
Precog: Action-Based Time-Shifted Prefetching for Web
Applications on Mobile Devices

Shruti Sanadhya1,3, Uma Parthavi Moravapalle2,3, Kyu-Han Kim1, Raghupathy Sivakumar2

1Hewlett Packard Labs, Palo Alto, CA
2Georgia Institute of Technology, Atlanta, GA

3 Co-primary authors

ABSTRACT
Wireless providers today are highly motivated to improve efficiencies
of spectrum usage. One approach to achieve this is to shift the
load from expensive cellular networks to cheaper WiFi networks.
In this context, we propose Precog, an action-based prefetching
solution for time-shifted WiFi offloading. We argue that traditional
prefetching solutions, that rely on the URLs visited in the past by a
user for predicting future access, are ineffective in today’s dynamic,
interactive, and personalized web. Precog addresses this issue by
remembering, not the exact URL accessed in the past, but the actions
performed on a particular website. The actions are remembered as
interactions with the content layout, which stays consistent over a
long period of time. Unlike prior offloading solutions that require
concurrent cellular and WiFi connectivity, Precog offloads cellular
content over time-shifted WiFi access. We evaluate Precog over both
synthetic and real user datasets to demonstrate its benefits.

1 INTRODUCTION
Cellular technologies such as 3G and 4G, in tandem with WiFi, serve
as the fundamental access mechanisms for mobile users. Recent
studies show that the availability-cost trade-offs of these technolo-
gies result in users relying heavily on both for data-access. Mobile
devices today are almost always equipped with heterogeneous inter-
faces with each interface having distinct cost-bandwidth-connectivity
tradeoffs. WiFi is low-cost and high bandwidth, but is not always
available for use; whereas cellular is high-cost and low bandwidth,
but is almost always available. A recent survey of Internet pricing
plans [1] shows that cellular networks charge $10/GB (high end
plans). On the other hand, cable networks, which provide WiFi ac-
cess, charge $0.20/GB, an order of magnitude cheaper. Additionally,
data is almost unlimited on WiFi, but monthly data limits are im-
posed on cellular network. This creates an unbalanced cost problem
for mobile users.

Corresponding author: Uma Parthavi Moravapalle (parthavi@gatech.edu)

This work was funded in part by the National Science Foundation under grants CNS-
1513884, CNS-1319455, and IIP-1701115, and by the Wayne J. Holman Endowed
Chair.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotWeb’17, San Jose / Silicon Valley, CA, USA
© 2017 ACM. 978-1-4503-5527-8/17/10. . . $15.00
DOI: 10.1145/3132465.3132473

Both mobile users and network operators are continually strug-
gling to reduce their data costs and network operation costs, respec-
tively. Previous works have considered WiFi offloading to address
the unbalanced cost problem by shifting ongoing cellular traffic on
to WiFi [2–4]. But these solutions rely on concurrent availability of
both cellular and WiFi networks. However, access to wireless and
cellular networks is mostly time- and location- shifted. Users con-
nect to WiFi while at home, office, coffee shops and rely on cellular
connectivity while in transit, visiting client offices or shopping in
stores. An important question to ask here is: How can time-shifted
access over the cheaper (WiFi) network be leveraged more effectively
to reduce cost of the more expensive (cellular) network access?

In this paper, we consider a solution that can predictively prefetch
over WiFi what a user is likely to access over cellular in the future.
While prefetching in itself is a well-studied topic in related research,
we argue that existing prefetching solutions [5–7] are unsuitable
to the specific problem considered in this paper because: (i) They
are predominantly URL-based, i.e., they remember the exact URLs
accessed in the past and only prefetch a subset of those. Such solu-
tions severely under-perform in today’s web which is more dynamic
and uses complex client-side technologies; (ii) They perform just-in-
time prefetching and were not necessarily designed for time-shifted
prefetching; (iii) Bandwidth savings can only be achieved if the
entire prefetched object is reused in a later access, and not if the
object is changed to any degree; (iv) They are viewed as a client side
solution, and resource constraints both on the mobile device and the
wireless link necessitate a re-thinking of such an architecture;

