316]

Figure 6.38: Evidence of error-potentials: computing the time instances of Error-
Related Negativity (ERN) peaks at different electrode locations

For error-potentials, the ICs and topographic maps are shown in Fig. 6.39b and Fig. 6.39c.

The ICA4 component (shown in green line in Fig. 6.39b) corresponds to the error-related

potential with peak ERN negativity at 400ms and maximal distribution in centro-region

(Cz and near electrodes). ICA3 (solid red) corresponds to the component related to the

visual stimulus change (since the screen content is also changing at the stimulation time),

with a peak around 320ms (≈ 80ms before the ERN peak), and maximal distribution at

inion electrodes (O1 and O2). The earlier peak for visual stimulus change is intuitive since

the stimulus change should be processed before the error- processing. ICA2 has maximal

activity at Fp1 and Fp2 electrodes, and corresponds to the eye-blinks.

We show the average waveforms for correct-stimulus (i.e., absence of error-potentials)

in Fig.6.40a. For non-error potentials, the ICs and topographic maps are shown in Fig. 6.40b

and Fig. 6.40c. A visual related IC (solid red) can be seen with maximal negativity peak at

≈ 320ms. The visual stimulus related IC is consistent across both error-related waveforms

and non-error waveforms. An eye-blink component can be seen (ICA3, solid blue line)

with the maximal activity distribution at Fp1 and Fp2 electrodes.
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Figure 6.39: Analysis of ErrP (when agent took incorrect action) signals [subject 07:
Maze game]
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Figure 6.40: Analysis of non-ErrP (when agent took correct action) signals [subject
07: Maze game]
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CHAPTER 7

CHALLENGES AND NEXT STEPS

In this thesis, we have investigated the interplay between ML algorithms and EEG-based

BCIs through the lens of end-user usability. Specifically, we studied the interplay on two

fronts, (a) using ML techniques to solve challenges in EEG processing, and (b) enabling

human-assisted ML with EEG-based human input. First, we studied how ML can be used

as a powerful tool to learn and characterize the brain activity of an individual to build

meaningful applications with it for day-to-day use cases. We identify the short battery life

problem with BCI wearables and perform an experimental analysis to find control knobs

to switch the BCI wearable in the low-power mode. We studied the modality choice for

the wake-up command design, and after careful consideration of practical benefits, select

eye-blinks as the wake-up command modality. We proposed Trance, a wake-up command

detection system to improve the battery life by 2.7 times, making the BCI wearables last

for day usage. We propose BLINK algorithm to detect eye-blinks in a completely auto-

matic and unsupervised manner with an accuracy rate of above 98%. Second, we propose

systems and algorithms to fundamentally improve the ML algorithms using EEG-based hu-

man input or implicit feedback. We propose Cerebro, capable of ranking consumer prod-

ucts according to the user preferences by relying solely on the user’s brainwaves. Then,

we propose a novel paradigm to allow humans to assist learning algorithms in an implicit

manner, accelerating the convergence rate of RL algorithms. For this research, we develop

system and experimental protocols to conduct human studies and propose an algorithm to

detect implicit human feedback reliably in the form of error-potentials. Further, we studied

integration techniques to accelerate RL algorithms, and few methodologies to improve the

practicality of the system.

In this section, we investigate issues or limitations with the presented contributions, and

present avenues and directions for future work.
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7.1 Unsupervised Detection of Eye-Blinks in EEG

We presented a fully automated and unsupervised eye-blink detection algorithm, BLINK

that self-learns user-specific brainwave profiles for eye-blinks. Following are the research

directions to address some known issues with the BLINK algorithm, and towards designing

a more robust algorithm.

7.1.1 Towards an online algorithm

BLINK algorithm is designed and presented as an offline algorithm. However, the BLINK

algorithm can be used as-is in an online fashion. Real-time eye-blink detection widens

the applicability of such an approach in the domain of BCI based communication, control,

neurogaming, etc., and real-time EEG data processing. By design, the BLINK algorithm

assumes the presence of a few (3+) similar eye-blinks in the EEG signal. Leveraging this

fact, the proposed approach can be used as-is in an online manner by applying BLINK

algorithm on a moving window with sufficient length (≥ 30 seconds)1.

