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ABSTRACT

With the great success of LTE(-A) outdoor, LTE-based small

cell technology has become popular and is penetrating in-

door enterprise environment, co-existing withWiFi networks,

to provide better user experience or Quality-of-Experience

(QoE). However, accurate estimation of LTE links is chal-

lenging and critical to continue providing QoE for many

enterprise applications (e.g., video/audio) and services (net-

work selection). While prior work on LTE link throughput

estimation depends mostly on a single factor (e.g., link rate),

we argue that it needs to consider more factors to improve

the estimation to meet increasing demands on QoE. In this

paper, we propose a new metric, called Pulsar (Per-user LTE

ShAre of Resources), that estimates per flow throughput in

LTE networks by leveraging both underlying channel infor-

mation and application traffic characteristics. Our extensive

evaluation study through NS-3 shows that Pulsar reduces the

estimation error more than 92% in various scenarios, while

keeping estimation overhead low.

1. INTRODUCTION AND MOTIVATION

As mobile traffic continuous to grow enormously [6], en-

terprise access networks face unprecedented pressure. Such

a pressure is attributed mainly to i) the rise in bring your

own devices trends (Forrester research predicted 905 mil-

lion tablets in use for work and home by 2017 [1]), and ii)

the increasing adoption of unified communications(UC) sys-

tems in offices instead of wireline solutions [10]. Despite

the significant advance in WiFi networks, enterprise access

networks are required to support more bandwidth as well as

cellular-like experience indoor.

To address such challenges, cellular service providers are

proposing indoor small cell LTE deployments [4, 5] as an ad-

ditional network of choice for enterprises. For example, Spi-

derCloud’s Small Cell Services Node [9] and Airvana’s One-

Cell [3] allow for the integration of mobile operator’s small

cells, co-existing with WiFi networks, while meeting enter-

prise specific requirements, such as quality, policies, han-

dovers, etc. In the context of such heterogeneous enterprise

access networks, a centralized network solution is needed

that intelligently maps devices to the appropriate network

type (LTE or WiFi), which can lead to efficient utilization

of LTE and WiFi, while improving Quality-of-Experience

(QoE) for individual devices. A key requirement in such a

solution is to accurately estimate and monitor the network

utilization, measured in terms of per user throughput. Un-

derestimation of a user’s throughput may result in underesti-

mating the congestion on the network, whereas overestima-

tion may result in under-utilization of the network.

Prior work has looked at throughput estimation largely

for WiFi networks [16], but little work has gone into LTE

networks. Atom [14] has recently been proposed for LTE

throughput estimation to offload traffic to WiFi, but it uses

a simplistic throughput utility model based on effective link

rate in WiFi and LTE. This model serves well under the as-

sumptions that (i) public cellular networks are dominated by

video traffic and (ii) all flows are always backlogged, and

hence network share of each user is entirely dependent on the

best available physical link rate. However, traffic in enter-

prise networks consists of a mix of diverse applications, such

as Voice over IP (VoIP), video conferencing, web browsing,

video streaming for webcasts, email, file transfers, backup,

etc. A purely physical rate based estimation does not account

for such diverse application demands.

In this context, we propose a new LTE metric, called Pul-

sar (Per-user LTE ShAre of Resources), that accurately es-

timates per-flow throughput by accounting for application

behavior. Pulsar is a network-side solution that sits in LTE

core network and monitors LTE last-hop throughput, which

often dominates the end-to-end experience of an applica-

tion. In addition, Pulsar takes both network state infor-

mation (e.g., CQI) of LTE links and application traffic pat-

terns to improve the estimation accuracy and maximize net-

work utilization. To the best of our knowledge, Pulsar is

the first work to take multiple factors into account to im-

prove throughput estimation, and we believe it will help im-

prove network utilization (via intelligent network selection)

and manageability.

We evaluate Pulsar in various application environments

via ns-3 simulations and show significant improvement in

its throughput estimation, compared to existing approaches

(e.g., Atom). Briefly, Pulsar shows strong correlation with

the actual throughput for various applications; correlation

coefficient of 0.99 for Pulsar vs 0.19 for Atom. In addition,
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Figure 1: LTE Evolved Packet Core Network

Pulsar reduces the mean square throughput estimation error

by 92.34%, compared to Atom.

In the rest of this paper, we explain LTE core networks

and radio access networks in Section 2. We then present the

details of Pulsar in Section 3, followed by its evaluation in 4.