In this context, we present Precog, an action-based solution that
performs time-shifted prefetching over WiFi to reduce cellular data
consumption. Briefly, Precog remembers not the exact URL ac-
cessed in the past, but the actions performed on a particular website.
Even though web content changes frequently, there remains (by
design) visual consistency in the layout of websites. We leverage
this consistency in Precog’s design. Precog reaps benefit from the
prefetched content at a sub-object granularity through network dedu-
plication. We propose Precog for web applications on the browser
for smartphones and tablets as browsing is the second most popu-
lar application on mobile phones [8]. In its architecture, Precog is
designed as a client-and-proxy model, where precog-client can be a
web-browser add-on and precog-server (or proxy) can be placed as
a cloud service. We evaluate Precog over real web content fetched
through synthetic user and network traces and show that Precog can
give 45% byte savings over cellular network with a 35% prefetch
efficiency over WiFi. We also compare Precog with name-based
prefetching using real traces and show that Precog is 1.4× better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

C
D

F

Percentage deviation from last snapshot

BBC
eBay
Glam

Linkedin
Pinterest

Twitter

(a) Change in URLs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

C
D

F

Percentage deviation from last snapshot

BBC
Disney

eBay
ESPN

Facebook
Glam

Pinterest
Twitter

Weather
Yahoo-Finance

(b) Change in DOM

Figure 1: Dynamic web content

2 MOTIVATION
This section examines five main changes in the way users inter-
act with the web on mobile devices and limitations that existing
prefetching solutions face.
Network unawareness and just-in-time behavior: In existing so-
lutions, prefetching is triggered based on: (i) content accessed in the
past [5, 6], where access to URL A triggers the fetching of URL B
which was accessed most subsequent to URL A, in the past, or (ii)
time[7], where most accessed URL at given time of day is prefetched
every day at the same time. The cost of network access has never
been considered as a trigger for prefetching, as these solutions were
focused on wired environments. With the prevalence of smartphones
and tablets, network heterogeneity has become more pronounced.
Additionally, content is prefetched just-in-time for consumption in
the same access session.
Inability to handle dynamic web: Prior works on prefetching [5–
7] propose a name-based prefetching, which relies on the names, in
the form of Universal Resource Locators(URLs), of web content
to decide what to prefetch. Specifically, name-based prefetching
remembers users’ browser history in the form of URLs visited in
the past. It then selects the URLs most likely to be accessed again
and prefetches them. The assumption that users access the exact
same URL every time does not hold in today’s Internet. The world
wide web is becoming increasingly more dynamic. Websites keep
updating content to incorporate latest trends and preferences. Con-
tent management systems on the web provide a scalable approach
for web management, but entail dynamic naming strategies.

To support our observation we analyzed the change in number of
URLs for six popular mobile websites (obtained from Comscore),
for a week. We downloaded each website, up to second level of
reference, every six hours, supplying a cookie file for login where
needed.We then computed the number of new URLs added in a

snapshot as a percentage of URLs in the previous snapshot. From
the CDF of the percentage change (see Figure 1a), we saw that there
is significant variance in the changes on different websites. Some
websites changed less than 25% across 80% of the instances while
others changed more than 40% for half of the instances.