We intend to extend this work by exploring the feasibility of optimizing this algorithm

to operate in an online, real-time manner without using the moving window approach with

repetitive computations. One of the directions to extend this approach is to dynamically

build the correlation matrix and improve cluster formation upon peak detection during the

continuous real-time monitoring of the EEG data. It is a challenging task to allow BLINK

algorithm to detect eye-blinks without compromising the performance instantly, and can be

studied in future work.

7.1.2 Other limitations of the BLINK algorithm

Despite the attractive performance score of BLINK algorithm, BLINK still fails to detect

∼50 eye-blink samples out of 2300 eye-blinks. We analyzed the undetected eye-blinks and

concluded that failure cases, although being quite low (<2%), are mostly caused by the

invalidity of the assumption of consistent eye-blink patterns within a subject. Occasionally,

1The average human eye-blink rate is 17 blinks/min in the rest condition [242]
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Figure 7.1: Failure cases of BLINK algorithm: (Left) abrupt eye-blink pattern not
detected by BLINK algorithm, (Right) the regular eye-blink pattern exhibited by the
user

an irregular eye-blink pattern was observed in the user data, which is quite dissimilar to

the regular eye-blink pattern exhibited by the user. Fig.7.1 shows the cleaned irregular eye-

blink pattern side by side with the regular eye-blink pattern. With the datasets collected

in this work (Table 4.1), we plan to statistically evaluate the assumption of consistency in

eye-blink patterns and improve the BLINK algorithm to consider such cases.

7.2 Lightweight EEG-based Wake-Up Command Design for BCI

We presented Trance, a user-friendly and robust wake-up command design and system for

BCI headsets that is computationally lightweight, allowing BCI headsets to operate in a

near-sleep mode but still reliably detect and interpret an EEG-based wake-up command

from the user. We discuss in this subsection a few issues pertaining to Trance that are

related, and can further improve the design

• STOP command: We only discussed the design of START command in our paper as

by definition BCI platform is already in the active state, and thus recognition of STOP

command need not be done necessarily under the constrained environment. The BCI

cap running in the active mode, can either locally detect the command or “mobile-

end” can perform the command detection with its massive computing capabilities

and power availability, and ask the BCI cap to switch to low-power mode.
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• Timeout: A timeout functionally is critical in systems using wake-up strategies as

the user might forget that she issued the command earlier. With the limited energy

availability at the BCI cap, the system should be smart to identify such cases and call

a timeout to save energy.

• Biofeedback: A mechanism is necessary to notify the users if the issued command

was correctly detected. In the event of successful detection of ‘START command at

the BCI cap, it will start talking to the mobile-end, which in turn can be leveraged to

provide the indication of an active state through vibrational notifications.

• Compromised Visual Acuity: Our framework was thoroughly tested on the healthy

subjects without any discrimination of subjects who wear contact lenses or glasses,

or visually impaired. Intuitively, subjects wearing glasses or lenses should not make

a difference for the purpose of blink detection, but it would be interesting to see the

implications of suffered vision on this framework, which we leave as future work.

• Reinforcement-based accuracy improvement: Once the user-issued command is

successfully detected and the user initiates the normal BCI communication, it in-

dicates the successful detection of the wake-up command. The Trance algorithm

design can be improved to leverage this information (successful and false positive

detection) to build an eye-blink fingerprint to further improve the accuracy rates.

7.2.1 Limitations of Trance

For the EEG-MB dataset, we analyzed the undetected wake-up commands, and concluded

that the central cause of the failure case is the inconsistency of the consecutive blink pat-

terns (as shown in Fig.7.2. We plan to (i) thoroughly evaluate such cases and improve

Trance to account for them, and (ii) take an extra step to design efficient experimentation

methodology to perform system testing in the wild, as a part of the future work. Moreover,

once the user-issued command is successfully detected and the user initiates the normal BCI
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Figure 7.2: Inconsistency of blink patterns

communication, it indicates the successful detection of the wake-up command. Trance al-

gorithm design can be improved to leverage this information (successful and false positive

detection) to build an eye-blink fingerprint to improve the recall rates.

