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Abstract The focus of this work is to study the efficacy

of TCP’s flow control algorithm on mobile devices. Spe-

cifically, we identify the design limitations of the algorithm

when operating in environments, such as smartphones and

tablets, where flow control assumes greater importance

because of device resource limitations. We then propose an

adaptive flow control (AFC) algorithm for TCP that relies

not just on the available buffer space but also on the

application read-rate at the receiver. We show, using NS2

simulations, that AFC can provide considerable perfor-

mance benefits over classical TCP flow control.

Keywords TCP � Flow control � Smartphones � Tablets

1 Introduction

The flow control mechanism in classical TCP is simple.

The receiver piggybacks on every ACK the available space

in the receive buffer, and the sender never allows the

number of outstanding packets to grow beyond the avail-

able buffer space. While the conservative strategy ensures

that there is no overflow of data at the receive buffer, it

does not directly track the application behavior at the

receiver. For most conventional network scenarios—both

wireline and wireless—this is not a serious concern as the

application read-rate is rarely the dominant bottleneck. The

limitations of a simplistic flow control strategy do not

adversely impact a TCP connection’s performance if flow

control does not kick in very often. However, with the

growing use of mobile platforms (phones and tablets) for

data application access, it is worthwhile studying TCP flow

control in more depth. The constrained processing resour-

ces on such platforms make it more probable that flow

control assumes a more significant role in the throughput

enjoyed by a connection.

Thus, the focus of this work is to study TCP’s flow

control algorithm, identify its limitations for mobile devi-

ces,1 and propose a new flow control algorithm for such

platforms.. In this context, using a Samsung Galaxy S 4G

phone on the T-mobile data network and Samsung Galaxy

Tab 10.1 as representative mobile devices, we first show

that the available processing power for a given TCP con-

nection can fluctuate drastically even for simple user

workloads, and such fluctuations invariably lead to the flow

control algorithm dominating transmission decisions at the

sender.

We then explore how a TCP connection in a flow control

dominated regime performs using several example sce-

narios. We observe that the throughput performance of

such a connection can be as low as 20 % of the expected

throughput. We identify a variety of reasons for the per-

formance degradation that are directly attributable to the

flow control algorithm employed in classical TCP. To

better ground our observations we also perform a control

theoretic analysis of the TCP flow control algorithm and

show that it reduces to an integral controller, which in turn

has a non decaying oscillation function with an amplitude

that is proportional to both the peak application read-rate

and the fluctuation frequency of the read-rate.
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restrict the focus of this paper to only mobile phones and tablets.
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We therein motivate a more sophisticated flow control

algorithm that not only relies on the available buffer space,

but also explicitly accounts for the application read-rate in

its decisions. We propose such an algorithm called adap-

tive flow control (AFC) for TCP. Besides explicitly track-

ing the application read-rate, AFC also has a set of key

design elements that are targeted toward optimizing per-

formance for connections operating in a flow control

dominated regime. We propose AFC as a TCP option so

that network stacks with AFC enabled are still backward

compatible to communicate with non AFC-enabled stacks.

We evaluate AFC using NS2 based simulations, and show

that AFC delivers considerable performance improvements

over classical TCP in flow control dominated regimes,

exhibits TCP friendliness, and is robust to a wide variety of

network and application characteristics.

The rest of the paper is organized as follows: In Sect. 2

we discuss the different limitations of flow control in

classical TCP and also show why a simple buffer provi-

sioning solution is not desirable. In Sect. 3 we perform a

control theoretic analysis of TCP and motivate the core

design rationale for AFC. In Sect. 4 we present the solution

details for AFC and in Sect. 5 we evaluate the performance

of AFC. Finally, in Sect. 7 we describe related work and

conclude in Sect. 8.

2 Background and motivation

2.1 Resource constraints on mobile devices

Even though smartphones and tablets have been growing in

performance since their inception, these devices have not

scaled up to the same performance as desktop and laptop

computers. This is mainly because smartphones and tablets

have to offer portability as the primary feature. Excess

compute power comes at the cost of size, weight and bat-

tery life. To further motivate this gap in compute power on

mobile devices and computers, we run a JavaScript

benchmark, Octane [1], on the following devices:

• Laptop1: Lenovo Thinkpad X220 running Ubuntu

12.04 with 2.9 GHz Intel I7 processor and 4 GB RAM

• Laptop2: Apple MacBook Air running OS 10 with

1.3 GHz Haswell I5 processor and 8GB RAM

• Smartphone1: Samsung Galaxy S4 running Android

4.2.2 with 1.9 GHz quad-core Krait processor and

2 GB RAM

• Smartphone2: iPhone 5 running iOS 7 with dual-core

1.3 GHz Swift processor and 1GB RAM

• Tablet: Samsung Galaxy Tab 10 with dual-core 1 GHz

Cortex-A9 processor and 1GB RAM

Octane is Google’s benchmark suite to measure the

performance of browser’s JavaScript engine over 13 tests.

The tests create representative workloads for the browser,

such as regular expression matching, function calls, poly-

morphism, object creation/deletion, pdf reading, floating

point math, etc. The test suite computes a score for each of

the 13 tests and a combined score. A high score means high

performance. Figure 1 shows Octane results for the five

devices. We observe that the performance on laptop is an

order of magnitude better than that on smartphones and

tablets. It is particularly interesting to note that Apple

MacBook Air with 1.3 GHz processor performs 3� better

than iPhone 5 with a similar processor speed and 4� better

than Samsung Galaxy S4 which has a ‘faster’ processor.

These results show that even with significant technical

advances in compute power, smartphones and tablets do

not perform same as traditional desktops and laptops.

2.2 TCP flow control basics

TCP’s flow control algorithm provides the receiver with

the ability to control the rate at which the sender transmits

[2]. Thus, if the data consumption rate at the receiver is

lower than the rate at which the sender is transmitting, the

receiver is able to influence the sending rate down to an

appropriate level. While we discuss some variants later in

the paper, the basic strategy employed in TCP is for the

receiver to advertise to the sender, using the rwnd field in

the TCP ACK, the available space in the buffer in relation

to the highest in-sequence sequence number received. The

sender will transmit new segments only if the highest

unacknowledged sequence number it has transmitted is

smaller than the sum of the lowest unacknowledged
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smartphones and tablets

2064 Wireless Netw (2014) 20:2063–2080

123



sequence number and the minðrwnd; cwndÞ, where cwnd is

the congestion window maintained by the sender.

Thus, if the available network rate is the bottleneck,

cwnd is likely to be smaller than the rwnd and flow control

does not influence the data rate of the TCP connection. On

the other hand, if the rate at which data is consumed by the

receiving application is lower than the network rate, the

receive buffer occupancy will increase and this in turn will

result in lower rwnd values advertised by the receiver. An

extreme scenario is when the receive buffer is full and the

receiver advertises an rwnd of zero. Upon receipt of a such

a zero window advertisement, the sender freezes its

transmission completely and awaits an explicit open win-

dow advertisement from the receiver. Eventually, when one

MSS worth of space opens up in the receive buffer, the

receiver sends an open window by advertising a non-zero

rwnd value. The sender also independently sends periodic

one-octet probes when it is in the frozen zero window state

hoping to elicit an open window from the receiver. This

handles any reliability issues associated with open window

losses.