While the above analysis is a pure server-side analysis of six
websites, we also did an analysis of user accesses across different
websites. We considered the LiveLab dataset [9], which is collected
from 24 volunteers in Rice University using iPhone 3GS from Feb
2010 to Feb 2011. This data set contains web browser history
collected from Safari browser every night. Each record contains
a timestamp and a hashed URL. For each user, we computed the
percentage of URLs which repeat in the trace. Additionally, we also
computed the percentage of domain names, that occur more than
once in the entire trace. We observed that, on an average, 81% of
domain names are repetitive, while only 21% of the URLs repeat
in the year long trace. This shows that users access similar but
not exactly the same content. Hence, there is significant variation
in website content and user behavior in terms of the object URLs,
reducing the efficiency of a pure name-based approach.
Agnostic to client-side logic: Over the past decade, applications
have evolved such that logic is driven not just by server, but also
by client-side technologies such as AJAX, Flash, JavaScript, etc.
Web has become more interactive and response time is significant in
defining performance. Thus technologies like AJAX, which allow
for asynchronous updates of webpages, have been adopted in web
applications. Additionally, richer applications need non-standard
technology to perform complex tasks, e.g., Flash, Java-applet, Ac-
tiveX, which have become popular in the past decade. Additionally,
today’s collaborative web uses complex user data objects which
are sent to servers, further necessitating sophisticated client-side
logic. A prefetching solution that runs a simple HTTP GET request
for a single URL cannot incorporate newer, and more impactful,
client-side logic governed by new technologies.
Ineffective for personalized access: In addition to web dynamics
and newer technologies, content is becoming increasingly personal-
ized on the web. Several websites, such as Facebook, YouTube, etc,
require username and password information to provide per user cus-
tomized content. Name-based prefetching is inefficient in such cases.
The prefetching algorithm needs to remember the state in which the
user accessed a URL and recreate that state on the web server to
get access to the new URL. A stateless prefetching approach cannot
prefetch such content.
Overheads: Earlier work on prefetching was mainly developed
for desktop environments, and is agnostic to resource constraints
imposed by the CPU, memory and battery capacity of mobile devices.
Thus, all the prefetching logic could traditionally run on the end-
device as the sole purpose of prefetching was to reduce web latency.
However, a prefetching solution for smartphones and tablets needs
to be designed such as to minimize load on the device resources as
well as the wireless link.

2.1 The Case for Action-Based Prefetching
Given that name-based prefetching is ineffective, we propose a
solution which leverages consistency on a different front to perform
prefetching - Despite the change in URLs, website layouts stay

2

consistent. By the usability principle of consistency[10], web site
layouts should follow same design templates, despite changes in the
content, to ensure high usability of the website.

On the web, content layout is modeled in the form of HTML Doc-
ument Object Model(DOM). The content of a webpage is structured
using a DOM tree of HTML tag nodes, with the html tag node as
the root. We now look at a set of ten popular mobile sites, including
the six studied in section 2 above, and study the changes in DOM
tree of the homepage of each website, every six hours over six days.
We calculated the total number of insertions and deletions to reflect
the tree change. Figure 1b shows CDF of percentage change in the
number of nodes in the tree. We can observe that almost all websites
show less than 40% change in DOM across all snapshots. For 60%
of the snapshots the variation is less than 25% for most sites. This is
in contrast to the URL changes we observed in section 2. Thus, even
when content on the webpage changes, the consistency in layout of
content is maintained through the DOM tree.

In addition to consistency in web layout, users are also consistent
in their actions. To substantiate this, we analyzed a click data set
provided for public use by Microsoft[11]. This data set includes
results of monitoring areas on microso f t.com where each of 38000
users click during a week. We found that over 80% users clicked on
less than five areas. These results show that users are consistent in
their activity on a website. At the same time, the LiveLab results
show these actions do not always lead to same URLs. While there
is limited consistency in URL names, there is consistency in the
user activity and in the content layout on websites. Thus, instead
of learning names of content accessed in the past, consistent user
actions can be learned from the past and applied to consistent
content layouts to predict dynamic future content. This forms the
core idea of our solution Precog.

3 THE PRECOG SOLUTION
Precog is an action-based prefetching solution for time-shifted WiFi
offloading. At a high-level, Precog consists of a precog-server
located in the cloud, in the data path of cellular access, and a precog-
client sitting on the mobile device. The precog-client tries to learn
the actions users perform on the web, while over cellular. When
on WiFi access, it sends these actions to precog-server which uses
them as foreknowledge of the events expected over next cellular
session and performs these actions in advance to cache content for
cellular access. The content prefetched by precog-server is pushed
to the precog-client over WiFi. For future cellular access this cached
content is used for network deduplication between precog-server
and precog-client, reducing the cost of data access. The key design
elements of Precog are best described as answers to the following
questions:

When are user actions recorded? Due to the unbalanced cost
problem, user access pattern over WiFi and cellular networks are
different. As Precog focuses on predicting future cellular accesses,
precog-client only records user actions while the device is connected
to cellular network.

