On attractant scheduling in networks based on bacterial communication

Yunlong Gao, Sriram Lakshmanan, Raghupathy Sivakumar

Georgia Institute of Technology

Background

- Nanotechnology is the study of manipulating matter at the atomic and molecular scales.
 - > nanomachine performs very simple tasks
 - ➢Nanonetwork expands capabilities of single nanomachines.
 - Several potential applications

Motivation

Traditional communication technologies are not directly applicable in nanonetworks

Common natural phenomenon of molecular communication networks with multiple Transmitter-Receiver (T-R) pairs

Limited number of attractants for bacteria

Network Architecture

Transmitter
Receiver
Information Carrier
Message
Medium

Bacterial Communication

Chemotaxis

eorgialms

G

Attractant PropertiesCommunication Process

Problem Description

DTotal system delay with multiple T-R pairs:

$$D = \sum_{i=0}^{n} t_i(x_{T_i}, x_{R_i}, y_{T_i}, y_{R_i}, m, N)$$

m: number of attractants

N: required number of packets *n*: number of receivers

Discussion of Two-Link Topology

■ For Case I and II, the delay for a single packet is: $D = T_p(d_1) + T_p(d_2) + 2T_c$ ■ Empirical equation for $T_p(d)$ is: $T_p(d) = 1.82d^2 + 4.49d + 0.17$

□ The Packet Loss is 0.

□ For case III, assume :

$$P \propto U(d) = \frac{1}{1000} \frac{Q}{4D\pi d}$$

Therefore, the system delay is:

$$D = \max_{i} \{T_{p}(d_{i})\} + \frac{T_{c}}{P_{1}} + \frac{T_{c}}{P_{2}}, i = 1, 2$$

where $P_1 = \frac{d_2^2}{d_1^2 + d_2^2}$, $P_2 = \frac{d_1^2}{d_1^2 + d_2^2}$.

□ The packet loss is:

□ For case IV, modeling the two states as follows:

- Running: move with constant velocity and drift with the angular derivation of 1.12 rad.
- > Tumbling: stop and change its direction:

$$\theta_{t+1} = \theta_t + \gamma$$

where the p.d.f. of γ is subject to:

$$f(\gamma) = \begin{cases} \frac{1}{4} \cos \frac{\gamma}{2}, & |\gamma| \le \pi\\ 0, & |\gamma| > \pi \end{cases}$$

Exponential Distribution

D For case IV, $D = T_p(d) + 4T_c$, and $L = \frac{1}{2}$.

Network with Same-Distance Receivers

One transmitter transmitting data to different receivers with same the distance:

 $\Box D = m \cdot T_p(d) + \sum_{i=1}^m m_i^2 \cdot T_c$

Tradeoff between the propagation delay and the fixed delay.

Insight 1: allocating the attractants equally among the receivers.

Simulation Result

Optimal Number

Network with Different-Distance Receivers

□ One transmitter transmitting data to receivers with different distances: D = T(Propogation) + T(Fixed) $T(Fixed) = \sum_{i=1}^{m} m_i^2 \cdot T_c$

Network with Different-Distance Receivers

Insight 2: Partitioning the n links into m groups after rearranging the receivers in the decreasing order of distances

I.	Two-tier Comparison Algorithm
1:	Initiate D=0, $D_{sys} = [];$
2:	while $m \le 12$
3:	do{
4:	if $m \le n$
5:	$D_{sys}(m)$ = the minimum system delay for each partition under the constraints of m;
6:	else break;
7:	end if
8:	m++
9:	}
10:	$\hat{D} = \min\{D_{sys}(m)\}$

Conclusion Remarks

Network Delay and Packet Loss for two-link topology

- Modeling of the movement pattern of E. coli under no concentration gradient
- □Insights for attractant scheduling
- □ Extent to scheduling with multiple T-R pairs

Questions?

Thank you for listening!

Yunlong Gao Shanghai Jiao Tong University dg.gaoyunlong@gmail.com

