
Peek: A Mobile-to-Mobile Remote Computing

Protocol For Smartphones And Tablets

Uma Parthavi Moravapalle

parthavi@gatech.edu

Georgia Institute of Technology

Raghupathy Sivakumar

siva@ece.gatech.edu

Georgia Institute of Technology

Abstract—A mobile-to-mobile remote computing protocol for
smartphones presents a user with the ability to run an application
remotely and to interact with it in a responsive way, where
I/O updates can be performed midstream and the results can
be viewed in real time. Even though several protocols exist for
desktop remote computing, we argue that these cannot be applied
as-is for mobile-to-mobile remote computing. In this context,
we introduce Peek, a remote computing protocol with i) multi-
touch support, ii) context association, and iii) multi-modal frame
compression. Through implementation on real devices, we show
that Peek reduces the time taken to perform actions on a server
by 62% on average, compared to Virtual Network Computing
(VNC). We also test Peek’s multi-modal frame compression,
against VNC, on datasets and show that it has the potential to
reduce 30% of the bytes sent on the network.

Keywords—Remote computing, multi-touch, smartphone

I. INTRODUCTION

The adoption of smartphones (and tablets1) has seen an
explosive growth over the last decade and in 2011 the number
of smartphones shipped finally eclipsed that of the number
of PCs [1]. Even the traditionally conservative enterprise
sector is adopting mobile devices at a blistering pace, among
which 71% are currently deploying or planning the deployment
of mobile applications [2]. This adoption is driven by a
clear return-on-investment in the form of higher employee
productivity, reduced paper work, and increased revenue. It
appears inevitable that smartphones will become the primary
computing device for a majority of users in the future.

In this paper, we consider the problem of mobile-to-mobile
remote computing. This involves a remote server running
applications and the client having a view into the server using
a remote computing protocol. Remote computing allows users
to connect to a device remotely, view its screen in real time
and control applications on it, while being physically away
from it. With a mobile-to-mobile remote computing protocol, a
user can experience a range of different application scenarios,
which otherwise wouldn’t have been possible. For example,
a user can allow another user to access her smartphone to
get help to edit an image. She can also play a game on
her friend’s smartphone, without being present at the same
location. In addition to that, she can create virtual smartphone
images on a resource rich cloud infrastructure and remotely

This work was funded in part by the National Science Foundation under
grants IIP-1343435 and CNS-1319455, and the Wayne J. Holman Endowed
Chair.

1While all of our discussions apply to both smartphones and tablets, for
brevity we refer only to smartphones in the rest of this paper.

access them to perform CPU heavy tasks. She can also help
configure her grandmother’s phone by controlling it remotely.
The possible applications with a mobile-to-mobile remote
computing protocol are hence numerous.

The use of remote desktop sharing is quite popular today
and several protocols [3]–[8] exist to provide a remote view
for desktops. However, smartphones are characterized by cer-
tain unique properties that make as-is application of existing
protocols difficult, inefficient, and in some cases unviable:
(i) Multi-touch interface: Existing protocols assume that the
user interacts with the server with a keyboard and mouse.
However, most smartphones use multi-touch screens, which
cannot be supported by these protocols; (ii) Context associa-
tion: A user interacts with her smartphone, not just through
the input devices, but also the associated context through
sensors (e.g., accelerometer, proximity sensor, etc.) for a rich
application experience. However, traditional remote computing
protocols do not associate a context to a session; (iii) Resource
constraints: A high quality remote computing session requires
high bandwidths and a considerable processing and memory
power, which are available to desktops. However, smartphones
are limited by low power processors and wireless networks
(WiFi, 3G/4G) characterized by limited bandwidth.

Considering these differences, we introduce Peek, a mobile-
to-mobile remote computing protocol for smartphones. Peek is
application agnostic, i.e., users can remotely interact with any
application on another smartphone, as if they were operating
the device locally. Also, Peek is operating system (OS) and
device independent, i.e., servers and clients can be developed
for any OS and could reside in either physical devices or virtual
images in a cloud (Fig 1). Important contributions of Peek
that differentiate it from other remote computing protocols are:
(i) Multi-touch support: Peek enables client-server interaction
through multi-touch interfaces, which increases the ease of
interaction. Compared to Virtual Network Computing (VNC),
a popular remote desktop solution, Peek vastly increases the
number of supported touch gestures. By implementing Peek on
Android smartphones, we show that the time taken to remotely
perform certain actions on the server is reduced by 62.8%
on average; (ii) Context association: Peek associates sensor
context to a session, which allows users to experience a wide
range of applications that use sensor input; (iii) Multi-modal
frame compression: Peek chooses a frame compression mode
based on the server’s CPU/memory load, rate of change of
screen pixels and network bandwidth. Using synthetic datasets,
we show that Peek can potentially reduce the bytes sent over
a network by over 30% compared to VNC. To the best of our



Fig. 1: Peek usage

knowledge, Peek is the first ever remote computing protocol
designed for smartphone-to-smartphone communication. In
this paper, Section I-A provides a primer on remote computing.
Section II outlines the need for a mobile-to-mobile remote
computing protocol for smartphones. Section III discusses the
key challenges of using existing remote computing protocols
for smartphones. In Section IV we present Peek and evaluate
it in Section V. Section VI discusses related work.