How are user actions recorded? Past prefetching techniques have
recorded user actions on webpages in the form of content names,

i.e. URLs. This approach is not robust, as shown in Section 2. An
alternate approach can be to record the graphical coordinates of
each user click or text entry. However, this approach is not robust
against screen rotation, page scrolls, etc. Instead, Precog relies on
the HTML DOM tree to record user actions. Every element on the
page can be identified based on its location in the tree, which does
not change often, providing consistent user experience.

Each user action UAi on the webpage can thus be identified as a
(DOM descriptor, Event) tuple, where DOM descriptor is used to
locate a node in the DOM tree and the Event is any interaction with
the element, such as click, checkbox selection or form submission.
Precog only considers user actions that trigger HTTP GET requests
and stops recording actions if a non-signin HTTP POST is triggered.
Handling POST messages is discussed further in section 6. The
DOM descriptor is described using DOM attributes. Some nodes in
the tree can be easily identified through an id attribute associated to
them. Nodes which do not have an id attribute are identified using
a (start id, path) tuple, where start id is the nearest DOM parent
node which has an id attribute and path is the relative tree path from
start id to the target node. The DOM descriptor is thus specified
as the three tuple start id, path, target, where start id and path are
used to locate the node and target is the attribute of the node on
which action was performed.

How are sequences of actions grouped together? All the actions
recorded by precog-client are uploaded to the precog-server over
WiFi. The user may perform a sequence of DOM actions, sepa-
rated by non-DOM actions that do not involve interaction with the
DOM tree (e.g., opening the browser, changing a tab, etc.). While
DOM actions depend on the result of previous DOM actions, such
dependencies are typically broken by non-DOM actions. Hence,
precog-server groups sequences of dependent actions into sessions
and separates different sessions by identifying non-DOM actions.

Precog-server records each session in the form of session trees.
The static URL which is accessed at the start of the session becomes
the root of the tree. This can be the first URL user typed when the
browsing session started or when the user clicked a bookmark. Any
action performed on the root URL becomes a child of the root node.
Performing any action UAi at time t j can trigger HTTP requests for
webpage Wi j. Any DOM actions performed on webpage Wi j adds
children nodes to node UAi. Thus, each node in the tree represents
the URL reached by visiting the root URL and following all the
actions in the path from the root to the node. A separate session tree
is maintained for each static URL visited by the user. Precog-server
maintains a forest of session trees to remember all action sessions
for a user.

How to select actions to prefetch? To determine which nodes on
the tree to prefetch, precog-server also maintains a counter for the
number of times a user has performed the corresponding action
(hiti) for each node in the session tree. Every time user repeats a
set of actions, i.e., traverses a preexisting path in the session tree,
while on cellular network, the counter on each node on that path is
incremented. When the prefetch decision is to be made, all nodes
in the tree are ranked according to their hit counter and top k nodes
in the tree are prefetched. The count k is set to the median of the
number of actions performed per cellular connectivity period. Note

3

cbsinteractive.com nbcuni.com walmart.com amazon.com
vevo.com apple.com nytimes.com yelp.com
about.com weather.com epsn.go.com bbc.com

Table 1: List of websites crawled

that the hit counter of a parent node is always higher than its child.
Hence the dependencies of each action are prefetched before the
action.

How to perform prefetch? Based on the ranking determined above,
precog-server fetches the highest ranked content when the mobile
device is connected over WiFi. The precog-server preplays the
actions using a headless browser. The headless browser runs in the
background allowing the cloud based module to scale up to several
users. Simultaneously, the precog-client module on the mobile also
checks if the available disk, CPU and battery are above a certain
threshold. As long as the system resources permit, content is fetched
from the precog-server over WiFi to ensure that the latest content is
cached on the device.

