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ABSTRACT
Intrinsic Human-In-The-Loop Reinforcement Learning (HITL-RL) is
an approach to obtain the human feedback implicitly by capturing
brain waves through the use ofwearable electroencephalogram (EEG)
headsets. It can significantly accelerate the training convergence
of RL algorithms while reducing the burden placed on the humans
involved in the training loop. While a human naturally observes
the performance of an RL agent, any erroneous behavior of the
agent can be recognized through the error-potentials1 (ErrP) in the
EEG signal. This information can then be incorporated into the
reward function of the RL algorithm to accelerate its learning. The
detection accuracy of the error-potentials thus significantly affects
the convergence time of the RL algorithm. The focus of this work
is the reliable detection of error-potentials using the brain waves of
the user detected using only an off-the-shelf EEG wearable. We first
present a new error-potential decoding algorithm that leverages the
spatial, temporal, and frequency-domain characteristics of the EEG
signals. We develop three Atari-like game environments and recruit
25 volunteers for evaluation. The proposed algorithm achieves an
accuracy performance of 73.71% (an improvement of 8.11% over the
current state-of-the-art algorithm). We then show that a modified
algorithm that intelligently discards low-confidence estimates is
capable of boosting the accuracy to 79.51% (16.63% improvement).
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1 INTRODUCTION
Reinforcement Learning (RL) algorithms have become an integral
part of end-user applications, including autonomous systems (e.g.,
recommendation engines, self-driving cars, etc.), and robotics where
the primary purpose of such systems is to understand and act in
unseen environments. However, training an RL algorithm for a real-
world task is challenging due to the high-dimensional state-space,
1ErrP and error-potential are used interchangeably in this work
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Figure 1: End-to-end system architecture design for the mo-
bile HITL-RL, along with an illustration of the use case.

sparsity of reward functions, and the inherent requirement of a
large number of training samples. In this context, HITL-RL (Human-
In-The-Loop Reinforcement Learning) is a practical approach to
significantly accelerate the learning and the convergence rate of RL
algorithms. Methods like inverse RL (or learning through demon-
strations), explicit human feedback (through labels, ratings, etc.)
could reduce the search space or supplement the rewards, making
the algorithm train more efficiently [1, 2]. Such approaches despite
being effective, raise a conflict between the need to increase the
richness of the reward function and minimizing the burden placed
on the human to generate such rewards.

This has inspired the paradigm of intrinsic HITL-RL, where the
human feedback is obtained intrinsically by capturing their brain-
waves through the use of wearable electroencephalogram (EEG)
headsets. While the human is silently observing the RL agent per-
forming an incorrect (or suboptimal) action, the error-processing
system inside the human brain elicits a natural reaction as a biologi-
cal response for recognizing and possibly correcting the error [3–5].
This natural reaction is manifested in the form of error-potentials
(also known as ErrPs) in the captured EEG through the wearable
EEG headset. This approach allows us to obtain human feedback
without requiring any explicit actions, thus significantly reducing
the burden placed on human subjects. The recognized erroneous
behavior of the agent is fed to the RL algorithm’s reward function
to improve the performance and the convergence rate. An illus-
tration is shown in Fig. 1 (top-left), where a human is wearing an
EEG headset, silently observing (and assessing) a computer agent
interacting with a computer game environment.

Since EEG signals represent a myriad of brain activity and thus
are inherently noisy, the estimation of error-potentials is not fully
reliable. Inaccurate detection of the error-potential (both false pos-
itives and false negatives) could misguide the RL agent, and neg-
atively impact the convergence time of the RL algorithm. An ac-
curacy rate of as low as 60% could make the HITL-RL paradigm
completely ineffective (explained in section 3.2).
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The focus of this work is the reliable detection of intrinsic reac-
tions (specifically, error-potentials) using the brain waves of the
user detected using only an off-the-shelf EEG wearable. The state-
of-the-art algorithm2 for error-potential detection [6, 7] leverages
the spatial distribution of the EEG signal power and performs with
an average accuracy of 68.17% (more details in section 4.2). We
propose a new algorithm to accurately detect error-potentials lever-
aging the spatial, temporal, and frequency-domain characteristics of
the observed brain potential and demonstrate the gain in accuracy,
among other metrics. In addition to this, our proposed algorithm
is also capable of trading-off accuracy with sample efficiency, dis-
carding the low-confidence estimations, and hence boosting the
accuracy rate. We design three Atari-like game environment and
collect the dataset of a total of 25 human volunteers to evaluate
the performance of the proposed algorithm, and compare with the
state-of-the-art algorithm for error-potential detection [6]. Our
proposed algorithm performs with an average accuracy of 79.51%
(a 16.63%) improvement over the baseline algorithm, achieving a
training convergence with a 1.8x acceleration rate. We have made
the source code for the implementation publicly available3.