A. A Primer On Remote Computing

Remote computing involves one or more client devices
communicating with a server. During a remote computing
session, the server encodes the content of its frame buffer
(screen pixels) and sends it to the associated clients. The
clients display this view on their screens and allow users to
interact with it using input devices like keyboard and mouse.
The clients capture these input device operations and send
them over the network to the server, which executes these
operations at its end and sends any screen updates back to the
clients. These updates could either be a direct encoding of the
screen pixels [4] or primitives such as ‘draw a rectangle’ [3].
The format of the messages exchanged between the client and
server depends on the remote computing protocol. VNC uses
Remote Frame Buffer Protocol (RFB) [4] for communication.
In RFB, server encodes pixels in the frame buffer using a
compression scheme negotiated between the client and server
at the start of the session. The client decodes these pixels
and displays them by writing onto the local frame buffer.
Irrespective of the type of encoding, only those rectangles that
have changed from the previous state of the frame buffer are
sent over the network.

II. A CASE FOR MOBILE-MOBILE REMOTE COMPUTING

We consider mobile-to-mobile remote computing as a
platform that extends a smartphone to a new dimension of
applications. With remote computing, users can experience
applications through other physical or virtual devices, and are
not limited by their own device. We envision the following
applications for mobile-to-mobile remote computing:
Real time collaboration: Users can collaborate on any
application, even when it is not built for collaboration, by
simultaneously accessing the application on a smartphone.
For example, user B can help user A edit a picture on A’s
smartphone by remotely accessing A’s device.
Computation offload: A user with a low end phone can
access a virtual instance of a device hosted on a resource
rich cloud and complete resource heavy tasks like panorama
stitching, image manipulation, compression, encryption, etc.
Troubleshooting: A support technician can access a user’s
phone and help debug an issue in realtime. Such a feature
would enable users with lower levels of technical expertise to
use the wide range of features available with smartphones.

Client Gesture Translation Server execution

Tap Left Click Tap

Double Tap Left Double Click Double Tap

Long Press Long click Long press

Long press(short) + swipe Left click + Move Swipe/Drag

TABLE I: Touch to mouse translation

Multi-player gaming: Games, with or without multi player
support, can be enjoyed by multiple users without being
present at the same location. For example, by remotely
accessing the same smartphone, two users can play Angry
Birds, where they can either collaborate to pass a level, or
take turns competing on the same level and compare scores.
Virtual Mobile Infrastructure: For data security purposes,
certain enterprise workers are required to carry a smartphone
for office use in addition to their personal phones. This can
be avoided if the enterprises can provide a sandboxed virtual
smartphone environment on a cloud, which the employees are
allowed to access only at the workplace or with a secure VPN.

III. KEY CHALLENGES

Desktop remote computing protocols, when applied as-is
for smartphone-to-smartphone remote computing present with
some problems. In this section, we outline these challenges2.

A. Input Handling

With the advent of smartphones, interactions through
keyboard and mouse are no longer relevant as majority of
smartphones are equipped with multi-touch screens. However,
there are no remote computing protocols specifically designed
for touch screen input devices. Existing VNC smartphone
client and server applications are designed assuming the
other end of communication is a desktop that can be
controlled through keyboard and mouse operations. They
adapt to the desktop protocol by translating touch screen
operations into mouse operations, rather than supporting them
natively. A VNC smartphone client that translates touch to
mouse operations can be used to communicate with a VNC
smartphone server that converts the mouse operations back to
touch operations. We identified this translation between touch
and mouse operations and present it in Table I. However,
such a translation creates the following problems:
(i) Many operations cannot be mapped. Multi-touch enables
a smartphone user to interact with her device using intuitive
gestures performed with multiple points of contact. Since a
mouse has only one pointer moving across the screen, many
multi-touch operations cannot be mapped.
(ii) Mapped gestures are non-intuitive. For example, when
a user wants to scroll a list on his smartphone, he simply
swipes upwards on the touch screen. However, if the user
wants to do the same on the VNC server smartphone, he has
to long press the screen first and then swipe. This usage is
difficult to remember as it is not natural and hence is a source
of confusion. Also, if the user doesn’t swipe on time after
she long presses, a menu might open up corresponding to the
long press gesture. Gestures that are either non-intuitive or
cannot be mapped are shown in Table II.
(iii) Context information is not associated. A typical

2While we use VNC as a representative desktop remote computing protocol,
the discussion can still be applied to all the other protocols.