Only the root node of each session tree has a fixed URL which
can be directly requested through a browser. For all interior nodes,
the user actions are preplayed to request the content created as a
result of those actions. Thus, to prefetch the child node UA1 of
Root URL1, first Root URL1 is opened in the headless browser and
then action UA1 is performed. The resulting HTTP GET request,
say for URL W ′1, fetches the latest content corresponding to that
node in the tree. Each UAi is preplayed using DOM methods and
attributes. For example, if the DOM descriptor of UA1 is (sid1,
index1, attr1) then the target element of the action is located using
JavaScript DOM methods.Once the target node has been determined,
the recorded Event is preplayed on it. The result of each preplay is
used to perform further related actions.

How to use the prefetched content? The content prefetched by
precog-client from the precog-server can be cached in the browser or
at any lower layer. However, prior work [12] shows that web caching
on mobile devices does not effectively leverage redundancy in con-
tent, due to faulty implementation of the HTTP protocol. Instead,
Precog uses network deduplication(dedup) to conserve bandwidth
both over WiFi and cellular network. Briefly, a dedup-source lo-
cated on the precog-server, intercepts prefetched traffic coming from
precog-server to precog-client; segments the traffic into chunks of
byte-sequences; and sends across only the hash of a byte-sequence
if it is a repeating sequence. The dedup-destination, here the precog-
client, then inflates any hashes back to the original byte-sequences
and caches the content locally. While dedup reduces the network
footprint of Precog over WiFi, its main benefit is reaped when the
dedup cache built over WiFi is used to reduce bytes downloaded
over cellular, which cannot be achieved by a browser cache.

4 EVALUATION
4.1 Synthetic traces:
We evaluate Precog using real network traffic generated through
synthetic user and network traces. Each user trace lists the different
action paths followed by a user, per hour of the day. Each action

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

B
y
te

 S
a
v
in

g
s
 (

%
)

Network scenarios

SetA
SetB
SetC
SetD
SetE
SetF

(a) Byte Savings

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

P
re

fe
tc

h
 E

ff
ic

ia
n
c
y
 (

%
)

Network scenarios

SetA
SetB
SetC
SetD
SetE
SetF

(b) Prefetch Efficiency
Figure 2: Performance of Precog over Synthetic traces

path is defined as (Root URL i, UA a, UA b,). The trace creation
has the following components:
• Creating the universal set of action paths: We first create a large

set of possible paths that a user may traverse by crawling twelve
popular sites listed in Table 1. We use WebDriver, a component
of Selenium browser automation tool to click on all possible
elements on each website, traversing links up to a reference depth
of ten1. This exercise generates a set of over 470,000 action paths.

• Creating individual user traces: Next, we extract user traces from
this universal set. The main criteria for user trace creation is to
have users with different levels of redundancy in their trace. To
generate a week long user trace, we assume that user accesses net-
work for sixteen hours per day and seven days a week. Every hour,
the trace generator randomly selects access count paths from the
universal set for that session. For each of the path selected for
a session, the module further selects a random depth from one
to ten and truncates each path up to that depth. These truncated
paths are then tagged with the hour value and added to the user
trace. The parameter access count controls the redundancy in
user actions per trace as users with more paths per hour have
larger intra-session redundancy (accessing the same site multiple
times over cellular) and hence lower redundancy across sessions.
We vary access count as 100, 250, 500, 1000, 2000 and 4000 and
refer to these six user categories as SetA, SetB, SetC, SetD, SetE
and SetF . Ten user traces are generated for each set.

• Creating network traces: In order to evaluate each user over
multiple network profiles, we also create ten network profiles.
Again, we assume that network is accessed sixteen hours a day
for seven days a week. We also assume that network stays same
for at least an hour. For each of the 112 hours, we randomly select
either WiFi or cellular connectivity with equal probability. One
exception to this random selection is that the start of the day, i.e.
the user starts the day at home, where there is WiFi connectivity.

1We do not use any authentication based websites in this evaluation and the only event
performed is clicks on HTML anchor tags on each page.