The rest of the paper is organized as follows. In section 2, we first
provide some background information on EEG and error-potentials.
We then present the use case and the end-to-end system architecture
for a mobile HITL-RL. In section 3, we describe our system setup
and data collection process, alongside outlining the motivation of
our paper. We also present the baseline ErrP detection algorithm
[6]. In section 4, we describe the proposed algorithm, and evaluate
and compare the performances over the collected dataset. Finally,
in section 5, we conclude the paper.

2 A CASE FOR HITL-RL IN MOBILE SYSTEMS
2.1 EEG and Error-related Potentials
EEG is the recording of the electrical activity of the brain using
electrodes that are placed on a user’s scalp, first recorded by Hans
Berger in 1929. This electrical activity is the result of synchronized
electrical firings of billions of neurons inside the brain responsible
for the processing and communication of massive amounts of in-
formation. The raw analog electric potentials are tapped by placing
electrodes (conductive disks, often mounted in a fabric cap) over
the human scalp. The raw signals are further digitized and ampli-
fied through appropriate sensing hardware. The measurement and
processing of such potentials provide a window into a myriad of
activities inside the brain, including emotions, perception, attention,
engagement, etc [8–10].
Wearable solutions for EEG recording: The advancements in
the hardware and sensor design have made consumer-grade wear-
able EEG headsets commercially relevant. With EEG headsets like
Neurosky Mindwave, Emotiv EPOC+, Muse, OpenBCI, EEG signals
can be reliably tapped into by the user wearing the headset [11],
digitized and communicated over a wireless link to a mobile device.
Error-related Potentials (ErrP): ErrP is a negative potential that
is detected through EEG when the subject perceives or recog-
nizes an error during a task [12] (Fig. 2(right)). According to [13],

2we also refer to the state-of-the-art algorithm as baseline algorithm
3https://github.com/meagmohit/errp_decode

Figure 2: The left figure shows the Anterior Cingulate Cor-
tex (ACC), the point of origin of the error-potential. The
right figure shows the error-potentials over time-domain
captured through a wearable EEG headset. The colored lines
represent the recordings from different subjects, and the
solid black line represents the average over all the subjects.

the elicited ErrP is maximally negative at around 50 ms after the
occurrence of the perceived error. The origin of ErrP has also
been mapped to the Anterior Cingulate Cortex (ACC) in the brain
[14] (Fig. 2(left)). ErrPs have been studied in the context of Brain-
Computer Interfaces (BCI) as a mechanism for feedback when the
user perceives an error [15].

2.2 Use case and System Architecture of
HITL-RL in mobile systems

The paradigm of HITL for learning systems enables the training
of artificial agents to adapt to novel situations. Computer games
are used as a proxy for the complex environment since they are
the fertile ground for the definition, understanding, and improve-
ment of learning algorithms in a low overhead and speedy fashion.
The paradigm of HITL leverages information-rich human knowl-
edge as feedback for reward shaping in RL algorithms. The human
feedback can be obtained by explicit questionnaires (e.g., ratings,
reviews, labeling, etc.) or extracted implicitly from user behavior
or reactions (for instance, error-potentials). The proliferation of
consumer-grade EEG headsets has made it increasingly easier to
capture such implicit feedback. Most of the commercial EEG head-
sets connect to smartphones seamlessly via Bluetooth Low Energy
(BLE) and operate in a completely wireless manner both for power
and communication (e.g., Muse, EPOC+) while being comfortable
and aesthetically appealing to the user.

