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Abstract—The IEEE 802.11be extremely high throughput
(EHT) amendment (commercially known as Wi-Fi 7) aspires to
further improve the network performance on data rate, latency,
and reliability. As a core capability in the IEEE 802.11be EHT
amendment, multi-link operation (MLO) defines the multi-link
device (MLD) architecture with the simultaneous transmit and
receive (STR) functionality for both station (STA) and access
point (AP) to achieve concurrent operations across multiple
available links. To unleash the full potential of MLO, it is essential
that the AP MLD create proper dynamic traffic steering for
STA MLDs. Therefore, in this paper, we consider MLO with the
STR functionality and propose two application-agnostic model-
free dynamic traffic steering methods. Specifically, we develop
an adaptive scoring heuristic algorithm based on a normalized
weighted score featuring lightweight computational complexity
and a deep reinforcement learning (DRL) approach based on
standard soft actor-critic (SAC) featuring robust adaptability.
Simulation results demonstrate the effectiveness of the proposed
model-free dynamic traffic steering methods in terms of reward
convergence and average network throughput. Besides, we in-
vestigate the load balancing ability of the proposed model-free
dynamic traffic steering methods.

Index Terms—Multi-link operation (MLO), dynamic traffic
steering, adaptive scoring, deep reinforcement learning (DRL),
soft actor-critic (SAC)

I. INTRODUCTION

Over the past two decades, Wi-Fi has been a widely adopted
wireless local area network (WLAN) technology, providing
ubiquitous connectivity around the globe. As new applica-
tions with more stringent requirements increasingly emerge
in highly dense and congested wireless networks, the IEEE
802.11be extremely high throughput (EHT) amendment, which
will be commercialized as Wi-Fi 7, proposes several advanced
features to support high data rate, low latency, and high
reliability for various scenarios [1].

Among the advanced features proposed in the IEEE
802.11be EHT amendment, multi-link operation (MLO) [2]
defines a new architecture called multi-link device (MLD)
with the simultaneous transmit and receive (STR) functionality
toward concurrent operations across multiple available links
for both station (STA) and access point (AP). Specifically,
an STA MLD or an AP MLD possesses multiple interfaces,
each of which manages an available link, to enable MLO.
For an exploration of MLO, some previous works study its
performance in terms of latency, reliability, and throughput

(e.g., [3]–[5]), while some others investigate the coexistence
of MLDs and legacy devices (e.g., [6]–[8]).

In order to take full advantage of MLO, the AP MLD
needs to create proper dynamic traffic steering by dynamically
determining the traffic steering portion of each available link,
which is the portion of unallocated packets to be steered
to each available link, for every STA MLD according to
given information. Making this determination is challenging
in practice, due to the complexities of throughput models in
modern Wi-Fi networks and lack of knowledge of various
parameters that affect traffic steering across available links,
such as congestion levels and traffic patterns. It is thus critical
to design dynamic traffic steering methods that are model-free,
meaning that they can adapt to changes in the environment
without explicit knowledge or modeling.

There are several previous works on dynamic traffic steering
for MLO with regard to downlink (DL) traffic. The authors
of [9] propose a multi-link congestion-aware load balancing
(MCAB) dynamic traffic steering policy where the traffic
steering portion of each available link is proportional to the
remaining channel airtime. In [10], a deep reinforcement
learning (DRL) dynamic traffic steering strategy based on
modified soft actor-critic (SAC) [11] is proposed, selecting the
traffic steering portion of available links from a predetermined
finite discrete set for traffic from specific applications. How-
ever, the dynamic traffic steering techniques proposed in the
above previous works suffer from a constrained traffic steering
decision with limited possibilities and do not fully consider the
effect of dynamic parameters in a realistic Wi-Fi network.