Thus, some of the highlights of the flow control algo-

rithm are as follows:

• Buffer occupancy: TCP’s flow control is heavily buffer

dependent. The sender will never allow the number of

unacknowledged packets to grow larger than the

receiver’s buffer size. This property holds independent

of whether such outstanding packets have in fact been

drained out of the receive buffer as long as the

acknowledgements for those packets have not reached

the sender.

• Application read rate: The buffer occupancy in turn is

heavily influenced by the application read rate at the

receiver. The TCP receive buffer has no other influ-

encers other than the input rate and the drain rate, as we

discuss later in the section.

• Feedback latency: Since the sender explicitly relies on

feedback from the receiver to adjust its notion of the

receive buffer occupancy, the feedback latency for the

flow control process is directly influenced by the round-

trip time for the connection.

2.3 Problems with TCP flow control on mobile devices

2.3.1 Flow control bottlenecks occur more often

Mobile devices such as smartphones and tablets, in spite of

the advances made in their hardware capabilities, continue

to be resource limited compared to traditional PCs and

laptops. Such limitations span over the processing capa-

bilities, the sizes of the different tiers of storage, and other

dimensions of computing. There are a wide variety of

reasons for such limitations ranging from the requirement

for low power operations, form factor constraints and cost.

Fig. 2(a)–(c) present comparative CPU allocation results

for an FTP application running on a laptop (Dell Inspiron

1,525 with Ubuntu 10.10), a mobile phone (Samsung

Galaxy S 4G with Android OS) and a tablet (Samsung

Galaxy Tab 10.1 with Android OS) respectively. In all

three cases, a large file (� 2 GB) is downloaded over WiFi

from an Internet server down to the client. To ensure that

network is not the bottleneck, we choose high capacity

channels supported by each device, i.e. 2.4 GHz 802.11 g

channel on smartphone and 5 GHz 802.11a channel for

tablet. We run the experiment on the laptop with both

channel settings, but only present the 2.4 GHz result here

for brevity. As each file download progresses, three

workloads; email, web browsing and progressive video

download—are introduced. The impact on the CPU allo-

cation for the FTP process is measured using the top utility.

We observe that on the laptop the FTP client is rela-

tively unaffected by the background processes and remains

at around 5 % CPU allocation. However, for the FTP client

on the mobile phone, the CPU occupancy fluctuates

between 60 and 0 % during the download. The perfor-

mance on tablet is closer to the mobile phone, the CPU

occupancy fluctuates between 20 and 5 %. It is interesting

to note that the tablet has a dual core processor but still the

FTP application and the background workloads shared the

same core leading to the observed fluctuations.

Investigating the individual FTP connections further, we

observe that the instantaneous throughput degrades from 10

to 50 % on both the mobile devices in the presence of

background workload while no such degradation is

observed on the laptop. The individual results are shown in

Fig. 3(a)–(c). In addition to this, there are no zero window

events on the laptop and tablet but 5 zero window events

are observed on the mobile. Note that the overall

throughput on tablet is higher due to the higher capacity of

the 802.11a channel. The throughput on laptop on 802.11a

channel (not shown here) is also comparable.

The above result highlights the vulnerability of TCP

connections on mobile platforms to fluctuations in pro-

cessor allocations. These fluctuations in turn impact the

degree to which flow control influences the performance of

the connections. We study this impact next.

2.3.2 TCP flow control is inefficient

As discussed earlier, fluctuations in processing power

allocated to an application directly impact the rate at which

the application interacts with TCP, i.e. the rate at which it

reads from the receive buffer. While TCP flow control is

expected to converge to a throughput of min(network rate,

application read rate), this turns out to be true only when
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both the network and application rates are steady. Fluctu-

ations in the application read rate make it difficult for TCP

to converge as expected.

To demonstrate this, we conduct simulations in NS2

with the following setup: (a) sender and receiver connected

over a direct link; (b) RTT of 530 ms; (c) network rate of

15 Mbps; (d) average application read rate of 4 Mbps, with

a fluctuation profile of h0; 6; 6i (period of 1 RTT); and

(e) receive buffer size equal to the perceived bandwidth

delay product (BDP) (min(network rate, average applica-

tion rate) � RTT = 256 KB). While we pick these values

as an example (e.g. TCP connection over a WiFi last leg for

an inter-continental ‘USA/Aus’ communication), we gen-

eralize the values for the parameters in the setup to a

broader set both later in the section and in Sect. 5.

The observed throughput should ideally be equal to the

minimum of the network and application read rates, which

for the above setup is equal to 4 Mbps. However, the

aggregate throughput observed is only 1.45 Mbps, a deg-

radation of 63 % (Fig. 4). Note that given the high network

rate assumed, there are no congestion artefacts influencing

the performance, and hence this degradation is directly due

to the flow control behavior of TCP.

There are several microscopic reasons for why this

degradation in performance is attributable to the flow

control behavior of TCP. We discuss these next.
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Fig. 2 Comparison of CPU occupancy of FTP connection on laptop and mobile devices
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2.4 Design insights into TCP flow control limitations

We use three different scenarios where TCP flow control

leads to under-performance and therein highlight some of

the design issues. NS2 simulations are used to determine

TCP throughput for the different scenarios.2 In the different

scenarios, the round trip time for each connection is

530 ms. The read rate of the receiving application (AR)

fluctuates in a pattern of hAR1, AR2 i or h0, AR, ARi with

a time period of 1 RTT. If the pattern is hAR1, AR2i, the

application reads at AR1 for one RTT, then at AR2 for

another RTT and back to AR1. If its h0, AR, ARi, it does

not read any data for one RTT, then reads at the rate of AR

for two RTTs and again goes back to not reading, and so

on. In some scenarios, the network rate (NW) is also made

to fluctuate in a pattern of hNW1, NW2, NW2i with a time-

period of 1 RTT, i.e. the link bandwidth stays at NW1 for

one RTT, then at NW2 for two RTTs and back to NW1,

and so on. The scenarios we consider are the following.

2.4.1 Fluctuating application rate

The variations in application read rate affect the advertised

window of a TCP connection. As the window does not

converge to a steady value, the throughput of the receiving

application also fluctuates, worse than expected. Let’s con-

sider the setup: (a) RTT = 1 s; (b) Application profile: h2,

6i Mbps with the fluctuation interval = 1 RTT; (c) Average

Application Rate(AAR) = 4 Mbps; NW = 4 Mbps, i.e.