Since games can be deployed on mobile systems, and the EEG
can be captured through wearables, this presents an interesting
and ubiquitous use case to continuously collect EEG-based feed-
back through wearables and smartphones and to augment the RL
algorithms. Current smartphones are equipped with powerful pro-
cessors (and even GPUs), capable of performing on-device error-
potential detection. Reliable and persistent connectivity of mobile
devices to the Internet can be used for sending such labels to a
central repository server, where the learning algorithms can be
improved. An illustrative use case is the use of EEG data from a
user observing an online game on a smartphone (similar to a user
watching an advertisement on her mobile device). In game settings
similar to the environments described in this paper, the game states
can be attributed and synchronized with captured EEG signals.
With proper detection of ErrP, a learning algorithm can utilize it as
a reward function to learn the optimal strategy for that game.
End-to-end System Architecture The mobile HITL-RL system
envisioned consists of three main components (as shown in Fig.
1): (i) wearable device, (ii) mobile device, and (iii) cloud server. The
4NOOP (No Operation) - the agent does not take any action at a particular time-step
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Game Environment Goal Action space Start/restart sequence
Maze 10x10 grid with agent and target 2D navigation to a fixed target ←, ↓, ↑,→ Maze is fixed for all instances.
Catch 10x10 gridwith egg and basket. Egg falls

one grid each timestep.
1D navigation by the basket to
catch the egg at the right time.

NOOP4, ←,
→

Egg starts at a random horizontal
position from the top.

Wobble 1x20 grid with cursor and target 1D navigation to reach the target ←,→ Agent spawns at center of screen
and target within 3 blocks of agent.

Table 1: Description of the game environments

wearable device captures and timestamps the EEG signals, and ships
the digitized signals to the user’s mobile device through a wireless
link. The mobile device renders the game and collects the EEG data
from the wearable device. The collected timestamped EEG data is
properly attributed and synchronized with the mobile game state.
The EEG signals are processed on the mobile device using the
proposed error-potential decoding algorithm. The decoded EEG
labels are sent to a cloud server which executes appropriate RL
algorithms (e.g., Q-learning, Deep RL, etc.) incorporating the EEG-
based human feedback.

2.3 Related work
Error-potentials in EEG signals are studied under two paradigms
in human-machine interaction tasks, (i) feedback and response Er-
rPs: error made by humans [16], (ii) interaction ErrPs: errors made
by machines in interpreting human intent [17]. There are several
works that propose the use of ErrP from a passive (or silent) hu-
man observer as feedback to a learning system. In [3], a simple
robotic system that performs a binary selection task using ErrP
as feedback is studied both in open and closed-loop settings. This
enables ErrPs to be used as a supplementary reward for the Q-
learning[4] or deep Reinforcement Learning (RL) algorithm[5]. The
use of error-potentials in human-computer interaction tasks, or
for the acceleration of RL algorithms is underpinned upon the ac-
curate detection of the error-potentials. Several approaches have
been proposed in the literature to decode the error-potentials. [18]
demonstrated the possibility of continuous and asynchronous de-
tection of ErrP, while [17] proposed a statistical classifier. The
state-of-the-art error-potential decoding algorithm relies on Rie-
mannian geometry framework and was proposed by Baranchant
et al [6]. It was later successfully applied for various classification
paradigms in BCIs, namely, motor imagery, P300, SSVEP, etc. We
provide an explanation of the above algorithm in section 8, and
compare it with the proposed algorithm in section 4.2.

3 THE PROBLEM AND BASELINE
ALGORITHM

3.1 System setup and data collection
We consider a setup where a human is wearing an EEG headset,
silently observing (and assessing) a computer agent interacting
with a computer game environment. The human’s intrinsic reac-
tions to the agent’s behavior are sensed by a wearable EEG headset
and monitored through the error-potentials. We use OpenBCI Cy-
ton5 platform along with BIOPAC CAP100-C (16-channels) as the
wearable headset to collect and timestamp the EEG data. The game
environments are designed in OpenAI Gym[19], where the infor-
mation regarding the current state of the game and the actions
5https://www.openbci.com