In this paper, we consider MLO with the STR functionality
and propose two application-agnostic model-free dynamic traf-
fic steering methods, which determine a flexible traffic steering
portion according to multiple crucial factors in a computation-
efficient manner (compared to model-based methods) that is
favorable to an AP MLD with limited computational resources.
Particularly, we develop an adaptive scoring heuristic algo-
rithm based on a normalized weighted score with lightweight
computational complexity and a DRL approach based on
standard SAC [12] with robust adaptability. With sufficient
flexibility, the proposed model-free dynamic traffic steering
methods organically adapt to arbitrary MLO environments
across various network/traffic configurations.

The remainder of this paper is organized as follows. Sec.



II describes the system model and problem formulation. In
Sec. III, we introduce the proposed adaptive scoring heuristic
algorithm and analyze its computational complexity. In Sec.
IV, we deal with the problem from the DRL aspect and
introduce the proposed SAC-based DRL approach. Simulation
results and discussions are included in Sec. V. Finally, Sec.
VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and dynamic
traffic steering problem for MLO in Wi-Fi.

Consider an MLO-enabled Wi-Fi network with the STR
functionality that consists of an AP MLD and M STA MLDs
with uplink (UL) traffic. Each MLD is equipped with L
interfaces, which manage L available links. In a centralized
fashion, the AP MLD needs to employ its collective informa-
tion to create dynamic traffic steering coordinately across STA
MLDs, which are informed and scheduled by trigger frames
sent from the AP MLD, to steer unallocated UL packets to
available links. For each STA MLD, the UL packets that have
been allocated to its lth available link will be transmitted
from its lth interface to the lth interface of the AP MLD.
An illustration of the MLO-enabled Wi-Fi network described
above is shown in Fig. 1.

Fig. 1. An illustration of MLO-enabled Wi-Fi network, where Il represents
the lth interface and the solid lines between interfaces represent available links

To create proper dynamic traffic steering for every STA
MLD that maximizes the network throughput, the AP MLD
leverages multiple crucial factors such as signal-to-noise ratio
(SNR), number of allocated UL packets, and channel busy
time. For an available link, SNR reveals the channel quality,
number of allocated UL packets implies the load level, and
channel busy time indicates the channel occupancy.

Suppose there are T UL transmission windows where the
STA MLDs send allocated UL packets to the AP MLD over
available links. For the lth available link in the mth STA
MLD, we use ξm,l[t], pm,l[t], cm,l[t], and bm,l[t] to denote the
SNR, the number of allocated UL packets, the channel busy
time (measured from the previous UL transmission window),
and the number of UL packets to be allocated, respectively,
at the start of the tth UL transmission window, and xm,l[t]
and dm,l[t] the number of allocated UL packets that have

been transmitted and discarded, respectively, during the tth
UL transmission window, l = 1, 2, ..., L,m = 1, 2, ...,M, t =
1, 2, ..., T . Then, pm,l[t] can be expressed by the following
evolution equation:

pm,l[t] = max{pm,l[t−1]+bm,l[t−1]−xm,l[t−1]−dm,l[t−1], 0}. (1)

It should be noted that both the number of allocated UL
packets that have been transmitted xm,l and the number of
UL packets to be allocated bm,l depend on the SNR ξm,l, the
number of allocated UL packets pm,l, and the channel busy
time cm,l, i.e.,

xm,l = xm,l(ξm,l, pm,l, cm,l), (2)
bm,l = bm,l(ξm,l, pm,l, cm,l). (3)

At the start of each UL transmission window, there will be
unallocated UL packets in every STA MLD that need to
be steered to available links. According to the information
(ξm,l, pm,l, cm,l), l = 1, 2, ..., L,m = 1, 2, ...,M , the AP
MLD needs to determine the traffic steering portion αm,l ∈
[0, 1], which is the portion of unallocated UL packets to
be steered to the lth available link in the mth STA MLD.
Denote the network throughput during the tth UL transmission
window as δt, t = 1, 2, ..., T .