7.3 Tracking User Preferences using Brainwaves

We presented a machine learning algorithm Cerebro, which can learn the specific nuances

of the user’s brainwaves for preferences to accurately rank the objects. The analysis pre-

sented in [154], and in the presented work, is over grand average ERP waveforms obtained

by averaging 50 waveforms. For the ERP analysis, it is a common practice to average mul-

tiple EEG waveforms to amplify the SNR, as the ERPs are phase-locked (synchronized)

to the stimulus presentation. However, the strategy of averaging multiple waveforms is

not practical from the usability standpoint, pertaining to the explicit requirements of pas-

sively watching the product multiple times. Such a system would be really inconvenient

and unhandy to the users and would not be able to scale in the consumer market.

We perform a preliminary analysis to observe the effect of reducing the number of

waveforms for an N200 feature based pairwise choice classification task (section 5.3.3,

[154]). Fig.7.3 shows the accuracy per number of waveforms averaged for classification.

We can see that by reducing the number of waveforms to half (i.e. 25), the accuracy drops

only 5.4% (insignificant). This result though establishes the promise, demands an in-depth

future work to move the needle close to the gold standard of one-waveform classification.

Further, this work can be extended in two main directions - (i) validating and eval-
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uating Cerebro over a large corpus of user preference EEG data, and (ii) observing the

performance of the algorithm in real-life conditions when the users are actually browsing

products on their mobile devices.

7.4 Human-Assisted Machine Learning

We presented an interesting solution paradigm that will allow humans to assist ML algo-

rithms (specifically, RL algorithms) without burdening human-in-the-loop through EEG-

based brain waves. Further directions to explore and advance the research in this domain

are:

• Scalability to complex games and robotic environments: The scope of our work is

limited to the visual-based RL problems with discrete state and action spaces. We

have considered discrete grid-based reasonably complex navigational games in our

work. Further studies have to be done to explore if such an approach could be ex-

tended to Atari and Robotic environments with very large state-space and continuous
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action-space. This demands conducting human experiments over off-the-shelf Atari-

games and real robotic environments and thus presents a multitude of system and

synchronization challenges.

• ErrP generalizability considerations: The demonstration of the generalizability of

error-potentials is also limited across the three reasonably complex environments

presented in this work. We have considered discrete grid-based reasonably com-

plex navigation games. The validation of the generalization to a variety of Atari and

Robotic environments is the subject of future work. It’d be intriguing to explore the

generalizability extent from simple to complex game environments, and the general-

ization capability of error-potentials between virtual and physical worlds. Further, an

in-depth exploration of generalization study would be useful to investigate if error-

potentials can be generalized over users, actions, etc.

• Multi-human ErrP: In the presented work, we have considered only single human

based error-potential feedback to accelerate the convergence of the RL algorithm.

Aggregating the individual ErrPs of multiple humans observing the same stimulation

could lead to more reliability in error-potential detection, and hence the accelera-

tion in convergence rate. Humans can have different physiological characteristics

and different experimental conditions, such as the observation position. Hence, the

reliability of ErrPs from different humans can vary significantly. As such, the ErrP

detection accuracy can be improved by a weighted sum of ErrP detection results from

multi-human EEG.

• Reward shaping considerations: We have considered two approaches to integrate the

error-potential based human feedback with RL algorithms. Within reward shaping,

we set a negative penalty as -0.75 on the detection of error-potentials. Could there

be another optimal combination of augmented feedback leading to more accelera-

tion which preserving the policy optimality? As part of the future work, non-trivial
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approaches to reward shaping, or policy shaping with stochasticity in error-potential

could be explored to improve the presented system.

• Hybrid fast learning with real-time human feedback: In the current scenario, we

perform the human experiments prior to the training of the RL agent. Error-potential

based human feedback is processed offline and stored in buckets, to be used during

the training of the RL algorithms. In an ideal system, the agent plays the game at

super-human speed (on GPUs), and in real-time presents the appropriate scenarios

to the human observer to obtain the most meaningful feedback for learning. There

remain several system-level frontiers to be solved, how to decouple the training and

the human experimentation in real time, how frequently human users must be shown

the recent trajectory of the agent, etc.

• Multi-modal feedback: In this work, we have considered only binary feedback (pres-

ence or absence) of error-potentials. The feedback can be made more information

rich by considering other evoked potentials as implicit input including mismatches

(N200), improbability (P300), semantic anomalies (N400), syntactic anomalies (P600),

frequency of stimulus (SSEP), emotions, preferences (N200, ESRP), etc.
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[266] A. P. Braga and A. F. Araújo, “A topological reinforcement learning agent for nav-
igation,” Neural Computing & Applications, vol. 12, no. 3-4, pp. 220–236, 2003.