taken by the agent is transmitted over the TCP port. OpenViBE[20]
continuously listens to the TCP port, and synchronizes with the
EEG data according to the timestamps. We have developed three
Atari-like game environments, namely, Wobble, Catch, and Maze
(Fig. 3 (left)), explained in Table 1.
Data Collection: Subjects were asked to sit comfortably in front of
a computer screen and to wear the EEG headset. We used electrode
gel to establish surface contact between electrodes and the scalp.
The electrodes used were Fp1, Fp2, Fpz, F3, F4, F7, F8, Fz, C3, C4,
Cz, P3, P4, Pz, O1, and O2 (as per the 10-20 electrode system). After
setup, an OpenBCI GUI software was used to verify the signal
quality manually. The duration of each experiment was limited to
less than 15 minutes per session with the agent taking actions once
every 1500 ms. A total of 25 subjects were recruited for the data
collection, with 12 subjects for the Maze game, 7 subjects for the
Catch game, and 6 subjects for the Wobble game. All the research
protocols for the user data collection were reviewed and approved
by the Georgia Tech Institutional Review Board.

3.2 Motivation and Problem Statement
A simple yet effective strategy to incorporate human feedback in
learning algorithms is reward shaping [21], where the human feed-
back is added to the reward function to guide the learning agent. In
our case, human feedback is obtained in the form of error-potentials,
on the actions taken by the machine agent while interacting with
a game environment. This approach has been previously applied
in the context of error-potentials based rewards [5]. If an error-
potential is detected, a negative penalty is added to the reward
function, to prevent such sub-optimal actions in the future. In [5], it
has been shown that this approach can significantly accelerate the
training convergence of the RL agent. We obtained the code from
the authors and performed a sensitivity analysis of the acceleration
performance for Maze game as per the classification accuracy of
error-potentials. We present the performance degradation in accel-
eration in Fig. 3 (right). The current state-of-the-art error-potential
detection algorithm [6] performs with an average accuracy of 68%,
requiring 1̃40 episodes6 to master the Maze game, accounting for
1.22x acceleration. However, for an average detection accuracy of
80% the training convergence could boost up to 1.8x acceleration.
Problem Statement: Our goal in this paper is to improve the
accuracy of the error-potential decoding algorithm, enabling higher
convergence rates for the RL algorithms. Despite the attractive
performance rate of [6], there is a significant room for improvement.
We define the formal problem statement as follows, for a given
labeled training data (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛), and a raw EEG sample, 𝑋𝑡𝑒𝑠𝑡 ,
the problem statement is to label the 𝑋𝑡𝑒𝑠𝑡 , as “ErrP” or “non-ErrP”

6episodes are defined as the full gameplay until the player wins the game
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Figure 3: The left figure shows the screenshot of the Maze
game, and the right figure shows the RL acceleration as per
the accuracy of error-potential detection
with higher accuracy and high confidence in comparison with the
state-of-the-art algorithm.

3.3 Baseline (State-of-the-art) algorithm

Algorithm 1: Riemannian Geometry based ErrP classifica-
tion algorithm [6]
Input : raw EEG signals (X)

1 𝑋𝑓 ← filtering(𝑋 , 𝑓 𝑟𝑒𝑞_𝑏𝑎𝑛𝑑 , 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 ) ;
2 𝑋𝐶 ← covariance(𝑋𝑓 ) ;
3 𝑋𝐷 ← electrode_select (𝑋𝐶 , 𝑛𝑒𝑙𝑒𝑐) ;
4 𝑋𝑇 ← tangent_space(𝑋𝐷 ) ;
5 𝑋𝑁 ← normalization(𝑋𝑇 , norm="l1") ;
6 𝑠𝑐𝑜𝑟𝑒 ← elasticnet (𝑋𝑁 , 𝜆1, 𝜆2) ;
7 if 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑡ℎ then return True ;
8 else return False. ;
The algorithm parameters are explained in section 8

The principal idea in this approach is underpinned on the as-
sumption that spatial distribution and power of the signal remain
unaltered for a specific mental activity, which can be captured using
the covariance matrix. Since the space of the covariance matrices is
a subspace of Symmetric Positive Definite (SPD) matrices, it forms
a differentiable Riemannian manifold. In this manifold, (i) the tan-
gent space has an inner product that varies smoothly, and (ii) the
distance between two points can be computed using Riemannian
distance (or geodesic, 𝛿𝑅 ) defined as,

𝛿𝑅 (𝐶1,𝐶2) = | |𝑙𝑜𝑔(𝐶−11 𝐶2) | |𝐹 =

[
𝑛∑
𝑖=1

𝑙𝑜𝑔2 (𝜆𝑖 )
] 1
2

(1)