Based upon the above system model, we formulate the
following problem to be tackled in this work: Suppose there
are T UL transmission windows. At the start of the tth
UL transmission window, given SNR ξm,l[t], number of al-
located UL packets pm,l[t], and channel busy time cm,l[t],
determine the traffic steering portion of the L available
links for unallocated UL packets in the mth STA MLD,
(αm,1, αm,2, ..., αm,L) ∈ [0, 1]L, where

∑L
l=1 αm,l = 1, with

the objective of maximizing the average network throughput
1
T

∑T
t=1 δt over the T UL transmission windows.

III. ADAPTIVE SCORING HEURISTIC ALGORITHM

In this section, we propose an adaptive scoring heuristic
algorithm to the MLO dynamic traffic steering problem for-
mulated in Sec. II and analyze its computational complexity.

A. Algorithm Overview

For every STA MLD, the AP MLD needs to examine
each available link according to given information in order
to determine its MLO dynamic traffic steering, i.e., the traffic
steering portion of each available link, at the start of every
UL transmission window. Therefore, we develop an adaptive
scoring heuristic algorithm which assigns the traffic steering
portion to each available link based on a normalized weighted
score with the weight adapted in an iterative manner, as
illustrated in Algorithm 1.

Denote the weight for the lth available link in the mth STA
MLD as wm,l. To begin with, we initialize every weight as
unity, i.e., wm,l = 1, l = 1, 2, ..., L,m = 1, 2, ...,M .

For the mth STA MLD at the start of the tth UL transmis-
sion window, the AP MLD has the corresponding information
of SNR ξm,l[t], number of allocated UL packets pm,l[t], and
channel busy time cm,l[t] per available link, l = 1, 2, ..., L.



Algorithm 1: Adaptive Score-Based Traffic Steering
Initialization: wm,l = 1, l = 1, 2, ..., L,m = 1, 2, ...,M , δ′ = 0

for t = 1 : T
for m = 1 :M

Input: ξm,l[t], pm,l[t], cm,l[t], l = 1, 2, ..., L
for l = 1 : L
ηm,l[t] = 1/ξm,l[t]

end for
(ηm, pm, cm) =

∑L
l=1(ηm,l[t], pm,l[t], cm,l[t])

for l = 1 : L
(η̄m,l, p̄m,l, c̄m,l) = (ηm,l[t]/ηm, pm,l[t]/pm, cm,l[t]/cm)

ψm,l = wm,l/(1 + η̄m,l · p̄m,l · c̄m,l)

end for
ψm =

∑L
l=1 ψm,l

Output: (αm,1, αm,2, ..., αm,L) = (ψm,1, ψm,2, ..., ψm,L)/ψm

Ωm = {l′ : αm,l′ ≥ 1/L}
Obtain: δt
if t > 1

for l in Ωm
w′
m,l = wm,l

wm,l = min{max{w′
m,l · δt/δ′, wmin}, wmax}

end for
end if
δ′ = δt

end for
end for

Define the reciprocal of SNR as link poorness, which can be
expressed as

ηm,l[t] = 1/ξm,l[t]. (4)

To fairly accommodate the effect of three factors, link
poorness ηm,l[t], number of allocated UL packets pm,l[t], and
channel busy time cm,l[t], of different scales, we normalize
them into positive values within the same range between zero
and unity. Specifically, we compute the sum for each factor
across the L available links as

(ηm, pm, cm) =

L∑
l=1

(ηm,l[t], pm,l[t], cm,l[t]) (5)

and normalize the three factors for the lth available link as

(η̄m,l, p̄m,l, c̄m,l) = (ηm,l[t]/ηm, pm,l[t]/pm, cm,l[t]/cm). (6)

For each of the three normalized factors η̄m,l, p̄m,l, c̄m,l ∈
[0, 1], a larger value implies a more negative effect on the lth
available link. Accordingly, we use the product of the three
normalized factors, η̄m,l · p̄m,l · c̄m,l ∈ [0, 1], to represent their
joint effect on the lth available link. Note that the joint effect
η̄m,l ·p̄m,l · c̄m,l is null when any constitutive normalized factor
(which imposes a negative effect) is equal to a perfect zero.