Section 5 will discuss a few related issues. Finally, Section

6 presents related work and Section 7 concludes the paper.

2. LTE PRIMER

Network Architecture: The LTE network architecture,

shown in Figure 1, is the fourth generation network defined

under the 3rd Generation Partnership Project (3GPP) [2]. A

mobile device, referred to as User Equipment (UE), connects

over licensed spectrum to an LTE base-station eNodeB. The

UE and eNodeB form the radio access network (RAN), which

connects to the internet through the evolved packet core (EPC).

Within the EPC, a Serving Gateway (SGW) manages UE

mobility and handovers across multiple eNodeBs or across

multiple 3GPP standards (2G/3G). The EPC also includes a

Packet Data Network Gateway (PGW) that manages mobil-

ity across 3GPP and non-3GPP networks (such as WiFi and

WiMAX). PGW also serves as the IP gateway for UEs.

The UE, eNodeB, SGW and PGW constitute the data plane.

In the control plane, different entities in the EPC perform

subscriber management, authentication, billing, etc. Among

these, Active Network Discovery and Selection Function (ANDSF)

helps UEs discover and connect to non-3GPP networks, such

as WiFi. Indoor LTE small cells deployments have a sim-

ilar architecture. Some enterprise controller solutions [9,

3] have been developed to integrate security and policies in

LTE small cells, but none have been standardized.

Downlink Scheduling: The eNodeB is responsible for

sharing physical resources (in time and frequency domain)

across multiple UEs associated with it. Separate channels

are used for downlink and uplink transmissions, reducing

contention. We focus on downlink transmissions in this work

and discuss briefly about uplink in section 5.

Within a single eNodeB, each UE is allocated time-frequency

chunks in a 10 ms radio frame, by a scheduler. There are

multiple scheduling algorithms, such as Round Robin (RR),

Proportional Fair (PF), etc. Among these, PF scheduler is

more prevalent as it can offer resource share proportional

to each UE’s physical link rate and past resource share. A

radio frame is split into ten subframes, each spanning 1

Transmission Time Interval(TTI) of 1 ms. A subframe con-

tains multiple subcarriers, which can be allocated to differ-

ent UEs, but for the purpose of our discussion we consider

Figure 2: Scheduling example

that one subframe is allocated completely to one UE. We ex-

plain this assumption in the next section. Every TTI, the PF

scheduler [17] allocates UE k̂s in subframe s if:

k̂s = argmax
k=1...K

PFk (1)

Here PFk is computed as:

PFk =
Achievable Ratek

Past average throughputk
=

Rk(s)

Tk(s)
(2)

Rk(s) is computed from the Channel Quality Indicator (CQI)

sent to eNodeB by UE k every TTI. The long-term aver-

age user throughput Tk(s) is computed as an exponentially

weighted moving average of Rk(s) with a weight of 1/tc.
Here, tc is the period of fairness.

The PF scheduler provides resources to UEs that have the

highest ratio of achievable rate to past achieved throughput.

An important aspect of PF scheduler is that it not only fa-

vors UEs with good physical channel quality, but also favors

UEs that have been deprived in the past. While the motiva-

tion of such a PF scheduler is to reduce starvation among

contending UEs, it also prioritizes UEs with less traffic over

those with more traffic. This is the key observation for our

throughput estimation metric. We discuss this observation in

more detail in the next section.

3. THROUGHPUT ESTIMATION ON LTE

3.1 Need for Per-UE Traffic Information

Aswe discussed in the previous section, the resource sched-

uler (i.e., PF) significantly influences the resource share per

UE, which then impacts its throughput. To better explain,

let us discuss the resource share distribution achieved by the

PF scheduler. We consider a single eNodeB using PF sched-

uler. We assume that each user is running a single applica-

tion flow 1 and aim to estimate the throughput of each flow

accurately. Note that analyzing multiple flows per user is

part of future work. We also assume that users are static,

which is mostly the case in enterprise environments. Static

users do not experience frequency-selective fading effects,

i.e. channel conditions are same across all subcarriers within

a subframe for a particular UE. In such scenarios, an entire

subframe is assigned to a user in a single TTI.2

1Because of this assumption, we use UE, application and flow in-
terchangeably in the rest of the paper.
2In the rest of this section, we refer to subframe as the smallest
resource assigned to a UE.
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Consider two UEs – UE1 & UE2 – are associated with an

enterprise small cell eNodeB, and are communicating with

two remote hosts - A & B, respectively. Assume that both

the UEs experience the same channel conditions i.e. CQIs

are the same. Consider the following two cases (Figure 2):

Case 1: Both the UEs are always backlogged: Here,

eNodeB always has data to be scheduled for UE1 and UE2.