Here, 𝐶1 and 𝐶2 represent the covariance matrices (corresponding
to different data trials). | |.| |𝐹 represents Frobenius norm, and 𝜆𝑖 rep-
resents the 𝑖𝑡ℎ eigenvalue of𝐶−11 𝐶2. One of the unique properties of
this space is, 𝛿𝑅 (𝑊𝑇𝐶1𝑊,𝑊𝑇𝐶2𝑊 ) = 𝛿𝑅 (𝐶1,𝐶2), for all invertible
SPD𝑊 , implying that this space is invariant by projection (and
hence less prone to noise and imperfect cap placements). The full
algorithm is presented in Algorithm 1 and is explained below.
Algorithm Description: (Step 1) Firstly, the raw EEG data is
bandpass filtered in a frequency range (𝑓 𝑟𝑒𝑞_𝑏𝑎𝑛𝑑) of [0.5, 40]
Hz, and epochs of 800ms duration were extracted relative to the
pre-stimulus 200ms baseline. The epochs were then spatially fil-
tered with “xDAWN Spatial Filter” [22–24]) to improve the signal to
signal plus noise ratio (SSNR), where 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 corresponds to
the Xdawn components used to decompose the data for each event

type. (Step 2) A covariance matrix is computed accounting for the
spatial distribution of the signal power. (Step 3) As the raw input
signal is high-dimensional, the spatially filtered signals are reduced
to fewer relevant channels (𝑛𝑒𝑙𝑒𝑐) using a backward elimination
principle based on the Riemannian distance between spatial covari-
ance matrices as the selection criterion [25]. (Step 4) The reduced
covariance matrix is projected into the tangent space, allowing to
manipulate features in the Euclidean space [6, 7]. (Step 5, 6) Finally,
the features in the tangent space (𝑋𝑇 ) are normalized using the L1
norm, and subjected to a linear regression model with L1 (𝜆1) and
L2 (𝜆2) penalties. If the output of linear regression crosses the preset
threshold (𝑠𝑐𝑜𝑟𝑒_𝑡ℎ), the signal is labeled as an ErrP. 𝑠𝑐𝑜𝑟𝑒_𝑡ℎ is set
offline through maximizing accuracy over training samples.

4 EFFECTIVE DECODING OF BRAINWAVES
4.1 Proposed Algorithm
The baseline algorithm relies only on the spatial distribution of the
scalp potentials (through the estimation of the covariance matrix)
to classify the error-potentials. In practical situations, the error-
potentials are not exactly time-locked, and manifest phase jitters
due to the shift in user focus, synchronization issues, etc, resulting
in reduced classification performance. Further, the distribution of
power across time- and frequency-spectrum is known to provide
additional information regarding the associated mental activity.
We supplement the spatial- domain features along with the time-
and frequency- domain features and we efficiently combine the
information across these three dimensions based on a soft-voting
based ensemble approach (presented in Algorithm 2).
Algorithm Description: The pre-processing steps (Step 1) and
spatial filtering steps (Step 2-5) are similar to Algorithm 1. (Step 6)
In spatial filtering, we use a squared hinge loss along with L1 and
L2 penalties, and obtain the calibrated confidence scores (𝑝𝑠 ) for
spatial-domain based prediction based on [26].
Frequency-domain features: (Step 7) A multi-taper spectral estima-
tion method [27] within 400ms to 1000ms time window (𝑡𝑖𝑚𝑒𝑓 )
after stimulus onset is used to compute the power densities in 1-15
Hz frequency interval (𝑓 𝑟𝑒𝑞𝑓 ). (Step 8) The obtained power spectral
values are converted to a logarithmic scale (dB). (Step 9) A linear-
kernel based Support Vector Machine (SVM) with a small-margin
hyperplane is used to classify the frequency-based features, and
the confidence scores (𝑝 𝑓 ) are estimated using Platt scaling [28].
Time-domain features: (Step 8) The spatially filtered signals are
divided into multiple buckets (𝑏𝑢𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒) of 50ms each. (Step
9) We compute the average amplitude of each bucket as the raw
features representing time-domain variations in error-potentials.
(Step 9-10) The mean amplitude based features are normalized
using L2 norm, before feeding them to the linear SVM. Similar to the
frequency-domain pipeline, we compute the probability estimations
(𝑝𝑡 ) representing the prediction confidence.
Ensemble classification: We use a soft voting based ensemble classi-
fication to predict the “ErrP” or “non-ErrP” class. In this method, we
average the classification probability i.e. 𝑝𝑡 , 𝑝 𝑓 and 𝑝𝑠 to compute
the final estimation probability, 𝑝 . To improve the overall detec-
tion performance of the system, we discard the low-confidence
predictions. We define a parameter, probability threshold (𝑝𝑡ℎ), to
identify the low-confidence predictions. If the ensemble classifier