NW ¼ AAR; (d) B is set as min (NW, AAR) � RTT =

500 KB = 4 Mb (the ideal BDP).

The expected application throughput is min (NW,

AAR) = 4 Mbps, but the throughput observed in the

experiment is only 2.9 Mbps (� 3 Mbps), a 25 % degra-

dation from the expected value. The performance degra-

dation occurs because of TCP’s flow control behavior. In

steady state the sender tries to send at 4 Mbps. If the

application is reading at 2 Mbps, every half RTT 1 Mb of

data would be read by the application and 1 Mb stored in

the buffer. At the end of the first half RTT, the advertised

window is 3 Mb. At the end of 1 RTT, the application

would have read another 1 Mb and stored 1 Mb in the

buffer, the advertised window reduces to 2 Mb. In the next

half RTT, the application reads at the rate of 6 Mbps, it

reads the 2 Mb stored data in the buffer and also the 1 Mb

received from the sender, which is (3 Mb (advertised

window an RTT back) � 2 Mb (outstanding data)). The

latest advertised window is now 4 Mb. In the next half

RTT, the receiver receives another 1 Mb, which is 2 Mb

(the advertised window an RTT back)�1 Mb (traffic out-

standing in the last RTT). The receiving application reads

the entire received 1 Mb and advertises a window of 4 Mb.

The same sequence repeats from there on.

Thus, if the buffer is sized at the prescribed value of the

BDP (4 Mb), the connection rate is throttled down to

2 Mbps when the application read rate is 2 Mbps (flow

control due to application read rate limitation), but is

capped at 4 Mbps (flow control due to buffer size) even

when the application read rate grows to 6 Mbps. The

application thus reads 2 Mb in the first RTT and 4 Mb in

the second RTT, and the observed throughput at the

application is thus (2þ 4)/2 Mbps = 3 Mbps, while the

ideal expected value is 4 Mbps.

2.4.2 Zero windows

Extreme fluctuations in application read rate result in zero

window advertisements. In TCP’s flow control, every zero

window advertisement carries with it a deterministic

throughput penalty due to the time taken for the window to

be re-opened to pre-zero window levels. At any zero

window occurrence the sender waits for up to two round

trip times (RTTs) before it can send any substantial

amount of new data even if the application starts reading

immediately after the zero window was advertised; an RTT

to wait before sending a zero window probe and another

RTT to get a window larger than one to send more data.

Hence, a higher frequency of zero windows results in a

larger number of such under-utilizing periods. We use the

following parameters for the evaluation of this scenario:

(a) RTT = 530 ms; (b) Application profile of h0, 6, 6i
(AAR = 4 Mbps); (c) NW = 15 Mbps; and (d) B is set to

256 KB (perceived BDP).

The expected application throughput is min(NW,AAR) =

4 Mbps, but the throughput observed in NS2 is 1.45 Mbps

(a 63 % degradation), as shown in Fig. 4. While some of the

performance degradation is attributed to the reasons outlined

earlier, the higher severity of the degradation is due to the

zero window occurrences. When the application stops

reading, the receive-buffer fills up, resulting in zero windows

being sent and the sender being stalled. As soon as the

application starts reading, an open window is sent to the

sender and the sender sends one segment. The ACK for this

packet, which arrives an RTT later, then allows the sender to

send more packets. The receiver thus ends up reading

AAR � RTT bytes in 3 RTTs, whenever this happens. In

this particular example, 328 zero windows are observed in a

connection of 600s, thus 656 out of 1,132 RTTs are spent

idle. There are no congestion losses.

Thus, whenever the zero window occurrences in the

lifetime of a TCP connection increases, the performance

2 Basic flow control features such as finite-size receive buffer,

dynamic advertised window and zero window management were

added to the NS2 TCP implementation as NS2 does not support these

currently. A configurable application read rate parameter was also

added to simulate different application patterns.
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degradation (difference between the expected throughput

and the observed throughput) increases.

2.4.3 Fluctuating network rate

Apart from the application read rate, the network rate can

also fluctuate. This introduces new complications. Ideally

the TCP throughput can grow with increase in bandwidth,

but the limited buffer or zero window events may prevent the

sender from using higher congestion windows. The receiver

may never learn of this available bandwidth and be unable to

resize its buffer based on techniques like dynamic right

sizing [3], auto-tuning [4], etc. We use the following

parameters for this scenario: (a) RTT = 530 ms; (b) Appli-

cation profile: h0, 6, 6i Mbps with the fluctuation inter-

val = 1 RTT, AAR=4 Mbps; (c) Network profile: h2, 4,

4i Mbps with the fluctuation interval = 1 RTT; and (d) buffer

B set to 128/213 KB (perceived/ideal BDP).

In this scenario, the application is expected to enjoy a

throughput of min(average network rate, average applica-

tion rate), i.e. min (3.3, 4 Mbps). However, to achieve that

performance, the receiver needs to make sure that the receive

buffer is tuned to the network. Current buffer resizing solu-

tions [3–5] depend on data rate observed at the receiver to

calculate the optimal advertised window and buffer size. In

this scenario, zero windows occur while the application is not

reading, the sender stalls and while the sender is stalled, the

fact that the network rate has increased does not influence the

buffer calculation at the receiver. Thus the apparent network

rate Np� 2 Mbps is much lesser than the actual network rate

Na ¼ ð2þ 4þ 4Þ=3 ¼ 3:3 Mbps. The observed throughput

with a buffer size of 2 Mbps � 530 ms = 128 KB, is

0.67 Mbps, which is 20 % of the expected ideal. Even when

the buffer is scaled up to 213 KB, i.e. 3.3 Mbps � 530 ms,

the observed throughput is still only 1.45 Mbps.

Thus, when both the network rate and the application

rate fluctuate, the lower throughput rates experienced when

the application read rate is low can also impact the

achievable network throughput even when the application

read rate eventually increases.

2.5 Trivial buffer-based approach

We now briefly argue for why a buffer provisioning based

solution is not desirable to tackle the problems discussed

thus far. We consider three categories of scenarios, as

described in Table 1, in increasing order of complexity,

and discuss requirements in a pure buffer provisioning

solution. When necessary, we use NS2 based simulations to

verify our arguments.

• No application read-rate or network rate fluctuations:

This scenario is relatively well explored and the

recommended buffer allocation when the application

read-rate is greater than the network rate is as follows:

Breq ¼ NR� RTT ð1Þ

where, NR is the network rate and RTT is the round-trip

time of the connection. However, if the application

read-rate AR is less than the network rate and hence is

the bottleneck, the buffer required is only proportional

to the application read-rate. Hence, the buffer require-

ment under steady rates is as follows:

Breq ¼ minðNR;ARÞ � RTT ð2Þ

• Only application read-rate fluctuations: When the

application read-rate fluctuates, the consequent zero-

windows that occur will end up causing the connection

to under-utilize the achievable performance. Specifi-

cally, consider Scenario 2 from Table 1. Assuming a

buffer size based on Eq. (2) of 256 KB, the expected

throughput is 4 Mbps (minðNR;AARÞ), where AAR is

the average application rate. However, the observed

performance in the simulation study for the above

parameters is only 1.45 Mbps. This degradation is

directly explainable by the fact that two out of every

three RTTs the application stays idle. Note that the

performance observed is higher than the 1.33 Mbps

based on the above argument as zero windows are not

triggered precisely every third RTT. A straightforward

solution to the above problem is to provision the buffer

such that the application does not find the buffer to be

empty during the two RTTs recovering from a zero-

window. Hence, the buffer requirement can be arrived

at as follows:

Breq ¼ 3� AAR� RTT ð3Þ

We do verify in simulations that the above buffer

allocation increases the observed throughput to

3.86 Mbps. Now, the above scenario consisted of the

AAR being less than the NR. If on the other hand the

AAR is greater than the NR, the two idle RTTs can be

fully utilized as long as buffer provisioning sustains the

network rate. Hence, modifying Eq. (3), we get the

following:

Breq ¼ 3� minðAAR;NRÞ � RTT ð4Þ

• Both application read-rate and network rate fluctua-

tions: Finally, if both the network rate and application

read-rate fluctuate, the scenario differs even further.