At every TTI, the PF scheduler computes PF1 and PF2

from equation (2). The relation between PF1 and PF2 alter-

nates. Transmissions to UE1 and UE2 are hence scheduled

alternately, and both get an equal share of subframes.

Case 2: UE1 is backlogged and UE2 is not: Say, eN-

odeB has data to send to UE2 once every 3 TTIs. In this

case, eNodeB has data buffered for UE2 only at t2 and t5.
At both these instants, PF2 > PF1, as it has not been

scheduled in the previous TTI, and transmission to UE2 is

scheduled. In Case 2, UE2 is scheduled whenever eNodeB

has data buffered for it and UE1 gets all the other resources.

Thus, UE2 gets 1/3rd subframes while UE1 gets 2/3rd.
Note that the diverse mix of applications in enterprise net-

works more often create Case 2, and it demonstrates that the

use of per-UE traffic information on throughput estimation

greatly helps in accurately estimating resource share.

3.2 Pulsar

Motivated by the above observation, we now present a

mathematical model for LTE resource share with mixed ap-

plication demands. Based on this model, we will define a

throughput estimation metric, which we call Per User Lte

ShAre of Resources (PULSAR).

Let us consider that K UEs are associated with an eN-

odeB. For each UEi, we define the following terms:

◮ Pi: Average size of application packets arriving at eN-

odeB for UEi

◮ CQIi: Channel quality indicator (CQI) for the link be-
tween UEi and eNodeB

◮ TBSi: Transport Block Size (TBS) for UEi, i.e. the

number of bytes that can be sent in one TTI in current

channel conditions. This is computed from CQIi.

◮ arri: Number of packets arriving at eNodeB for UEi

in one TTI

◮ ni: Number of resources required to send one packet

to UEi, given by ni = ⌈Pi/TBSi⌉. This accounts for
fragmentation at the physical layer.

◮ Xi : Number of resources demanded by UEi per TTI,

i.e.: Xi = arri ∗ ni

If we consider that every UE is backlogged, i.e., it has

data to send all the time, the network is shared evenly and

each UE gets 1/k resources, as in Case 1 above. However, if

all UEs are not backlogged, some UEs may not have packets

to receive in their fair share of resources. In such a mixed

scenario, we can classify UEs into two sets:

• Low rate UE set LR, if Xi <= 1/k

• High rate UE set HR, if Xi > 1/k

Now recall that the PF scheduler allocates resources based

on the ratio of achievable rate to past rate. The UEs belong-

ing to LR have an empty downlink queue at the eNodeB

most of the time, leading to a low past rate. Such low rate

UEs will get the resources whenever they have data buffered

at the eNodeB. The backlogged flow for high rate UEs get a

fair share of the remaining resources, in effect getting more

than the even share of 1/k. Based on this classification we

define a subframe share SFi, which is computed as:

SFi =

{

Xi , if UEi ∈ LR
min( Xi,

1
|HR| (1−

∑

LR Xi)) , if UEi ∈ HR

(3)

Given that TBSi is the number of bytes that a UE can send

in one TTI, the maximum resource share for UEi can be

computed as SFi ∗ TBSi. Recall that ni ≥ 1 by definition,

as it assumes that higher layer packets are at least as large

as TBSi However, for some applications Pi may be smaller

than TBSi. In such cases, even though the entire subframe

is allocated to UE, the data transferred in it is less than the

TBSi. The resource share for UEi in this case is SFi ∗ Pi.

Based on the above definition, we present our resource

share estimation metric, Pulsar, that is defined as:

Pulsari = SFi ∗min(TBSi, Pi) (4)

We estimate throughput as a linear function of Pulsar.

Throughputi =

{

Chr
1 ∗ Pulsari + Chr

0 , if UEi ∈ HR
Clr

1 ∗ Pulsari + Clr
0 , if UEi ∈ LR

(5)

, where Chr
1 , Clr

1 , Chr
0 and Clr

0 are constants. While we use

a linear function as in previous work (e.g., Witt [16]), our

estimation differs in that it is computed separately for UEs in

HR and LR. This prevents the high variance in throughput

estimation of UEs in HR from affecting the UEs in LR.