prediction probability (i.e., 𝑝) lies between [1−𝑝𝑡ℎ , 𝑝𝑡ℎ], we discard
the corresponding samples.

Algorithm2: Proposed algorithm for classification of error-
potentials
Input : raw EEG signals (X)

1 𝑋𝑓 ← filtering(𝑋 , 𝑓 𝑟𝑒𝑞_𝑏𝑎𝑛𝑑 , 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 ) ;
/* Spatial Filtering */

2 𝑋𝑆
𝐶
← covariance(𝑋𝑓 ) ;

3 𝑋𝑆
𝐷
← electrode_select (𝑋𝑆

𝐶
, 𝑛𝑒𝑙𝑒𝑐) ;

4 𝑋𝑆
𝑇
← tangent_space(𝑋𝑆

𝐷
) ;

5 𝑋𝑆
𝑁
← normalization(𝑋𝑆

𝑇
, norm="l1") ;

6 𝑝𝑠 ← linear_classification(𝑋𝑆
𝑁
, 𝜆1, 𝜆2) ;

/* Frequency-domain */

7 𝑋 𝐹
𝑇
← multitaper_PSD(𝑋𝑓 , 𝑡𝑖𝑚𝑒𝑓 , 𝑓 𝑟𝑒𝑞𝑓 );

8 𝑋 𝐹
𝑁
← log_normalization(𝑋 𝐹

𝑇
) ;

9 𝑝 𝑓 ← svm(𝑋 𝐹
𝑁
) ;

/* Time-domain */

10 𝑋𝑇
𝐵
← time_bucketing(𝑋𝑓 , 𝑏𝑢𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒);

11 𝑋𝑇
𝑃
← average_power(𝑋𝑇

𝐵
);

12 𝑋𝑇
𝑁
← normalization(𝑋𝑇

𝐵
, norm="l2") ;

13 𝑝𝑡 ← svm(𝑋𝑇
𝑁
) ;

/* Ensemble Learning */

14 𝑝 ← soft_voting (𝑝𝑠 , 𝑝 𝑓 , 𝑝𝑡 ) ;
15 if 𝑝 > 𝑝𝑡ℎ then return True ;
16 else if 𝑝 < 1 − 𝑝𝑡ℎ then return False ;
17 else return None. ;
The algorithm parameters are explained in section 4.1

4.2 Evaluation
Here, we evaluate the performance of the proposed error-potential
decoding algorithm, and compare it with the baseline algorithm.
Methodology: The code for the baseline algorithm was obtained
from the public GitHub repository of the authors7. For the proposed
algorithm, we have set the 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑜𝑟𝑑𝑒𝑟 to 4 (for xDAWN Spatial Fil-
tering), and, 𝜆1 and 𝜆2 to 0.001 and 0.02, respectively. The proposed
algorithm is evaluated over the probability threshold parameter
𝑝𝑡ℎ . The algorithms are evaluated on the data collected for three
environments, namely Maze, Catch, and Wobble (as explained in
section 3.1). The evaluation was performed using a 10-fold cross-
validation scheme, and a separate classifier is used for each subject
and each game. We also present the overall performance over all
the subjects and the game environments.
Metrics:We employ four different metrics to evaluate the perfor-
mance gain of the proposed algorithm over the baseline algorithm.
(i) Accuracy presents the average accuracy of both classes (ErrP
and non-ErrP). (ii) F1 Score is the harmonic mean of recall and
precision of the ErrP class, and provides an unbiased measure in
the case of uneven class distribution. (iii) Area Under Curve (AUC)
computes the area under the receiver operating characteristic curve
and provides a measure of separability of the two classes. Finally,