Swipe Scroll Multi-finger Swipe

Multi-finger hold Multi-finger drag Pinch

Multi-finger tap Multi-finger pinch Expand

Multi-finger expand Multi-finger multi-tap Fling

Multi-finger Fling Multi-finger rotate Anchoring

TABLE II: Non intuitive and non existent gestures

Type fps CPU (%) Memory (MB) Bytes per frame

Tight 256 Color 22 48 28 13946

ZRLE 5 21 17 42101

TABLE III: VNC compression on smartphones

smartphone is equipped with many sensors including
gyroscope, accelerometer, magnetometer, proximity sensor
etc., which provide contextual information on the device. This
sensor context is used by many applications to provide a rich
experience to users. For example, there are many racing games
that make use of the gyroscope and accelerometer readings
to emulate effects of steering. We argue that, apart from
input devices like touch screen, mouse etc., sensors are also
a way to interact with the device. Current remote computing
protocols only consider input devices like mouse or keyboard
as a way of interacting with the device. Applications requiring
client’s sensors will not be able to operate in this scenario.

Challenge 1: How does a remote computing smartphone
client interact with the smartphone server using multi-touch
operations and associate its sensor context to a session?

B. Remote View Sharing

Usage of frame compression techniques designed for
desktops, for smartphone-to-smartphone remote computing,
results in poor resource utilization in smartphones. Some
problems with using VNC for smartphones are as follows:
(i) Frame compression in VNC is independent of device status.
Compression schemes that have a low CPU overhead have
poor visual performance and those that have better visual
performance are CPU heavy. To demonstrate this, we setup
a VNC server that generates frames at 60 frames per second
(fps) and a client that views and measures rate of display
of these frames, on two LG Nexus 5 smartphones. Table III
shows the fps at client and CPU, memory, bytes per frame
sent at the server for two popular VNC compression schemes.
‘Tight’ achieves better fps (22 vs 5) and better per-frame
compression than ‘ZRLE’, at the cost of higher CPU and
memory usage. Using the same frame compression scheme
throughout the session irrespective of the device status is
not suitable for smartphones, as resources are limited. For
example, if the server’s CPU utilization is high and network
utilization is low, data could be sent over the network with a
simple compression scheme like ZRLE, even though a more
complex scheme was fixed beforehand.
(ii) Applications have different compression requirements.
Rate of change of screen content (frame rate) varies among
different applications available. Fig. 2 shows the average size
difference between consecutive frames, in a single session for
different applications on Android. Frame rate for graphically
intensive games like Temple Run and Minion Rush, is high
compared to other applications like BBC, Ebay and Amazon.
VNC uses the same type of compression scheme, irrespective
of the application. Using a complex compression algorithm,
which was decided at the start of session for applications with
a lower frame rate, leads to wastage of resources.
(iii) Application usage behavior leads to inefficient resource

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

BBC Temple
Run

Ebay Minion
Rush

Amazon

fr
a
m

e
 s

iz
e
 d

if
fe

re
n
c
e
 (

K
B

)

Fig. 2: Average consecutive frame size difference

(a) Article A (b) Article B (c) Home Page H

Fig. 3: Different screen layouts of BBC

utilization in smartphones. Many smartphone applications use
a fixed number of screen layouts with different content. For
example, in BBC (Fig. 3) ,articles share the same layout,
which is different from that of the home screen. Consider
a case in which user opens article A from the homescreen
H, switches back to homescreen and opens another article
B. Since a VNC server transmits the changes from the last
displayed frame, the size of updates sent are U = diff(H,A) +
diff(A,H) + diff(H,B), where diff(x,y) is the size of the screen
update if the screen changes from x to y. If the client and
server can remember those frames that could repeat (like H),
or one representative frame that is similar to many frames
that could be displayed in the future (say A or B), the number
of bytes sent over the network could be significantly
reduced (update size = diff(H,A) + diff(A,B)<<U).

Challenge 2: How can the remote computing server compress
its screen, taking into account (i) CPU, memory and network
loads, (ii) screen redundancy and (iii) varying frame rate?