Specifically, when both rates fluctuate, it is possible to
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create a pathological scenario wherein the connection

does not realize the higher network rate possible

because it is idle due to recovery from zero-windows

when the network rate is high. For example, consider

Scenario 5, where the application rate fluctuates as

ð0; 18; 18Þ (period of one RTT), and the network rate

fluctuates as ð3; 15; 15Þ (same period). In this scenario,

a zero window will be triggered in the first RTT, and

the connection will end up idling for the subsequent

two round-trip times and hence will not realize that a

rate as high as 15 Mbps was possible during that

period. In our simulation study of the above scenario,

we observe a throughput of 3 Mbps in contrast to the

expected throughput of 11 Mbps. This problem can be

averted only if the connection is prevented from idling

for all round-trip times. While provisioning the buffer

based on the average achievable network rate would

suffice, note that the connection has no way of

determining the achievable network rate as it will

never encounter the high rate periods. Instead, the only

deterministic approach to averting the problem is to

provision the buffer based on the average application

rate. Independent of whether the average application

rate is higher or lower than the average network rate,

this will suffice. Thus, in order to overcome the idle

periods when recovering from zero-windows, the buffer

required when both application read-rate and network

rate fluctuate is as follows:

Breq ¼ 3� AAR� RTT ð5Þ

Taking into account Eqs. (2)–(5), the buffer required in a

pure provisioning based strategy to cover all scenarios is

3� AAR� RTT . The problem with this strategy, though, is

that the AAR for a mobile platform can be arbitrarily high

when compared to the possible network rates. For example,

on a basic android phone, we were able to observe applica-

tion read-rates as high as 100 Mbps (under low CPU load

conditions). Hence, the buffer allocation required could be

orders of magnitude higher than what the connection

throughput will necessitate (e.g. a 2 Mbps network rate

scenario will ideally need only 125 KB of buffer allocation,

whereas the provisioning based strategy will necessitate

18.75 MB of buffer allocation). Also note that this allocation

is on a per connection basis. While requiring orders of

magnitude more memory allocation is bad in itself, the

demands become onerous when considering the memory

limitations of typical mobile devices. Furthermore, even if

such allocation can be achieved on the mobile devices,

the server (sender) side buffer will have to be of similar

proportions in order to support this strategy. Considering a

typical web server serving tens and thousands of connec-

tions, such onerous buffer allocation quickly becomes

untenable. Even assuming that memory is not an issue, the

AAR still has to be accurately tracked at the receiver in order

to achieve the provisioning. Hence, the question we ask

ourselves in the rest of the paper is that if the application

read-rate is already being monitored, could a better solution

be derived to achieve the expected performance?

3 Theoretical analysis

3.1 Control theoretic analysis of TCP flow control

TCP is a closed loop system. The sender sends data to the

receiver, then waits for feedback from the receiver to

determine how much data to send next. We model this

control system in the following analysis. For purposes of

this analysis we assume that the connection is purely flow

control restricted, and the connection rate is TCP, W is the

advertised window, AR is the rate at which the data is read

at the receiver, B0 is the receive buffer size and B is the

buffer occupancy at any given time. From this we can

represent W as follows:

Table 1 Network and

application scenarios
# Application

profile (Mbps)

Network profile

(Mbps)

Fluctuation

time

Round trip

time (ms)

Receive

buffer (KB)

Ideal

throughput

(Mbps)

1 h0,6,6i 2 per RTT 530 128 2

2 h0,6,6i 15 per RTT 530 256 4

3 h0,6,6i h2,4,4i per RTT 530 213 3.3

4 h0,6,6i h3,6,6i per RTT 530 256 4

5 h0,18,18i h3,15,15i per RTT 530 704 11
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W ¼B0 � B ð6Þ

The buffer is filled in at the rate of TCP and drained by the

application at AR. Thus,

dB=dt ¼ TCP� AR ð7Þ

Differentiating (6) and using (7), we get

W 0 ¼ dW=dt ¼ AR� TCP ð8Þ

Note that 0�B�B0 and 0�W �B0. Thus,

W ¼ min B0;

Z
W 0dt

� �
ð9Þ

If we consider TCP as a system variable, the target value of

TCP is AR and the error err in this variable is the deviation

in throughput:ðAR� TCPÞ, which is the rate at which W

grows:

W 0 ¼ðAR� TCPÞ ¼ err ð10Þ

As network is not the bottleneck, TCP is proportional to the

receive window W . Assuming that round trip time RTT

remains constant for a connection.

TCP ¼ a Wwherea ¼ 1=RTT ð11Þ

using ð9Þ; TCP ¼ a min B0;

Z
W 0 dt

� �
ð12Þ

using ð10Þ; TCP ¼ a min B0;

Z
err dt

� �
ð13Þ

For now, let’s assume B0 to be unbounded. Then TCP is

entirely dependent on the integral of the deviation from AR.

In control theory, such systems are termed IntegralðIÞ
systems [6]. In the following analysis, we look at some

characteristics of this system and its implication on TCP’s

performance.

Eliminating TCP from the Eqs. (10) and (11):

W 0 ¼ AR� aW ð14Þ

on reorganizing; W 0 þ aW ¼ AR ð15Þ

This is a linear first-order differential equation, where W

and AR are functions of time. Solving it by the method of

integrating factor, we have:

Integrating factor : eat

multiplying ð15Þwith integrating factor

eatW 0 þ aeatW ¼ eatAR ð16Þ

on simplifying;
d

dt
ðeatWÞ ¼ eatAR ð17Þ

on integrating;

Z t

t¼0

d

dt
ðeatWÞ¼

Z t

t¼0

ðeatARÞdt ð18Þ

Now let us assume that the application fluctuates from 0 to

2 A0 as a sinusoid function of time with a time-period of T .3

AR ¼ A0ð1þ sin xtÞ;where x ¼ 2p=T ð19Þ

using ð19Þ in ð18Þ and simplifying;

eatW � B0 ¼ A0

Z t

t¼0

eatdt þ A0

Z t

t¼0

eat sin xtdt
ð20Þ

on solving;

W ¼ e�at B0 �
A0

a
þ A0 sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p

� �
þ A0

a
þ

A0

sinðxt � hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p ;where h ¼ tan�1 x

a

� � ð21Þ

The error err in TCP can thus be computed from (10) as:

err ¼ W 0 ð22Þ

differentiating (21) and using in (22)

err ¼ �ae�at B0 �
A0

a
þ A0 sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p

� �
þ

A0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p cosðxt � hÞ

ð23Þ

In steady state: e�at ! 0, thus (23) becomes

err ¼ A0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p ðcosðxt � hÞÞ ð24Þ

further; err ¼ A0 sin hðcosðxt � hÞÞ ð25Þ

Thus, for fluctuating applications, the difference between

TCP rate and application read rate exhibits non-decaying

oscillations. The amplitude of these oscillations increases

with the peak application read rate and cycles with the

fluctuation time-period.