7https://github.com/alexandrebarachant/bci-challenge-ner-2015

(iv) Sample Efficiency provides the percentage of data samples that
can be confidently assigned to one class. Note that sample efficiency
is 100% for the baseline algorithm, and proposed algorithm with
𝑝𝑡ℎ = 0.5, since none of the samples are discarded (i.e., all the
samples are assigned to one of the classes). The sample efficiency
decreases when 𝑝𝑡ℎ is increased over 0.5.
Performance: We present the overall detection accuracy of the
proposed algorithm and compare it with the baseline in Fig. 4.
The proposed algorithm without discarding any samples (𝑝𝑡ℎ=0.5)
performs with an average accuracy of 73.71% (± 6.81), an 8.11% im-
provement over the state-of-the-art. The accuracy is further boosted
to 77.47% (13.6% improvement) and 79.51% (16.63% improvement)
by increasing the 𝑝𝑡ℎ (dropping the low confidence samples) to 0.6
0.7 respectively. This improvement is achieved at the cost of sample
efficiency of 88% (±6.01) and 72.3% (±13.33), for the 𝑝𝑡ℎ value of 0.5
and 0.6 respectively (as shown in Fig. 7). Among all three games,
the accuracy rate of the Maze game (77.28%) is higher pertaining to
its simple and intuitive user interface.

Fig. 5 presents the cumulative distribution of the accuracy over
a total of 25 recordings. It can be noted that for 50% of samples,
the baseline algorithm performs over 70%, while the proposed algo-
rithm (with 𝑝𝑡ℎ=0.5) performs over 80%. This trend is more clearly
seen in Fig. 5, where the cumulative distribution of the proposed
algorithm with higher 𝑝𝑡ℎ lies over those with lower 𝑝𝑡ℎ and the
baseline algorithm below all other. In Fig. 8, we present the cumula-
tive distribution of sample efficiency over all subjects. The baseline
algorithm and proposed algorithm (with 𝑝𝑡ℎ = 0.5) perform with
100% sample efficiency since no sample is dropped. However, in-
creasing the low-confidence threshold range, i.e., 𝑝𝑡ℎ , the sample
efficiency reduces. For 𝑝𝑡ℎ = 0.6, the sample efficiency is above 85%
for at least 75% of the users, making the algorithm practical and
universal for subjects. With 𝑝𝑡ℎ = 0.7, the classifier performs with
very high accuracy, with a sample efficiency of over 50% for more
than 90% of the users. This simply translates to the fact that one out
of two error-potential can be effectively labeled with this approach.

The improvement in performance can also be observed from Fig.
9 in the AUC scores where the overall average over three games is
74.4% for baseline algorithm and 83.2% with 𝑝𝑡ℎ = 0.7 for proposed
algorithm (9% improvement). Since the AUC score is independent
of the classification threshold, we can see that the AUC score of the
proposed algorithm for various values of 𝑝𝑡ℎ is similar. A similar
trend is observed from Fig. 6 in the F1 scores with over 20% increase
on average on all three games.

5 CONCLUSIONS AND FUTUREWORK
The context of this paper is the reliable detection of intrinsic reac-
tions using the brain waves of the user detected using only an
off-the-shelf EEG wearable. For Human-In-The-loop Reinforce-
ment Learning (HITL-RL) systems, the detection accuracy of error-
potentials plays a significant role in the convergence time of the RL
algorithm. We present a new ErrP decoding algorithm leveraging
multi-dimensional aspects of the EEG (namely, spatial, frequency,
and time-domain) to increase the accuracy of detecting ErrP. The
proposed algorithm is capable of selective use of high-confidence
estimates to further improve the accuracy at the expense of sample
efficiency. We also provide the system architecture consisting of
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Figure 9: Area Under Curve

a wearable EEG headset with a mobile device and a cloud server
utilizing intrinsic human brain potentials to achieve acceleration
in convergence time of RL algorithms.

We plan to extend the study of HITL-RL for a variety of complex
game environments. The cost of sample efficiency (discarding low-
confidence samples) and the effect of the difficulty of the games on
the accuracy of ErrP are the subjects of future study.
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