[267] B. Bischoff, D. Nguyen-Tuong, I. Lee, F. Streichert, A. Knoll, et al., “Hierarchical
reinforcement learning for robot navigation,” in Proceedings of the European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2013), 2013.

[268] G. tech robotarium lab., “Http://www.news.gatech.edu/features/robotarium-robotics-
lab-accessible-all.,”

[269] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D.
Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in
deep reinforcement learning,” arXiv preprint arXiv:1710.02298, 2017.

[270] A. Irpan, Deep reinforcement learning doesn’t work yet, https://www.alexirpan.
com/2018/02/14/rl-hard.html, 2018.

[271] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse curriculum
generation for reinforcement learning,” arXiv preprint arXiv:1707.05300, 2017.

[272] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K.
Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” arXiv
preprint arXiv:1611.05397, 2016.

[273] M. Gimelfarb, S. Sanner, and C.-G. Lee, “Reinforcement learning with multiple ex-
perts: A bayesian model combination approach,” Advances in Neural Information
Processing Systems, pp. 9528–9538, 2018.

[274] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey
of learning methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35,
2017.

179

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html


[275] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.,”
Icml, vol. 1, p. 2, 2000.

[276] W. B. Knox and P. Stone, “Augmenting reinforcement learning with human feed-
back,” ICML 2011 Workshop on New Developments in Imitation Learning (July
2011), vol. 855, p. 3, 2011.

[277] M. K. Scheffers, M. G. Coles, P. Bernstein, W. J. Gehring, and E. Donchin, “Event-
related brain potentials and error-related processing: An analysis of incorrect re-
sponses to go and no-go stimuli,” Psychophysiology, vol. 33, no. 1, pp. 42–53,
1996.

[278] G. Hajcak and D. Foti, “Errors are aversive: Defensive motivation and the error-
related negativity,” Psychological science, vol. 19, no. 2, pp. 103–108, 2008.

[279] W. H. Miltner, U. Lemke, T. Weiss, C. Holroyd, M. K. Scheffers, and M. G. Coles,
“Implementation of error-processing in the human anterior cingulate cortex: A
source analysis of the magnetic equivalent of the error-related negativity,” Biologi-
cal psychology, vol. 64, no. 1-2, pp. 157–166, 2003.

[280] G. Hajcak, J. S. Moser, N. Yeung, and R. F. Simons, “On the ern and the signifi-
cance of errors,” Psychophysiology, vol. 42, no. 2, pp. 151–160, 2005.

[281] K.-R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio, and B. Blankertz,
“Machine learning for real-time single-trial eeg-analysis: From brain–computer in-
terfacing to mental state monitoring,” Journal of neuroscience methods, vol. 167,
no. 1, pp. 82–90, 2008.

[282] A. Buttfield, P. W. Ferrez, and J. R. Millan, “Towards a robust bci: Error potentials
and online learning,” IEEE Transactions on Neural Systems and Rehabilitation En-
gineering, vol. 14, no. 2, pp. 164–168, 2006.

[283] R. Chavarriaga, P. W. Ferrez, and J. d. R. Millán, “To err is human: Learning from
error potentials in brain-computer interfaces,” pp. 777–782, 2008.

[284] M. G. Coles, M. K. Scheffers, and C. B. Holroyd, “Why is there an ern/ne on correct
trials? response representations, stimulus-related components, and the theory of
error-processing,” Biological psychology, vol. 56, no. 3, pp. 173–189, 2001.

[285] S. Nieuwenhuis, K. R. Ridderinkhof, J. Blom, G. P. Band, and A. Kok, “Error-
related brain potentials are differentially related to awareness of response errors:
Evidence from an antisaccade task,” Psychophysiology, vol. 38, no. 5, pp. 752–
760, 2001.

[286] W. Gehring, M. Coles, D. Meyer, and E. Donchin, “A brain potential manifesta-
tion of error-related processing [supplement],” Electroencephalography and clini-
cal neurophysiology. Supplement, vol. 44, pp. 261–72, Feb. 1995.

180



[287] M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke, “Effects of crossmodal
divided attention on late erp components. ii. error processing in choice reaction
tasks.,” Electroencephalography and clinical neurophysiology, vol. 78 6, pp. 447–
55, 1991.