4

We next run the Precog algorithm on each combination of user and
network traces. A custom trace analyzer is built using Python. In
each run, the first six days, i.e. first 96 hours, of the traces are used
to build the forest of session trees. Every hour the trace analyzer
checks the network connectivity and if it is cellular, all the paths in
that hour are used to grow the forest of session trees. Accesses over
WiFi connectivity are ignored. No network traffic is downloaded for
the first 96 hours. At the 97th hour, prefetching is done as the user
is on WiFi. The trace analyzer computes next access, which is the
median number of accesses seen in the past over cellular. During the
prefetch session, the top next access nodes in the forest, based on
the hit count, are prefetched. Again, WebDriver is used to preplay
the actions on Firefox and real network traffic is recorded using
Tcpdump. When the user next switches to cellular network, all the
actions for that hour are also replayed using WebDriver and the
session trees are also populated. The real network traffic generated
in this session is also recorded.

As name based prefetching provides negligible improvement
because of reasons stated in section 2, we compare performance
of synthetic traces against achievable ideal performance. For this
purpose, We track the following from the two traffic dumps generated
by the trace analyzer: (i) Bytes downloaded in cellular session
(Bytescellular), (ii) Bytes downloaded in WiFi session (BytesWiFi),
and (iii) Bytes in all byte sequences matching across cellular and
WiFi session (Bytesmatch). We compute the byte savings achieved
by Precog as: Bytesmatch

BytesCellular
and the prefetch efficiency as: Bytesmatch

BytesWiFi
.

Figure 2a shows the average byte savings observed across the
users for each network trace. We observe that Precog saves 45%
bytes over cellular. From Figure 2b, we observe that for every
100 bytes downloaded over WiFi, 35 bytes are saved over cellular
network using prefetched dedup cache. Note that the cost of data
access over cellular is around 50 times of WiFi access. Thus, a 35%
prefetch efficiency with a 45% byte savings, still gives a 45% cost
reduction over cellular.

4.2 User traces:
We also evaluate Precog on action traces collected over a week from
eight volunteers who used Firefox on their Android smartphones.
In order to record the actions, we developed an add-on for Firefox
on Android that dumps every DOM action (either a click or a form
submit) along with a DOMdescriptor to a file stored on the phone’s
sdcard. For ’input’ actions (for example: form submit), we also
store the input values. To obtain the the type of network (mobile or
WiFi) on which the corresponding action was performed, we asked
the users to install an application that uses Android’s Connectivity
Manager API to monitor when the active network changes, and
dumps it to a file along with the time. At the end of the week, the
volunteers gave us an action file and a connectivity file. Capture
of Non-DOM actions performed by a user (such as, navigation
actions like back, manual changes to the location bar etc.) was not
possible through an add-on, as the browser does not trigger events
corresponding to these actions. However, we obtain this information
by post-processing the traces.

Given the action and connectivity file per user, each user’s actions
were split into sessions of network access. For every session, we
preplay the actions predicted by the Precog algorithm initially, wait

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9P
re

c
o

g
/N

a
m

e
-b

a
s
e

d
 P

re
fe

tc
h

in
g

User Number

(a) Improvement over name-based prefetching

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9

P
re

fe
tc

h
 e

ff
ic

ie
n

c
y
(%

)

User Number

(b) Prefetch Efficiency
Figure 3: Performance of Precog over Real User Traces

for half an hour, then play the actions in the next session. We run
tcpdump during prefetching and playing the actual session. We pre-
play actions as follows: for every new action, we load the webpage
on SlimerJS and use CasperJS scripting utility to perform DOM
actions.

Given the traffic dump for each prefetch and actual access session,
we compute the performance of Precog and name-based prefetching
on the traces. To measure the performance of name-based prefetch-
ing, HTTP responses in each session are matched against the re-
sponses seen in all prior sessions. The number of URLs prefetched
is restricted to the median number of URLs fetched in past sessions.