For an assessment of the lth available link, we compute its
corresponding weighted score as

ψm,l = wm,l/(1 + η̄m,l · p̄m,l · c̄m,l), (7)

which is the weight wm,l over the discount term 1 + η̄m,l ·
p̄m,l · c̄m,l. It should be noted that the weighted score ψm,l is
equal to the weight wm,l when the product η̄m,l · p̄m,l · c̄m,l
is equal to zero, i.e., when the joint effect is null. Then, we
normalize the weighted score for an assignment of the traffic
steering portion. Namely, the traffic steering portion of the L
available links is computed as

(αm,1, αm,2, ..., αm,L) = (ψm,1, ψm,2, ..., ψm,L)/ψm, (8)

where ψm =
∑L
l=1 ψm,l is the sum of weighted scores across

the L available links.
Define a core link as an available link whose traffic steering

portion is greater than or equal to 1/L (the average traffic
steering portion across the L available links). Then, we denote
the set of indices of the core links as

Ωm = {l′ : αm,l′ ≥ 1/L}. (9)

At the end of the tth UL transmission window, we obtain
the network throughput δt. Since the core links play a more
significant role (compared to those which are not core links)
during the UL transmission window, we adapt their weight,
for a reflection of their performance, as

w
(t+1)
m,l = min{max{w(t)

m,l · δt/δt−1, wmin}, wmax} ∈ [wmin, wmax] (10)

for all l ∈ Ωm, where w
(t)
m,l and w

(t+1)
m,l are the values of

the weight wm,l for the tth and (t + 1)th UL transmission
windows, respectively, and wmin and wmax are the minimum
and maximum values of the weight, respectively. Intuitively,
the weight of the core links increases (or decreases) when they
lead to an increase (or a decrease) in the network throughput
between the current and previous UL transmission windows.

B. Computational Complexity

Following the technical overview of the proposed adaptive
scoring heuristic algorithm based on a normalized weighted
score (Algorithm 1), we analyze its computational complexity
for the MLO dynamic traffic steering of each STA MLD at
the start of a UL transmission window in terms of the number
of multiplications/divisions involved.

For each of the L available links, the calculation of link
poorness involves one division, the normalization of the three
factors (link poorness, number of allocated UL packets, and
channel busy time) involves three divisions, the computation
of a weighted score involves two multiplications and one
division, and the assignment of traffic steering portion (nor-
malization of weighted score) involves one division. For each
of the O(L) core links, the weight adaptation involves one
multiplication and one division.

Therefore, the total computational complexity of Algorithm
1 for the MLO dynamic traffic steering of each STA MLD
at the start of a UL transmission window is O(L). With
its lightweight computational complexity, Algorithm 1 is a
feasible solution to be deployed in the AP MLD.



IV. DEEP REINFORCEMENT LEARNING (DRL) APPROACH

In this section, we elaborate on how we deal with the
problem formulated in Sec. II from the DRL perspective and
propose an SAC-based DRL approach.

A. DRL on Dynamic Traffic Steering for MLO

While the proposed adaptive scoring heuristic algorithm
based on a normalized weighted score (Algorithm 1) features
lightweight computational complexity, its traffic steering por-
tion assignment depends on a simplified abstraction (in terms
of an adaptive weight and the discount term), which may not
fully delineate the underlying intricacies in MLO.

Considering the implicit complexities in MLO, we adopt
DRL, where the deployed agent learns to take an action ac-
cording to the observation under a trained policy by interacting
with the environment and receiving a reward. Specifically, we
deploy a DRL agent in the AP MLD, and the DRL agent learns
from the received reward after taking an action as a response
to the observation in an MLO-enabled Wi-Fi network.

In consequence, we convert the MLO dynamic traffic steer-
ing problem formulated in Sec. II into a DRL problem defined
by the following components, including observation, action,
and reward. For this DRL problem, we set an episode as a
collection of the T UL transmission windows, where each UL
transmission window is set as a step.