3.3 Deployment Model

Pulsar requires per-UE traffic and channel information for

the throughput estimation. We envision that Pulsar can be

deployed inside the enterprise small cell network and pro-

vide throughput estimation information to network services

like network selection. For example, the Small Cell Serving

Node allows for monitoring the average packet arrival rate

arri and the average packet size Pi [9]. The Serving Node

can also collect the CQIi from Small Cell eNodeB [7] ev-

ery TTI. The linear constants Chr
1 , Clr

1 , Chr
0 and Clr

0 can be

learnt over time and as shown in section 4.

4. EVALUATION

We use ns-3 simulator [8] to evaluate Pulsar. The sim-

ulation topology is shown in Figure 3. It consists of an

LTE/EPC network and many remote hosts, connected to the

SGW/PGWwith direct wide area network (WAN) links. Mul-

tiple UEs are connected to a single eNodeB and each UE

communicates with a different remote host. The parameters

used in simulations (shown in Figure 3) represent real enter-
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Figure 3: ns-3 LTE simulation topology

prise indoor LTE environments [7]. For most of the simula-

tions, WAN delay and bandwidth are taken from [15]. Later

in this section, we show that throughput estimation with Pul-

sar is not sensitive to WAN delay and bandwidth.

4.1 Dataset Generation

Each simulation scenario consists of 10 UEs associated to

an eNodeB. Each UE randomly chooses whether to commu-

nicate with a remote host or not. If a UE chooses to commu-

nicate, it randomly picks one of the six applications shown

in Table 1, with equal probability. These applications rep-

resent a diverse set of applications seen in enterprise envi-

ronments. We model an application as a series of bursts of

traffic from a remote host to a UE. In each burst, packets of

size P are generated at a constant rate r. The duration of

a burst ton and the inter burst interval toff are chosen from

an exponential probability distribution with averages shown

in Table 1. These parameters are computed from real packet

traces collected from an enterprise network. Each applica-

tion starts at either 0th, 15th, 30th or 45th seconds into the

simulation, with equal probability, and generates bursty traf-

fic for a randomly chosen multiple of 15s.
The transport layer protocol used by the application is also

randomly chosen among: TCP New Reno, TCP Westwood

and UDP. The CQI value for a user is fixed for the duration

of the simulation and is randomly chosen between 2 (very

poor) and 15 (very good). At every 15s, we track the av-

erage number of packets arriving in one TTI (arri) and the

average packet size (Pi) in SGW/PGW. We also measure the

actual throughput and resource shares for each application.

We generate a large dataset by simulating the described sce-

nario 1000 times (each lasting 60s), with different random

seeds. The generated dataset has 15097 throughput samples.

4.2 Correlation analysis

We first measure the Pearson correlation of observed through-

put with Pulsar as well as other metrics. It is a measure

of linear dependence of two variables, defined as: ρX,Y =
COV (X,Y )

σXσY

;−1 ≤ ρX,Y ≤ 1; where X and Y are random

variables, COV is the covariance and σ is the standard de-

viation. The values +1, -1 and 0 represent total positive,

total negative and no correlation, respectively. To compute

Pearson correlations, we consider the following metrics, in

addition to Pulsar:

(a) Single-User (TBSi): Assuming there is only one user

Application r P (bytes) ton(s) toff (s)
VoIP 75Kbps 150 15s 0s

Video Conference 300Kbps 1024 0.135s 0.1s

Desktop Sharing 1.7 Mbps 1300 2s 0.1s

Whiteboard 20 Kbps 200 0.25s 0.1s

Video Streaming 2 Mbps 1400 15s 0s

Bulk Download 20 Mbps 1400 15s 0s

Table 1: Applications used in the simulation

connected to eNodeB, resource share for this user is 1 and

the throughput is directly proportional to TBSi.

(b) Sender-Rate (arri*TBSi): Assuming that all packets

sent by the remote host are received at the UE without any

delay, throughput is directly proportional to the sender rate.

(c) Atom (as defined in [14]): Resources are shared equally

among all active users, irrespective of the application load.