From these traces, we observed that byte savings per user vary
from 3 to 37%. The low performance numbers are a result of low
amount of traffic for some users. However, Figure 3a shows the ratio
of byte savings by Precog and name-based prefetching, where we
observe that Precog provides more than 1.4× improvement over all
users, rising as high as 6.7×. This further shows that pure name-
based prefetching is ineffective. The prefetch efficiency for these
traces ranged from 3 to 47%, as shown in Figure 3b.

5 RELATED WORK
WiFi offloading has been studied in several prior work [13] in the
context of vehicular networks [14], non-vehicular scenarios [3] and
urban area offloading [4]. Recently, several commercial products
have also come up to assist data offloading from cellular networks
to WiFi[2, 15]. However, all these solutions rely on concurrent WiFi
(or wired back-haul) and cellular access or propose delays in trans-
fers. Several prefetching solutions have been proposed for wired
and desktop environments. [5] tries to leverage URL history across
users to build a dependency graph of URLs. On the other hand,
[7] proposes to build a probability count for each URL visited by a
single user at a certain hour of the day. A prefetching architecture
for mobile devices was proposed in [6]. All these solutions suffer
the limitations identified in Section 2. Recently, [16] proposed an

5

API for mobile applications which can decide whether performing a
prefetch is beneficial in terms of energy and bandwidth saving. Pre-
cog is a complementary approach to this solution as it predicts what
to prefetch. [17] proposes a time-shifted prefetching mechanism
for based on URL and keyword patterns. However, it is specific
to news pages and suffers the same disadvantages as name based
prefetching.

6 DISCUSSION AND FUTURE WORK
Robust replay: As we observe in section 2.1, DOM trees are not
entirely static and infrequent changes may happen. Thus some of the
actions recorded for a user can fail on new DOM layouts. If Precog
finds a scenario where no node can be found for the recorded DOM
locator, e.g., child index is out of range, then the preplay is aborted.
No further actions in the current action sequence are executed.

Computational overheads: Precog minimizes the burden of prefetch-
ing on mobile devices. The three main modules running on the
mobile device are Firefox add-on, a connectivity monitor, dedup-
destination and Activity uploader(a simple FTP service). We believe
the Firefox add-on does not add much overhead on the CPU. None
of the users whom we gave the add-on and connectivity monitor app,
complained about battery or delay in page load. The most complex
module in the precog-client is that of the Dedup destination. Recent
work[18] has shown that much complex implementations of dedup-
destination can run on current smartphones, without prohibitive
CPU/Memory overheads.

Impact on battery: MAUI[19] showed that WiFi gives 102 KB/Joule
efficiency while 3G networks give only 36 KB/Joule. The trace anal-
ysis in Section 4 shows that Precog gives 35% efficiency, thus around
3× bytes needs to be prefetched over WiFi to save a given number
of bytes over cellular. This ratio is similar to the ratio in energy
consumption across these interfaces, hence not very burdensome.
Reducing these overheads further is part of future work.

Handling video traffic: Video traffic is a dominant part of Internet
traffic. There are multiple granularities at which prefetching can
offset the cost of cellular video access: (i) The entire video can be
prefetched to serve future requests from the user, (ii) some popular
sections of the video can be prefetched based on a popularity metric
or (iii) the video advertisements, which appear during a video, can
be prefetched. In this work we have evaluated the performance of
Precog for the first granularity and plan to explore others in future.

Privacy concerns: The action-based approach of Precog may create
privacy concerns as accessing authentication protected content can
be intrusive to users. Precog addresses this by exposing to the user
whether Precog is enabled for that domain or not. Additionally,
Precog does not preplay any actions (except sign-in) that trigger an
HTTP POST request, as POST requests can lead to state changes at
the server, which are irreversible. We plan to investigate these more
in future.

Extension to non-web applications: Precog is not just restricted
to browser and is easily extensible to mobile applications developed

over HTML5 as they also follow the DOM structure. In addition to
this, any application that exposes its UI elements to Precog can reap
the benefits of prefetching. AndroidViewClient is a tool to expose a
tree structure of different views in Android applications, providing
scope for solutions like Precog. We plan to investigate this in future.