[288] M. Falkenstein, J. Hoormann, S. Christ, and J. Hohnsbein, “Erp components on
reaction errors and their functional significance: A tutorial,” Biological Psychology,
vol. 51, pp. 87–107, Feb. 2000.

[289] W. H. R. Miltner, C. H. Braun, and M. G. H. Coles, “Event-related brain po-
tentials following incorrect feedback in a time-estimation task: Evidence for a
“generic” neural system for error detection,” J. Cognitive Neuroscience, vol. 9,
no. 6, 788–798, Nov. 1997.

[290] L. Osterhout, M. D. Allen, J. Mclaughlin, and K. Inoue, “Brain potentials elicited
by prose-embedded linguistic anomalies,” Memory & Cognition, vol. 30, no. 8,
pp. 1304–1312, Dec. 2002.

[291] M. J. Maguire, G. Magnon, D. A. Ogiela, R. Egbert, and L. Sides, “The N300
ERP component reveals developmental changes in object and action identification,”
Developmental Cognitive Neuroscience, vol. 5, pp. 1–9, 2013.

[292] H. S. Squires NK Squires KC, “Two varieties of long-latency positive waves evoked
by unpredictable auditory stimuli in man,” Electroencephalogr Clin Neurophysiol,
1975.

[293] J. R. Folstein and C. Van Petten, “Influence of cognitive control and mismatch on
the n2 component of the erp: A review,” Psychophysiology, 2008.

[294] C. B. Holroyd and M. G. H. Coles, “The neural basis of human error processing:
Reinforcement learning, dopamine, and the error-related negativity.,” Psychologi-
cal review, vol. 109 4, pp. 679–709, 2002.

[295] H. Niki and M. Watanabe, “Prefrontal and cingulate activity during timing behavior
in the monkey,” Brain research, vol. 171, pp. 213–24, Sep. 1979.

[296] H Gemba, K Sasaki, and V. Brooks, “
error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during
motor learning,” Neuroscience letters, vol. 70, pp. 223–7, Nov. 1986.

[297] A. Barachant and M. Congedo, “A plug&play p300 bci using information geome-
try,” arXiv preprint arXiv:1409.0107, 2014.

[298] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “Xdawn algorithm to enhance
evoked potentials: Application to brain–computer interface,” IEEE Transactions on
Biomedical Engineering, vol. 56, no. 8, pp. 2035–2043, 2009.

181



[299] A. Barachant and S. Bonnet, “Channel selection procedure using riemannian dis-
tance for bci applications,” 2011 5th International IEEE/EMBS Conference on Neu-
ral Engineering, pp. 348–351, 2011.

[300] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classification of covariance
matrices using a riemannian-based kernel for bci applications,” Neurocomputing,
vol. 112, pp. 172–178, 2013.

[301] C.-P. Lee and C.-J. Lin, “A study on l2-loss (squared hinge-loss) multiclass svm,”
Neural computation, vol. 25, no. 5, pp. 1302–1323, 2013.

[302] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Pro-
ceedings of COMPSTAT’2010, pp. 177–186, 2010.

[303] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from deci-
sion trees and naive bayesian classifiers,” Icml, vol. 1, pp. 609–616, 2001.

[304] B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multiclass
probability estimates,” Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 694–699, 2002.

[305] D. B. Percival, A. T. Walden, et al., Spectral analysis for physical applications.
cambridge university press, 1993.

[306] J. Platt et al., “Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods,” Advances in large margin classifiers, vol. 10,
no. 3, pp. 61–74, 1999.

[307] D. Slepian, “Prolate spheroidal wave functions, fourier analysis, and uncertainty—v:
The discrete case,” Bell System Technical Journal, vol. 57, no. 5, pp. 1371–1430,
1978.

[308] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transfor-
mations: Theory and application to reward shaping,” ICML, vol. 99, pp. 278–287,
1999.

[309] K. Azizzadenesheli, E. Brunskill, and A. Anandkumar, “Efficient exploration through
bayesian deep q-networks,” 2018 Information Theory and Applications Workshop
(ITA), pp. 1–9, 2018.

[310] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle of maxi-
mum causal entropy,” Ph.D. dissertation, figshare, 2010.

[311] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep
energy-based policies,” Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 1352–1361, 2017.