From (11) and (21), TCP is:

TCP ¼ ae�at B0 �
A0

a
þ A0 sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ x2
p

� �

þ A0 1þ a sinðxt � hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p

� � ð26Þ

which in steady state becomes:

TCP ¼ A0 1þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p sinðxt � hÞ

� � ð27Þ

This has a marked deviation from AR, both in frequency

pattern and in the amplitude. As the frequency of oscilla-

tions increases, the phase difference in TCP and AR also

increases. This lag translates into increased settling time,

3 Note that any other periodic application profile can be represented

as a sum of sine/cosine functions [7].
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i.e. time taken to converge to AR, for TCP. Equation (27)

presents a control system model for TCP’s flow control. In

practice, the receive buffer B0 imposes an upper bound on

TCP data rate. Following from (13), the actual TCP data

rate is given by:

TCP ¼min aB0;A0 1þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2
p sinðxt � hÞ

� �� �
ð28Þ

Depending on the relation between the two terms in (28),

TCP throughput can saturate at the rate of aB0, i.e. B0=RTT

or grow as much as the application demands. Saturations

cause TCP to under-perform. Thus, we conclude that TCP

throughput is dependent on the receive buffer size, the

application fluctuation frequency and the amplitude of

fluctuations in the application read rate.

3.2 Basis for an adaptive flow control algorithm

We observe in the previous section that:

(1) Current TCP flow control is an IntegralðIÞ � only

control system. As is well known in control theory,

Integral systems are used as corrective components in

ProportionalðPÞ control systems. An I-only system

can increase settling time (h in Eq. (27)), making it

respond slower to disturbances/fluctuations.

(2) If B0 is not large enough to accommodate the

application read rate and its fluctuations, TCP send

rate is capped by B0=RTT (as shown in Eq. (28)).

A corrective term needs to be added in Eq. (11) to

compensate for the impact of integral action and bound of

B0. We propose that this term be AR, i.e. the application

read rate. Equation (11) thus takes the form of:

TCP ¼ aW þ AR ð29Þ

working out equation ð10Þ
W 0 ¼ AR� TCP ð30Þ

using ð29Þ; W 0 ¼AR� aW � AR ð31Þ

i.e. W 0 ¼ � aW ð32Þ

on solving W ¼ B0e�at ð33Þ

differentiating ð32Þ and using in ð22Þ;
err ¼ �aB0e�at

ð34Þ

Note that (34) presents a decaying error in TCP send rate.

From Eqs. (29) and (33), TCP takes the form:

TCP ¼ aB0e�at þ AR ð35Þ

which converges to AR at steady state, shows no lag and is

not bound by the B0=RTT limit. Thus, if TCP starts

reacting to the application rate, it would be able to scale

up to its target value, even in the face of fluctuations. In the

next section, we discuss how to translate this theory into a

practical implementation.

4 Design elements and algorithm

In this section we present an adaptive flow control (AFC)

algorithm for TCP that will help achieve expected

throughput performance even in a flow control dominated

regime. A key goal of the proposed solution is to deliver

such performance without requiring a large buffer alloca-

tion. We first present an overview of the key design ele-

ments in AFC, and then describe the detailed algorithm.

4.1 Key design elements

4.1.1 Using application read rate

The first design element in AFC follows directly from the

theoretical analysis presented in Sect. 3. While classical

TCP flow control uses the advertised buffer space from the

receiver as the flow control window, AFC relies on both the

advertised available buffer space in the receive buffer and

the application read-rate in determining the flow control

window:

Wfc ¼ Bþ AR� RTT ð36Þ

Just like the advertised buffer space, the application read

rate AR is also fed back to the sender from the receiver. We

defer details on how the application read rate is monitored

and tracked till later in the section. Once the flow control

window Wfc is determined, AFC uses the window in

exactly the same fashion as in classical TCP. In other

words, the number of outstanding packets is controlled to

be the minimum of the congestion control window and the

flow control window. The use of the application read rate

in determining the flow control window thus allows AFC to

better react to application read rate changes instead of

relying only on buffer over provisioning.

4.1.2 Handling overflows

Classical TCP flow control is conservative to an extent

where the flow control algorithm will never result in buffer

overflows at the receiver. The TCP sender will at no point

send more data than what the receiver buffer can accom-

modate. Hence, all losses experienced by the connection

are directly attributable to congestion.

However, in AFC the flow control window is computed

to be a sum of two factors: the available buffer space and

the application read rate per RTT. If the application read

rate is over estimated or suddenly decreases, overflows at
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the receive buffer will occur. Such losses however should

not be attributed to congestion as the flow control algo-

rithm causes them. Thus, AFC is specifically designed to

keep such flow control induced losses from impacting the

congestion control algorithm. In classical TCP, when a

zero window is received by the sender with an ACK

sequence number of Szw, the sender explicitly freezes all

congestion control decisions and ignores loss indicators

(both triple duplicate ACKs and timeouts) for any sequence

numbers greater than Szw till an explicit open window is

received from the receiver. In AFC, duplicate ACKs or

timeouts may still be triggered by packet drops at the

receiver for packets with sequence number Soe, where

Soe [ Szwþ Receive buffer. These duplicate ACKs can

arrive even after the open window event. AFC hides this by

recording the time ts recover of the arrival of the open

window and further suppressing all congestion indicators till

an ACK is received for data sent after ts recover. Further-

more, in order to fast track the successful transmission of

such overflow data, the next sequence number to transmit

(snd nxt) at the sender side is reset to Szw
4 upon the receipt

of an open window. Such fast-tracking of the transmissions

beyond Szw prevents those packets from being handled by

the (slower) retransmission mechanism in TCP.

The combination of the ignoring of losses after a zero

window and the resetting of the snd nxt averts both con-

gestion control and reliability problems due to the over-

flow. In an alternate approach, the receiver can explicitly

notify the sender of the specific sequence numbers that

have been dropped at the buffer. However, conveying

explicit information about buffer losses would require

going from one sequence number to two sequence numbers

(one for congestion control and one for reliability/flow-

control) similar to strategies adopted by WTCP [8], pTCP

[9]. However, such a strategy would help only in the spe-

cific scenario of overlapping flow-control and congestion-

control dominated periods for the connection. The down-

side of our simpler approach is that we will not react to

congestion if it occurs during a flow control recovery

period. However, if the congestion is persistent, the TCP

sender will recognize it as soon as it comes out of flow

control. As part of future work, we are planning to explore

whether a more sophisticated scheme is warranted.