7 CONCLUSION
In this paper, we have presented Precog, an intelligent prefetching
solution for time-shifted WiFi offloading. Precog employs an action-
based network-aware prefetching for mobile web-browser traffic,
and leverages consistency in users action and web content layouts.
Compared to the traditional name-based approach, Precog is a name-
independent network-aware prefetching solution and has addressed
fundamental challenges in dealing with dynamic and personalized
contents by recording and predicting user’s actions. As a result,
Precog helps mobile devices achieve time-shifted WiFi offloading
over cellular networks. We have implemented and evaluated Precog
through the analysis of both large-scale synthetic trace and real-life
user trace to show it’s benefits. As part of future work, we plan to
extend Precog to make more opportunistic prefetching decisions and
handle authentication based traffic.

REFERENCES
[1] S. Sen et. al. Incentivizing time-shifting of data: a survey of time-dependent

pricing for internet access. Communications Magazine, IEEE, 50(11):91–99,
November 2012.

[2] Aruba WiFi Offload. www.arubanetworks.com/pdf/solutions/SB Offload.pdf.
[3] Kyunghan Lee et al. Mobile data offloading: how much can wifi deliver? In ACM

SIGCOMM ’10, pages 425–426.
[4] S. Dimatteo, Pan Hui, Bo Han, and V.O.K. Li. Cellular traffic offloading through

wifi networks. In 2011 IEEE 8th International Conference on Mobile Adhoc and
Sensor Systems (MASS), pages 192 –201, oct. 2011.

[5] V. Padmanabhan and J. Mogul. Using predictive prefetching to improve world
wide web latency. SIGCOMM Comput. Commun. Rev., 1996.

[6] Tong Sau Loon and Vaduvur Bharghavan. Alleviating the latency and bandwidth
problems in www browsing. In Proc. of the USENIX Symposium on Internet
Technologies and Systems, pages 20–20, 1997.

[7] Kelvin Lau and Yiu-Kai Ng. A client-based web prefetching management system
based on detection theory. In Web Content Caching and Distribution, volume
3293 of Lecture Notes in Computer Science, pages 129–143. Springer Berlin
Heidelberg, 2004.

[8] H Falaki et al. Diversity in smartphone usage. In Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services, MobiSys ’10,
pages 179–194, 2010.

[9] The Livelab Project. livelab.recg.rice.edu/index.html.
[10] William Lidwell, Kritina Holden, Jill Butler. Universal Prinicples of Design.

Rockport Publishers, 2003.
[11] Anonymous Microsoft Web Data Data Set. archive.ics.uci.edu/ml/datasets/

Anonymous+Microsoft+Web+Data.
[12] Feng Qian et al. Web caching on smartphones: ideal vs. reality. In ACM MobiSys,

2012.
[13] F. Rebecchi et al. Data offloading techniques in cellular networks: A survey. IEEE

Communications Surveys Tutorials, 17(2):580–603, ’15.
[14] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Augmenting

mobile 3g using wifi. In ACM MobiSys, 2010.
[15] Ruckus 3G/4G oFFload. www.ruckuswireless.com/carriers/3g-offload.
[16] B. D. Higgins et al. Informed mobile prefetching. In ACM MobiSys’12.
[17] J. Han et al. Network agile preference-based prefetching for mobile devices. In

IEEE International Performance Computing and Communications Conference
(IPCCC), pages 1–8, Dec 2014.

[18] S. Sanadhya et al. Asymmetric caching: improved network deduplication for
mobile devices. In Proc. of MobiCom, 2012.

[19] E. Cuervo et al. Maui: making smartphones last longer with code offload. In
ACM MobiSys, 2010.

6

www.arubanetworks.com/pdf/solutions/SB_Offload.pdf
livelab.recg.rice.edu/index.html
archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data
archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data
www.ruckuswireless.com/carriers/3g-offload

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Case for Action-Based Prefetching

	3 The Precog Solution
	4 Evaluation
	4.1 Synthetic traces:
	4.2 User traces:

	5 Related work
	6 Discussion and Future Work
	7 Conclusion
	References