1) Observation: While a state of the environment can be
fully described by its constitutive properties, an ob-
servation perceived by a DRL agent during each step
consists of only a subset of these properties. During
the tth step, the DRL agent in the AP MLD perceives
an observation st = (s

(t)
1 , s

(t)
2 , ..., s

(t)
M ), where s

(t)
m =

(ξm,1[t], ξm,2[t], ..., ξm,L[t], pm,1[t], pm,2[t], ..., pm,L[t],
cm,1[t], cm,2[t], ..., cm,L[t]) corresponds to the SNR, the
number of allocated UL packets, and the channel busy
time associated with the L available links in the mth STA
MLD at the start of the tth UL transmission window.

2) Action: Based on its observation, a DRL agent takes an
action during each step to interact with the environment.
During the tth step, the DRL agent in the AP MLD
takes an action at = (a

(t)
1 , a

(t)
2 , ..., a

(t)
M ), where a

(t)
m =

(αm,1, αm,2, ..., αm,L)
(t) is the traffic steering portion of

the L available links in the mth STA MLD at the start
of the tth UL transmission window.

3) Reward: For this DRL problem, the DRL agent receives
a (dense) reward from the environment during each step
after taking an action and perceives the next observation.
During the tth step, we set the reward received by the
DRL agent in the AP MLD as rt = (δt − µt)/µt,
where µt is the benchmark network throughput of the
tth UL transmission window when unallocated packets
are evenly steered to each available link (whose traffic
steering portion is exactly 1/L). Accordingly, the DRL
agent in the AP MLD receives a positive (or negative)
reward rt when the achieved network throughput δt is
greater than (or less than) the benchmark throughput µt

during the tth step and perceives the next observation
st+1 = (s

(t+1)
1 , s

(t+1)
2 , ..., s

(t+1)
M ).

With the observation, action, and reward defined above, we
construct a DRL problem of dynamic traffic steering for MLO
to be addressed.

B. SAC-Based DRL Approach

For the DRL agent in the AP MLD, we adopt standard
SAC [12], which is a state-of-the-art DRL approach that has
been successfully applied to various DRL tasks, developing
an SAC-based DRL approach for the MLO dynamic traffic
steering, as illustrated in Algorithm 2.

Algorithm 2: DRL SAC-Based Traffic Steering

Initialization: θ, ϕ1, ϕ2, ϕ̂1 = ϕ1, ϕ̂2 = ϕ2, D = ∅
for t = 1 : T

Observation: st = (s
(t)
1 , s

(t)
2 , ..., s

(t)
M )

Action: at = (a
(t)
1 , a

(t)
2 , ..., a

(t)
M ) ∼ πθ(·|st)

Reward: rt = (δt − µt)/µt
Next observation: st+1 = (s

(t+1)
1 , s

(t+1)
2 , ..., s

(t+1)
M )

Store (st, at, rt, st+1) in D.
if t > U

Randomly sample {sj , aj , rj , s′j}Hj=1 from D.
for j = 1 : H

yj = rj + γ[ min
k=1,2

Qϕ̂k
(s′j , ã

′)− β · logπθ(ã
′|s′j)],

ã′ ∼ πθ(·|s′j)
end for
for k = 1 : 2

Update ϕk with GD by minimizing
Fϕk

= 1
H

∑H
j=1[Qϕk

(sj , aj)− yj ]
2.

end for
Update θ with GD by minimizing
Fθ =

1
H

∑H
j=1[ min

k=1,2
Qϕk

(sj , ãθ(sj))−
β · logπθ(ãθ(sj)|sj)], ãθ(sj) ∼ πθ(·|sj).
for k = 1 : 2
ϕ̂′k = ϕ̂k; ϕ̂k = ρ · ϕ̂′k + (1− ρ)ϕk

end for
end if

end for

In the beginning, we initialize a policy πθ with parameter θ
(actor), two Q-networks Qϕ1

and Qϕ2
with parameters ϕ1 and

ϕ2 (critics), two target networks Qϕ̂1
and Qϕ̂2

with parameters
ϕ̂1 and ϕ̂2, and an empty replay buffer D.