4.1.3 Proactive feedback

The receiver in classical TCP sends an ACK only on the

receipt of a segment. Thus, any feedback from the

receiver to the sender is dependent on the arrival of new

data. When recovering from a zero window state, this

property is clearly undesirable. Even if the application

read rate climbs rapidly, the receiver will send the first

open window to the sender as soon as one MSS worth of

space opens up in the buffer. Thus, for an entire round-

trip time after that open window transmission, the recei-

ver cannot send any further feedback to the sender even if

the buffer is completely drained. Consequently, the sender

will send only one segment for that round-trip time, and

wait for the next ACK to arrive before it will expand its

flow control window fully. In AFC, this limitation is

averted by requiring the receiver to send feedback not just

upon receipt of data but also when there is a drastic

change in the buffer state and application read-rate.

Thus, when recovering from a zero window state, the

receiver will send not merely the first open window when

one MSS worth of buffer is available, but also follow it

up with more reports about the AR and B if the applica-

tion drains the buffer quickly. This allows the sender to

take more accurate flow control decisions.

Note that such a design element can also be modu-

lated by a mechanism similar to the delayed ACK timer.

Essentially, whenever a proactive ACK has to be sent by

the receiver, the ACK is delayed for a constant amount

of time. If a reactive ACK (an ACK in response to data

arrival) is triggered within the aforementioned constant

amount of time, the proactive ACK can be discarded.

This allows for curtailing the number of such proactive

ACKs sent when there are reactive ACKs sent naturally.

4.1.4 Burst control

Classical TCP is self-clocked. Hence, whether or not new

segments are transmitted and how many new segments are

transmitted are both determined by the receipt of ACKs at the

sender and the consequent adjustment to the windows. In a

congestion control dominated regime, such self-clocking

works very well. However, in a flow control dominated

regime, large transmission bursts can occur. Consider a

scenario where the application read rate is low and hence the

buffer begins to fill up. Let the connection reach a state where

the sender has only one outstanding segment left in the net-

work because its flow control window is reduced, but its

congestion control window is much larger. Now, if the

application read rate rapidly increases and drains the receive

buffer before the outstanding segment reaches the receiver,

the ACK sent on receipt of the new segment will advertise a

full buffer. When the sender receives this ACK it is no longer

flow control limited, and will transmit an entire congestion

control window of segments5 instantaneously as a single

4 Note that the TCP ACK sequence number reflects the next expected

sequence number.

5 Assuming the congestion control window is smaller than the

receive buffer size. Otherwise, the sender will transmit an entire flow

control window of segments.
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burst. Such bursty behavior is not desirable as the bursts will

increase the likelihood of overflows of buffers along the path

of the connection. The overflows will be interpreted as

congestion losses and hence impact the throughput perfor-

mance of the connection adversely.

Thus, one of the design elements in AFC is to explicitly

control any bursts in transmissions at the sender. The

occurrence of a burst is detected by the difference in the

allowed range of outstanding packets, which is oldest

unacknowledged packet snd una plus minðcwnd; rwndÞ,
and the next packet to be sent (snd nxt). If this difference

is above a threshold, every packet is delayed by

RTT=sender0s window.

4.2 AFC solution details

4.2.1 Protocol headers

AFC introduces new feedback from the data receiver to

sender. At the same time, an AFC enabled network stack must

be able to communicate with a default stack. Thus, we pro-

pose AFC specific information to be exchanged using a new

TCP header option. At the time of connection set-up, an AFC

enabled receiver will advertise an AFC-permitted flag in a 2

byte option field.6 If both ends of the connection agree to use

AFC as the flow control mechanism, another variable length

option field is used to convey the application read rate to the

sender. The first two octets convey the type and length of the

option, the later octets carry the application read rate in Kbps.

4.2.2 AFC receiver (data) processing

Algorithm (1) details the data processing at AFC enabled

TCP receiver. Table 2 describes the variables used in AFC

pseudocode. A data packet delivered by the network at the

receiver can encounter three actions; (i) enqueued in the

receive buffer for the application, (ii) dropped by the

receiver, or (iii) delivered instantly to a waiting application.

For a newly arrived data packet with sequence number

seqno, the receiver checks if it falls within bufsize of

admissible sequence numbers beyond the oldest buffered

packet read nxt and drops it if it doesn’t (lines 2 and 3).

For a fresh packet lying within the window, the receiver

saves it in the buffer and updates the max seen count (lines

6–17). Duplicate packets are completely ignored (lines 5

and 15). The receiver also checks if the application has

been waiting for data. If yes, it passes new data to the

application above and updates read nxt and bytes read

values (lines 18–22). The rcv nxt pointer is also updated

to the next in-order byte not present in the receive buffer

(lines 23–26). The remaining data, both in-order and

out-of-order, is queued at the receive buffer.

Table 2 List of state variables at the TCP receiver

bytes read Count of bytes read by application in this instance

read nxt Next in-sequence byte to be read from buffer

bufsize Total size of the TCP receive buffer

buffer Receiver buffer

rcv nxt Next in-sequence byte expected from the network by

the TCP receiver

window Number of bytes, starting from rcv nxt, the receive

buffer can accommodate

smooth rx Exponential average of application read rate

last rx Last value of smooth rx

6 One byte for the type of option and one for the value.
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As this is an interface between the TCP receiver and the

application, AFC takes a sample of the application read rate

by invoking the ar update module (line 29). The ar update

module (algorithm (2)) computes the instantaneous appli-

cation read rate from the bytes read in this instance and time

elapsed since last sample. It then computes an exponential

moving average smooth rx of samples seen so far.

The TCP receiver is also responsible for sending ACKs

for every new segment delivered to it, even if it is dropped.

Algorithm (1) also captures this. It computes receiver’s

window, i.e. the number of octets beyond rcv nxt that the

receive buffer can accept (line 31). The value of window,

rcv nxt, SACK [10] information and smooth rx is fed back

to the sender through the ACK packet (lines 33–36).

Furthermore, a sample of the application read rate is also

taken whenever the application tries to independently read

data from the buffer, as illustrated in algorithm (3). The

read nxt is updated as application reads bytes from the

buffer (lines 2–6). Once it is done reading, the window size

is updated (line 7 and ar update is invoked to compute a

new value of smooth rx (line 8). A proactive acknowl-

edgement is triggered if the new smooth rx is greater/les-

ser than a factor times the last value last rx (lines 9–14).
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4.2.3 AFC sender (ACK) processing

To enable AFC at a TCP sender, new logic is introduced in

processing the acknowledgement, as shown in algorithm

(4). The TCP sender determines the adaptive flow window

from the advertised window win and application reading

rate rx (lines 1–5). It further distinguishes buffer losses

from congestion losses, by tracking zero window event

through a flag zw flag (lines 6–9).

While zero windows are being received at the sender

zero window probes are sent with increasing time-periods

(line 21). Once an open window advertisement is received

the time is recorded in ts recover to ignore congestion

indications for out-of-window packets that were dropped

(line 11). Moreover, to recover from the losses after an

open window is received, highest ack and snd nxt values

are updated and retransmit timeout is reset (lines 12–17).

Congestion indicators are only considered when zw flag is

not set (lines 23–32). If permitted by the sending window

and AFC burst control, the sender can now send more data

to the receiver (line 34).