We can clearly observe in Table 2 that Pulsar has a corre-

Metric Single-User Sender-Rate Atom Pulsar

Correlation 0.2156 0.7365 0.1962 0.9993

Table 2: Pearson correlation with observed throughput

lation value close to 1 and outperforms other metrics. This

justifies the assumption that throughput is directly propor-

tional to it. Sender-rate has high correlation for low rate

senders and low correlation for high rate senders. We can

see that Sender-rate correlates better than Single-user and

Atom since low rate senders form 64.59% of all senders.

Application ρpulsar ρatom
VoIP 0.9867 -0.0651

Video Conference 0.9977 -0.0172

Screen Share 0.9965 0.1716

Whiteboard 0.9714 -0.0159

Video Streaming 0.9985 0.2061

Bulk Download 0.9989 0.6407

Table 3: Correlation for individual applications

We next compute the Pearson correlation of individual ap-

plication throughput with Pulsar (ρpulsar), and with Atom
(ρatom) (shown in Table 3). For all applications, ρpulsar
is close to 1, while ρatom is low, and in some cases neg-

ative. We also compute the correlation between SFi com-

puted by Pulsar in equation (3) and the actual observed sub-

frame share. We observe that for all applications, the corre-

lation is over 0.99, contributing to high ρpulsar.

Protocol ρpulsar ρatom
UDP 0.9988 0.2199

TCP New Reno 0.9998 0.1816

TCP Westwood 0.9998 0.1846

Table 4: Correlation for different transport protocols

We also evaluate ρpulsar and ρatom for individual trans-

port protocols considered in our simulations (Table 4). We

can see that Pulsar correlates well with throughput com-

pared to Atom, because the resource share computation is

accurate across different protocols (over 0.99).

4.3 Throughput Estimation

In this section, we try to fit a linear model, using ordi-

nary least squares regression, to estimate throughput from
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Metric Clr
1

Clr
0

(Kbps) Chr
1

Chr
0

(Kbps)

Pulsar 0.98 5.61 0.98 -1.12

Atom 0.11 112.66 1.22 279.29

Table 5: Linear model coefficients
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Figure 4: CDF of throughput estimation error

Atom or Pulsar 3. As described in section 3, separate models

are computed for high rate senders (Chr
1 , Chr

0 ) and low rate

senders (Clr
1 , Clr

0 ). 20% of the dataset is used for training

the linear estimator, and the rest is used for testing. Table 5

shows these values for both Atom and Pulsar.

Figure 4 shows the CDF of estimation errors for high rate

and low rate applications with Pulsar and Atom. We com-

pute estimation error as difference in estimated throughput

and observed throughput. For low rate applications, 10th

and 90th percentile errors for Atom are -1159.66 Kbps and

429.29 Kbps, respectively, where as for Pulsar, they are

−4.43 Kbps and 13.30 Kbps. Note that estimation errors

over a few Kbps are unacceptable for low rate applications,

since their average datarate is low. For high rate applications,

10th and 90th percentile errors for Atom are -969.07 Kbps

and 917.34 Kbps, respectively, where as for Pulsar, they are

-74.71 Kbps and 56.51 Kbps. We can see that the through-

put estimation with Pulsar is accurate and outperforms prior

approaches. On the testing dataset, Pulsar reduces the root
mean square (RMS) estimation error by 94.67% for low rate

applications and by 92.34% for high rate applications.

Figure 5 shows the CDF of estimation errors for VoIP,

Video Conference, Bulk Download and Video Streaming.

The CDF for Screen Share andWhiteboard are similar. While

the estimation error stays close to zero for Pulsar for all

applications, it is much higher for Atom. For Bulk Down-

load, which is always classified as high rate, Atom signifi-

cantly underestimates the throughput. On the other hand, for

VoIP and whiteboard applications, which are always classi-

fied as low rate, Atom overestimates the throughput. Specif-

ically, Pulsar reduces the RMS estimation error by 93.9%,

40.22%, 99.19%, 95.96%. 99.25%, and 99.17% for VoIP,

Video Conference, Screen Share, Whiteboard, Bulk Down-

load and Video Streaming applications, respectively.

We also compare the estimation error forPulsar andAtom
for different transport layer protocols. While the estima-

tion error is close to zero for Pulsar, Atom underestimates

throughput for over 45% of data samples. Overall Pulsar im-

proves the estimation error by 98.58%, 99.03% and 99.11%

3While we chose a linear model for Pulsar based on high correla-
tion, the same was chosen for Atom, based on assumptions in [14].

for UDP, TCP New Reno and TCP Westwood, respectively.