During the tth step, the DRL agent in the AP MLD
perceives an observation st, takes an action at ∼ πθ(·|st),
receives a reward rt, and perceives the next observation st+1

for the next step. Then, an experience tuple (st, at, rt, st+1)
is stored into the replay buffer D.

After the first U steps, the parameters θ, ϕ1, ϕ2, ϕ̂1, and ϕ̂2
maintained by the DRL agent in the AP MLD will be updated
for each step. During each update, we randomly sample a mini-
batch of H experience tuples {(sj , aj , rj , s′j)}Hj=1 from the



replay buffer D. With the jth experience tuple (sj , aj , rj , s
′
j),

we compute the jth target as

yj = rj + γ[ min
k=1,2

Qϕ̂k
(s′j , ã

′)− β · logπθ(ã
′|s′j)], ã′ ∼ πθ(·|s′j), (11)

where γ ∈ [0, 1] is the discount factor and β ∈ [0, 1] is
the automatically tuned entropy regularization coefficient for a
control of the explore-exploit tradeoff. For the two Q-networks
Qϕ1

and Qϕ2
(critics), we update their parameters ϕ1 and ϕ2

with gradient descent (GD) by minimizing the loss function

Fϕk
=

1

H

H∑
j=1

[Qϕk
(sj , aj)− yj ]

2, for k = 1, 2. (12)

For the policy πθ (actor), we update its parameter θ with GD
by minimizing the loss function

Fθ =
1

H

H∑
j=1

[ min
k=1,2

Qϕk
(sj , ãθ(sj))− β · logπθ(ãθ(sj)|sj)],

ãθ(sj) ∼ πθ(·|sj). (13)

Finally, for the two target networks Qϕ̂1
and Qϕ̂2

, we update
their parameters ϕ̂1 and ϕ̂2 by computing

ϕ̂
upd
k = ρ · ϕ̂k + (1− ρ)ϕk, for k = 1, 2, (14)

where ρ ∈ [0, 1] is the interpolation factor and ϕ̂
upd
k is the

updated value of parameter ϕ̂k.
With its robust adaptability, the proposed SAC-based DRL

approach (Algorithm 2) helps the DRL agent in the AP MLD
create proper dynamic traffic steering for STA MLDs in an
MLO-enabled Wi-Fi network.

V. SIMULATION

In this section, we evaluate the performance of the pro-
posed model-free dynamic traffic steering methods on reward
convergence, average network throughput, and load balancing
ability in an IEEE 802.11be Wi-Fi network boasting MLO
with the STR functionality under an ns-3 based simulation
environment. For the proposed DRL approach, we apply the
standard SAC implementation of the Stable Baselines3 library
[13] to the DRL agent in the AP MLD, and employ the ns3-ai
software framework [14] for the communication between the
DRL agent and the ns-3 based simulation environment.

For average network throughput performance, we compare
the proposed methods with the following baseline methods:

• Round robin (RR) traffic steering: The unallocated UL
packets in an STA MLD are steered to available links in
an RR fashion over each UL transmission window.

• Min-queue (MQ) traffic steering: The unallocated UL
packets in an STA MLD are steered to the available link
with minimum queue over each UL transmission window.

A. Parameter Settings

The IEEE 802.11be Wi-Fi network is configured in ns-3
as follows. We consider a Wi-Fi network which consists of
a single AP MLD and a varying number M of STA MLDs
with UL traffic. Besides, we consider L = 3 available links

at 2.4, 5, and 6 GHz frequency bands with respective channel
bandwidths of 20, 40, and 80 MHz. In each available link, we
consider the presence of non-MLD overlapping basic service
set (OBSS) that may interfere on the link. The number of
OBSS’s on each available link varies across simulations. We
denote by Ol the number of OBSS’s on the lth available link,
l = 1, 2, ..., L. The summary of these and additional Wi-Fi
network parameters for simulations is collected in Table I.