5 Performance

5.1 Evaluation methodology

We evaluate our solution in NS2 (version 2.34). We use the

NS2 TCP implementation, with classic flow control,7 as the

default TCP in all experiments. Further, we added the

design principles described in Sect. 4 in NS2 TCP imple-

mentation. This Adaptive Flow Control(AFC) enabled TCP

is referred to as AFC in future. We assume SACK [10] to

be enabled in all scenarios. The history factor for expo-

nential moving average in AFC is taken as 0.5, i.e. equal

weight is accorded to the history and the current sample. In

the following sections, we evaluate AFC with respect to

default TCP. We compare the throughput gains of each;

fairness of both approaches in concurrent connections and

sensitivity of our solutions to different parameters. In all

experiments, the throughput is measured at the application

level.

For the throughput and sensitivity analysis the network

topology has a single sender node and receiver node con-

nected by a link. The link characteristics are based on

typical bandwidths and delays observed on mobile phones

and tablets connecting over 3G or WiFi. The link delay we

use is 265 ms. For fairness analysis, we consider a dumb-

bell shaped topology defined later in Sect. 5.3

5.2 Throughput gain

For throughput analysis, we consider the scenarios men-

tioned in Table 3, for RTT = 530 ms. Present auto-tuning

techniques [4] configure the receive buffer based on the

perceived bandwidth-delay product, which is mini-

mum(average network rate, average application rate) �
RTT. We use this estimate in configuring the receive buffer

size. The ideal TCP throughput in all scenarios is

min(average network rate, average application rate). Each

simulation runs for 600 s.

Figure 6(a) shows the ideal, default and optimized

throughput in all scenarios. We observe that AFC shows an

improvement ranging from 50 %, in Scenario 5, to 100 %

and more in the remaining scenarios. In addition to this, it

scales up to 85 % of the ideal throughput, while the default

flow control can only achieve up to 60 % of the ideal

performance.

5.3 Fairness properties

To evaluate fairness between concurrent optimized and un-

optimized connections we use a dumbbell topology with 10

TCP connections, as shown in Fig. 5. Senders S1. . .S10 are

connected to router Rt1 through individual links of

Fig. 5 Topology for fairness evaluation

Table 3 Network and application scenarios

# Application

profile (Mbps)

Network

profile (Mbps)

Receive

buffer (KB)

Ideal

throughput

(Mbps)

1 h0,6,6i 2 128 2

2 h0,6,6i 15 256 4

3 h0,6,6i h2,4,4i 213 3.3

4 h0,6,6i h3,6,6i 256 4

5 h0,18,18i h3,15,15i 704 11

7 Basic flow control features such as a finite-size receive buffer,

dynamic advertised window and zero window management were

added to the NS2 TCP implementation as NS2 does not support these

currently. A configurable application read rate parameter was also

added to simulate different application patterns.
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10 Mbps rate and 5 ms delay. Router Rt1 is connected to

another router Rt2 with a network link of delay 255ms. The

bandwidth of this link fluctuates in the pattern of

h2; 4; 4 Mbpsi with a time-period of 1 RTT, i.e. 530 ms. All

the receivers R1. . .R10 are connected to router Rt2 through

individual links of 10 Mbps rate and 5 ms delay. Each

receiver has an application running on it whose read rate

fluctuates as h0; 6; 6i Mbps with a time period of 1RTT.

Considering fair distribution of link bandwidth, each con-

nection gets an average network rate of 0.33 Mbps. The

receive buffers are thus set to 0.33 Mbps � 530 ms =

22 KB. Each connection in the simulation runs for

600 s.

5.3.1 Fairness between AFC and default flows

We evaluate fairness of AFC towards classic flow control

by increasing the number of optimized connections from 0

to 10, i.e. all connections using default flow control to all

connections using AFC. In each case, we calculate the

average throughput achieved by connections running

default TCP and that achieved by connections using AFC.

The results are shown in Fig. 6(b). We observe that the

average throughput of default TCP connections stays

unchanged in the presence of Adaptive Flow Control. The

average throughput of the AFC enabled flows shows a peak

when there is one optimized connection and converges to

the expected 0.33 Mbps as the flows increase. This happens

because an optimized flow tries to scale up to the available

bandwidth, left unused by the default TCP flows. In the

case of one optimized flow, all this bandwidth gets utilized

by a single connection and is fairly shared, later on, by the

increasing number of optimized connections. Thus, AFC

remains fair with classical flow control.

5.3.2 Fairness among AFC flows

To demonstrate fairness amongst AFC flows we use the

same dumbbell topology as above. However, this time we

present results for increasing number of TCP connections.

All the TCP connections use AFC as the flow control

mechanism. The receive buffer size is adjusted down based

on the number of connections (from 213 KB for one con-

nection to 22 KB for ten connections). The average

throughput enjoyed by connections is shown in Fig. 6(c).

For each data point we also show the individual connection

throughputs. It can be observed that the individual

throughputs are heavily clustered around the average

establishing the fairness amongst AFC flows.Thus, AFC is

fair with itself.

5.4 Sensitivity analysis

In this section we discuss how Adaptive Flow Control

reacts to variations in the RTT, the time period of fluctu-

ation, application read rate, network rate and the applica-

tion fluctuation profile. We also present the performance of

default TCP flow control for each case.

5.4.1 Sensitivity to round trip time

The NS2 simulation in Sect. 2 and the macroscopic results

above consider a round trip time(RTT) of 530 ms. While

we use this number as a representative of delays seen over

3G networks, the impact of flow control is equally signif-

icant in low delay scenarios as well. With the advent of 4G

cellular technologies, round trip times have become smal-

ler. In this section, we evaluate the performance of AFC

over varying RTT. We consider the simulation scenario 2

from Table 3 for this analysis and vary the RTT from
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10 ms to 1 s. The receive buffer size is also changed in

each case to comply with minðAvgNW ;AvgARÞ � RTT .

Figure 7(a) shows the ideal TCP throughput and the

throughput observed with default flow control and AFC.

The RTT is shown with a log scale for ease of presentation.

We observe that AFC shows more than 100 % improve-

ment over default TCP for all RTT values. Additionally,

AFC throughput stays between 83 and 96 % of ideal

throughput. The drop in throughput at 500 ms just reflects

the impact of RTT on TCP performance as larger delay

means slower rate of growth of congestion window.

5.4.2 Sensitivity to fluctuation period

Note that in all the scenarios discussed above we have

considered that the application and the network always

fluctuate with a period of 1 RTT. However, the adverse

affect of flow control is not tied to this unique case. We run

further simulations where the fluctuation period is

increased from 1 RTT to 40 RTTs for Scenario 4. As this

scenario is application rate dominated we also consider a

modified version of Scenario 4 with peak application

reading rate of 8 Mbps to simulate a network limited sce-

nario. The throughput of default flow control and adaptive

flow control are compared in Fig. 7(b).

The throughput achieved by default flow control

increases with fluctuation time-period as TCP gets more

time to settle after every disturbance, making the con-

nection more steady. The throughput observed by AFC

shows an immediate dip when fluctuation time period

increases from 1 RTT to 2 RTTs. This is because, while

in former case AFC can avoid the sender from stalling

completely, in the later cases, sender stalls are inevitable.
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Even then, AFC constantly performs better than default

flow control.