Due to lack of space we do not present the CDFs here.

4.3.1 Sensitivity analysis

Statistical estimation techniques can be sensitive to the

type of data used for training purposes. In this section, we

present the sensitivity of Pulsar to varying parameters. Due

to lack of space, we only present results for low rate senders.

Results for high rate senders look similar.

In the simulations so far, WAN has not been the bottle-

neck for any flow. However, it could affect throughput for

TCP applications. For sensitivity analysis, we measure the

estimation error of Pulsar with varying WAN delay (Fig-

ure 6a) and bandwidth (Figure 6b). For each value of de-

lay/bandwidth, we generate a testing dataset of about 1500

samples. We observe that estimation error forPulsar changes
minimally with such variations, unlike Atom. Pulsar indi-

rectly accounts for theWAN bymonitoring the packet arrival

rate arri, thus, making it robust to changes in WAN.

The number of samples used for training the linear es-

timator could affect the estimation error. Figure 6c shows

the variation of estimation error with the percentage of the

dataset used for estimating linear coefficients. The rest of the

dataset was used for testing. There is no significant variation

even when only 20% of the data was used for training.

5. DISCUSSION

In this section we discuss some related issues and future

extensions of Pulsar.

Static users: One of the assumptions in modeling Pul-

sar is that entire subframe is assigned to a single UE. When

users are moving, different subcarriers within a subframe

may experience different fading effects, and they may be as-

signed to different users. In enterprise environments, users

do move across multiple indoor locations, e.g. work desk,

conference room, cafetaria, but they stay static while in these

locations. This supports our assumption that UEs are not in

motion. In future, we plan to extend the model to include the

small portion of highly mobile users.

Interference: An enterprise may have multiple small cells

which can cause inter-cell interference, affecting individual

user throughput. Efficient channel assignment techniques

can be used to reduce such interference. Additionally, macro

LTE cells can interfere with small cell deployments. If the

channel quality of a UE changes drastically due to interfer-

ence, Pulsar might classify a UE differently from the PF

scheduler, which has a longer history for the UE. But in a few

TTIs, both of them will converge, as Tk(s) (equation (2)) is

an exponentially weighted moving average. We plan to in-

vestigate this further in future work.

Multiple flows per UE: We consider one flow per UE in

our analysis, for simplicity. Users might be running more

than one application at a given time, creating multiple flows.

In such case, Pulsar estimates the effective throughput, which

is a weighted average of all individual flows, as it does not
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Figure 5: CDF of throughput estimation error for different applications
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Figure 6: Sensitivity of estimation error to different factors

distinguish per-flow packets. Such an estimate is still useful

for network management and selection solutions to measure

user’s overall experience and network usage. We plan to

evaluate such scenarios in future work.

Simulation traffic: While VoIP and video conferencing

are bi-directional applications, for simplicity, we simulate

only uni-directional flows for these applications in section 4.

The uplink traffic of these applications would not affect the

existing analysis as downlink and uplink transmissions occur

over separate dedicated channels in LTE.

6. RELATEDWORK

Patro et al.[16] proposed a metric to estimate TCP through-

put in WiFi network by observing channel interference, con-

tention and physical link rate. In contrast, our work fo-

cusses on estimating throughput in LTE networks, which

have very different characteristics. Other works have fo-

cussed on building QoE metrics for various applications.

Authors in [12] proposed a QoEmetric for Skype application

whereas Prometheus[11] looked at QoE for video and VoIP

applications. These QoE metrics cannot be generalized to

the diverse set of applications encountered in an enterprise

environment. Recently, Delphi[13] and ATOM[14] looked

at the problem of selecting the best network interfaces for

user devices where they argue that the network-choice deci-

sion should be made using metrics that capture network uti-

lization. In our evaluation, we have made a detailed compar-

ison with the metric used by ATOM. Delphi does not specify

any metric to estimate the network utilization.

7. CONCLUSION

We argue that an accurate estimation of LTE network us-

age is important to provide better QoE to small cell users. To

this end, we proposed a new metric - Pulsar, that computes

per user network resource share from channel conditions and

application demand. We extensively evaluated Pulsar with

the ns-3 simulator and showed reduces estimation error by

over 92%. Validation of our metric in real testbed is part of

future work.
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