182



[312] D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw,
“Toward enhanced p300 speller performance,” Journal of neuroscience methods,
vol. 167, no. 1, pp. 15–21, 2008.

[313] J. Frey, “Comparison of an open-hardware electroencephalography amplifier with
medical grade device in brain-computer interface applications,” arXiv preprint
arXiv:1606.02438, 2016.

[314] H. Takahashi, T. Yoshikawa, and T. Furuhashi, “Reliability-based automatic repeat
request with error potential-based error correction for improving p300 speller per-
formance,” International Conference on Neural Information Processing, pp. 50–
57, 2010.

[315] A. Kreilinger, C. Neuper, G. Pfurtscheller, and G. R. Müller-Putz, “Implementa-
tion of error detection into the graz-brain-computer interface, the interaction er-
ror potential,” European Conference for the Advancement of Assistive Technology,
pp. 195–199, 2009.

[316] M. J. Herrmann, J. Römmler, A.-C. Ehlis, A. Heidrich, and A. J. Fallgatter, “Source
localization (loreta) of the error-related-negativity (ern/ne) and positivity (pe),”
Cognitive brain research, vol. 20, no. 2, pp. 294–299, 2004.

183


	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	BCI Research Landscape
	Research Contributions
	Thesis Statement
	Thesis Organization

	Literature Survey
	EEG-based Eye-blink Detection Algorithms
	Blink component removal methods
	Blink identification methods

	Eye-blinks as an Input Modality
	Detection of EEG-based Implicit User Preferences
	Detection of Error-related Potentials

	Unsupervised Detection of Eye-Blinks in EEG
	The BLINK Detection Algorithm
	Assumptions
	BLINK algorithm

	Evaluation
	Experimental protocol and EEG dataset description
	BLINK algorithm performance
	Comparison of BLINK performance with related work

	Summary

	Lightweight EEG-based Wake-Up Command Design for BCI
	Motivation
	Rationale for Using Eye-blinks
	Comparison with user-thought based commands

	Trance: Wake-up Command and Algorithm
	Learnings from natural eye-blink patterns
	Wake-Up command design rationale

	Trance Algorithm: Wake-Up Command Detection
	Evaluation
	EEG-based user experiments
	User comfortability survey

	Results
	Trance algorithm performance
	System performance
	The study of usability
	Implications of the false positive rate

	Discussion
	Comparison with popular wake-up command systems
	Rationale for using OpenBCI as an experimental platform

	Scope and Limitations
	Summary
	Appendix: The Case for a Wake-up Command
	BCI platforms
	OpenBCI architecture
	Power analysis


	Tracking User Preferences using Brainwaves
	Background and Problem Definition
	User preferences

	Target Scenario and Problem Statement
	Feasibility of Object Ranking using EEG
	Dataset
	Feature design
	Establishing feasibility

	The Cerebro Solution
	Ranking algorithm
	Evaluation
	Determination of confidence in ranking
	System architecture

	Summary

	On Using Brainwaves as Implicit Human Feedback in Reinforcement Learning
	Background and Motivation
	A primer on RL algorithms
	Computer games and Atari benchmark
	Motivation
	A primer on error-related potentials

	System Overview and Data Collection
	Game environments
	System overview and equipment

	Benefits of ErrP based Implicit Feedback
	Qualitative benefits of obtaining intrinsic feedback via error-potentials
	Motivational study for using error-potentials over manual labeling

	Detection and Study of Error-Potentials
	Baseline algorithm for detection of error-potentials
	Trinity algorithm
	Evaluation
	An in-depth study of error-potentials

	Integrating RL algorithms with ErrP based Feedback
	Reward Shaping
	Evaluation
	Sensitivity analysis

	Transfer Learning of Error-Potentials
	Evaluation

	Learning from Imperfect Demonstration for RL integration
	Evaluation

	Summary
	Appendix I: Experimental Protocol
	Appendix II: System-related Issues with Low-cost EEG-based BCIs
	Appendix III: Experimental Evidence for Error-Potentials

	Challenges and Next Steps
	Unsupervised Detection of Eye-Blinks in EEG
	Towards an online algorithm
	Other limitations of the BLINK algorithm

	Lightweight EEG-based Wake-Up Command Design for BCI
	Limitations of Trance

	Tracking User Preferences using Brainwaves
	Human-Assisted Machine Learning

	References