AFC provides a gain of 100 % over default flow control

in highly fluctuating network and application environments

and 20 % in steady environments. Mobile phone and tablet

environments, as we have observed in previous sections,

belong to the former set.

5.4.3 Sensitivity to peak application read-rate

In this evaluation, we vary the peak application read rate in

the h0, AR, ARi profile in the setup of Scenario 3. The

network is the bottleneck in this scenario, hence the ideal

throughput remains 3.3 Mbps. Results are presented in

Fig. 7(c). The receive buffer of 213 KB is more than suf-

ficient when the read rate is less than 2 Mbps. Hence, the

default throughput is optimal. However, as the application

read rate grows current flow control grows linearly with the

application read rate reaching 65 % of the ideal even at

reading rates of 20 Mbps. Adaptive flow control, on the

other hand, grows up to 86 % and more of the expected

throughput in all cases. We observe that AFC can scale

with application read rate faster than classic flow control.

5.4.4 Sensitivity to network rate

For Scenario 4, we modified the network profiles to study

the change in throughput. Given the network profile of

hNW1;NW2;NW2i, we first keep NW1 constant and

modify NW2, then keep NW2 constant and modify NW1.

In all cases, the average application rate stays lesser than

the network rate, hence the ideal throughput expected is

4 Mbps. Figure 7(d) shows the variation in throughput

when the peak network rate is altered for the same mini-

mum network rate. Figure 7(e) shows the variation in

throughput when the minimum network rate is altered for

the same peak network rate. While default flow control

shows a degradation of up to 50 % over a bandwidth

variation of 2.5 Mbps, the maximum degradation of AFC is

only 25 % over a bandwidth span of 4 Mbps.

5.4.5 Sensitivity to fluctuation-pattern

We now evaluate the performance of default flow control

and AFC for other fluctuation patterns of application read

rate. We consider repeated fluctuations throughout the

connection. Each period of 1RTT is considered as a slot

and we vary the number of consecutive slots for which the

application is reading at AR and 0. The network rate is

constant and greater than the average application read rate,

for simplicity.

From the application profile of h0; 6; 6i Mbps that we

have considered so far, we create two sets of scenarios:

application idle for 1 slot per fluctuation and application

idle for 2 slots per fluctuation. In each of these sets, we

further vary the number of reading slots of application from

1 to 4. All in all, there are 8 scenarios. The network rate is

15 Mbps and the RTT is 530 ms. The results are shown in

Fig. 7(f).

The aggregate throughput intuitively decreases with

increase in idle slots and increases with increase in reading

slots. A pathological scenario arises when the application

reads for exactly one slot before becoming idle. This is

because TCP has an inherent delay of half RTT. Even with

AFC, the sender learns about the increased receiving rate

half an RTT late. By the time new data reaches the recei-

ver, it has gone idle. Thus, in every 2 slots, the receiver can

successfully accommodate exactly one buffer size of data.

The throughput is thus buffer limited and same for both

default and optimized cases. In other scenarios, AFC is

able to improve throughput by at least 63 % in all scenarios

up to a maximum of 150 %. We also observe that with

increase in number of reading slots per fluctuation, the

difference in the throughput of classic flow control and

AFC starts to reduce. This is expected behavior, as

increasing number of reading slots indicate a steadier net-

work/application environment. Thus, for a variety of

application fluctuation patterns, AFC provides significant

gain(more than 60 %) over classic flow control.

6 Related issues and discussion

• Computational Overhead: Adaptive flow control

requires the receiver to monitor the rate at which the

buffer is getting drained at the receiver. A sample of

application read rate is computed whenever the receiver

gets any new data or the application reads from the

buffer. Both these computations can be piggy-backed

on TCP receive module and the receive call from an

application on a TCP socket, respectively. In order to

avoid overshoots in calculation when a bunch of

packets are read together, a single sample of application

read rate is computed when the receive/read module is

invoked. Two new state variables; smooth_rx and

last_rx, are maintained to monitor application read rate

at the receiver. If the application read rate changes

beyond a factor of the last rate and no ACK is sched-

uled for a while, a proactive feedback is sent to the

sender.

The computation at the sender is done whenever an

acknowledgement is received; the flow window is

computed by adding the advertised window and RTT

times application read rate. The window size and read

rate are read from the TCP header and round trip time is

pre-computed at the sender. The sender also records a
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timestamp; ts_recover, at every open window event to

manage reliability at the sender.

All in all, AFC introduces one state variable at the data

sender, two state variables on the data receiver and one

TCP header options field into the existing TCP proto-

col. Constant time computations are added on data/

ACK receive at receiver/sender, respectively. Thus,

AFC introduces a constant magnitude overhead over

classical TCP flow control.

As part of future work, we plan to build a prototype of

AFC on smartphones and tablets to evaluate the com-

putational overhead on real systems.

• Application in PC environment: We have motivated

adaptive flow control in mobile platforms, as resource

limitations make TCP flow control more vulnerable.

We believe that adaptive flow control can also be

applied to other flow control dominant computing

environments, like servers and data centers. Though

powerful processors, more memory and flow control

solutions such as Linux auto-tuning prevent TCP flow

control from becoming a bottleneck for application

performance, adaptive flow control can reduce the

buffer overheads per TCP connections.

7 Related work

A number of TCP optimizations have been presented for

mobile hosts. Mobile TCP [11] does it through an

asymmetric transport protocol which offloads IP pro-

cessing to the base station instead of the mobile device.

AFC, on the other hand tries to address the deficiencies of

TCP flow control, which are magnified in mobile phone

platforms.

In [12] and [13], the authors try to address the impact of

mobility and handoffs on TCP congestion control. TCP

Westwood [14] is another protocol optimization which

aims to reduce the impact of random losses on TCP con-

gestion control. These solutions optimize TCP congestion

control. AFC is a complementary approach to these solu-

tions as it aims to fix issues with flow control.

Several variants of TCP flow control have also been

proposed in related work. Automatic Buffer Tuning [5]

presents an algorithm to dynamically configure TCP

sender buffer by comparing the congestion window size

and the sender buffer size. They maintain the receiver

buffer at the maximum allowed size. Dynamic Right

Sizing [3] and Auto-tuning in Linux [4] implement

receiver side solutions to grow the window sizes to match

the available bandwidth. The Wed100 [15] project has

presented approaches to decouple the re-assembly queue

and the receive buffer, to hide out-of-order delays from

the sender. All these approaches advocate a buffer-based

approach to resolve flow control incompetencies. But they

all rely on perceived BDP for their estimation, which, as

we demonstrate, can be affected by flow control prob-

lems. AFC addresses these issues, without over-provi-

sioning the buffer, by redefining the very concept of flow

control window.

8 Conclusions

In this paper, we discuss the deficiencies in classical TCP

flow control. These deficiencies are magnified on mobile

platforms, due to the resource constraints. We demonstrate,

both empirically and theoretically, that to address this

problem, we need an Adaptive Flow Control(AFC) which

makes a shift from an entirely buffer dependent flow

control mechanism, to one that reacts to the application

read rate. Through NS2 simulations we show that AFC

performs better than classical TCP flow control, exhibits

fairness and is robust to variations in network, application

rate, fluctuation time and pattern.
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