TABLE I
WI-FI NETWORK PARAMETER SETTINGS

Parameter Value
(# AP MLD, # STA MLD) (1, M )

Frequency band 2.4, 5, 6 GHz
Channel bandwidth 20, 40, 80 MHz

# OBSS on the lth available link Ol

Duration of a UL transmission window τUL = 10 ms
# UL transmission window T = 50

MAC protocol data unit (MPDU) payload size 256 bytes
Channel model IEEE 802.11be indoor

(AP Tx power, STA Tx power) (20 dBm, 17 dBm)
AP/STA noise figure 7 dB

Multiple-input multiple-output (MIMO) 2× 2

The minimum and maximum values of weight in the
proposed adaptive scoring heuristic (AS) algorithm are set
as (wmin, wmax) = (0.3, 3). The proposed SAC-based DRL
(SAC) approach is configured as follows. With a learning
rate of 0.0005, the actor policy and critic Q-networks are
parameterized with multi-layer perceptrons with 3 layers of
respective sizes of 256, 128, and 64 neurons. The summary
of these and additional SAC parameters for simulations is
collected in Table II.

TABLE II
SAC PARAMETER SETTINGS

Parameter Value
Actor/critic learning rate 0.0005

Actor/critic output layer activation function Softmax
# neuron [256,128,64]
Optimizer Adam with step size 0.002
(γ, ρ) (0.99,0.005)

B. Simulation Results

First, we evaluate the reward convergence of the proposed
SAC approach under the configuration (M,O1, O2, O3) =
(5, 2, 1, 0) with simulation results shown in Fig. 2. It is
observed that the reward converges rapidly after around eight
episodes, which confirms the robust adaptability of the pro-
posed SAC approach for MLO dynamic traffic steering.

Next, we compare the proposed methods against the base-
line methods in terms of average network throughput under
two different configurations (M,O1, O2, O3) = (3, 2, 1, 1)
and (M,O1, O2, O3) = (5, 2, 1, 0). The simulation results are
shown in Fig. 3, demonstrating that the proposed methods not
only outperform the baseline methods but also work well under
different configurations.

Finally, we inspect the load balancing ability of the proposed
methods with the evolving traffic steering portion over the
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time duration of 500 ms (T · τUL) under the configuration
(M,O1, O2, O3) = (3, 2, 1, 1). Figs. 4(a) and 4(b) show the
evolution of traffic steering portion in an STA MLD (randomly
selected from three which demonstrate similar trends) over
time with the proposed AS algorithm and SAC approach,
respectively. From Figs. 4(a) and 4(b), it is inferred that the
proposed SAC approach strikes a decent load balancing among
all available links while the proposed AS algorithm tends to
rely on some available links. Furthermore, the evolution of
traffic steering portion with the proposed SAC approach is
more smooth than that with the proposed AS algorithm.

(a) Proposed AS algorithm

(b) Proposed SAC approach

Fig. 4. Load balancing with evolving traffic steering portion over time

VI. CONCLUSION

In this paper, we consider STR-enabled MLO and propose
two application-agnostic model-free dynamic traffic steering
methods, where the AP MLD dynamically determines a
flexible traffic steering portion for STA MLDs according

to crucial factors such as SNR, number of allocated UL
packets, and channel busy time. First, we develop an adaptive
scoring heuristic algorithm based on a normalized weighted
score and analyze its lightweight computational complexity.
Second, we address the problem from the DRL perspective
and develop a DRL approach based on standard SAC with
robust adaptability. Simulation results exhibit the efficacy of
the proposed model-free dynamic traffic steering methods in
terms of reward convergence and average network throughput.
Moreover, we show the different load balancing ability of the
proposed model-free dynamic traffic steering methods.
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G. Geraci, “IEEE 802.11be: Wi-Fi 7 Strikes Back,” IEEE Communi-
cations Magazine, vol. 59, no. 4, pp. 102–108, 2021.
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