IV. PEEK: A MOBILE-TO-MOBILE REMOTE COMPUTING

PROTOCOL

In this section, we present Peek, a mobile-to-mobile remote
computing protocol that is (i) OS independent, (ii) application-
agnostic, (iii) device independent. Peek is built on the RFB
protocol and adds multi-touch support and context association
to it. Peek also improves upon frame compression of RFB, by
using a multi-modal compression scheme. Peek deals with the
challenges described in Section III as follows:

A. Multi-touch Support and Context Association:

If a user has to remotely access a smartphone using VNC,
she has to use a client application on her smartphone that maps
touch operations to mouse operations, and a server application
on the remote smartphone that translates mouse operations
to touch operations. The mapping between touch and mouse
operations affects the usability of the application. Peek clients,
instead, directly capture touch interactions, represent them in a
suitable format to avoid loss of integrity, and send them to the
Peek server for execution. By removing the layer of mouse
translation, touch interactions can be natively represented at



(a) Touch message (b) Sensor message

Fig. 4: Message format in Peek

the client and easily interpreted at the server. This enables the
users to interact with the remote server intuitively in the same
way as they would interact locally with their smartphones.

Peek adds a new touch screen input method to the RFB
protocol. Peek clients represent each point of contact of user’s
finger to the screen with a touch message (Fig. 4a). Each touch
message is 14 bytes long. The first byte, type, is a constant
(=12) for all touch messages, irrespective of the device. It
serves as an indication to the server to interpret the next 13
bytes of the stream as a touch message. The second byte
mask is a bitwise mask that represents the validity of different
fields in the rest of the message. In Peek, touch contacts are
assumed to be elliptical in shape3 and each touch contact is
represented by: (i) position on the screen - x,y (horizontal and
vertical coordinates of the center of contact); (ii) dimensions
- major, minor (lengths of major and minor axes); (iii)
pressure of contact - p; (iv) Id of the point of contact - id;
While parameters x, y, major, minor and p are designed
to represent the physical aspects of contact, id is useful in a
multi-touch scenario to differentiate one point of contact from
the other. These parameters are captured in real time by Peek
clients. The presence of x, y, major, minor, p and id in
the touch message is indicated by setting bits 1 to 6 of mask,
respectively. While simple actions like tap have only one point
of contact, other actions (swipe, drag, etc.) have multiple points
of contact along the path a finger traces on the screen. Each
such touch contact is packed into a touch message. A special
message with a mask of ‘0’ is sent to signal the end of an
action and is generated when the point of contact leaves the
touch screen. When there are multiple points of contact for a
touch gesture, some of the parameters might remain the same
for these contacts (e.g. p). These parameters can be skipped
in subsequent messages and the mask is set appropriately. The
Peek server extracts touch parameters from the message and
virtually applies the touch contact. If the mask indicates that
a parameter is not present, the last known value is used.

Peek clients also capture various sensor readings and send
them to the server. A user with Peek client has an option to
choose either her own device context or the server’s context
during a session. Fig. 4b shows a generic sensor message
format. type value varies with the function of the sensor (15
for gyroscope, 16 for accelerometer, 17 for proximity sensor,
etc.). Similar to mask in a touch message, mask in the sensor
message is a bitwise mask that represents validity of the sensor
data. The exact format of representation of sensor readings in a
sensor message depends on the type of the sensor. For example,
for a gyroscope (accelerometer), it is a series of three double
values, representing the rate of device’s rotation (acceleration)
along x,y and z axes. For a proximity sensor, it is a binary
value, representing if the phone is near/away.

All the major smartphone operating systems provide APIs
to interpret touch/sensor activity (e.g. UIApplication class in
iOS, and /dev/input/event virtual file system in Android). Also,

3Most of the touch sensor drivers assume the area of contact is an ellipse.

the implementation of extraction and execution of touch/sensor
messages depends on the OS of the device. For a linux
based OS, this can be achieved by writing a series of bytes
into /dev/input/event virtual filesystem in a suitable format.
Since message format is independent of the OS, clients and
servers on different OS can communicate with each other.
With this message representation, all possible multi-touch and
sensor events can now be captured and communicated, thereby
increasing the ease of interaction for users.

B. Multi-modal Compression:

Peek introduces a new multi-modal frame compression
technique that takes into account content redundancy, rate of
change of application content and the device resource usage.
Peek server identifies certain key frames from the past session
history and compresses the difference between current frame
and a key frame that is closest to the current frame. In this way,
Peek reduces the amount of data to be compressed, thereby
reducing the amount of data sent over the network and CPU
cycles. Also, Peek uses video compression techniques when it
detects rapidly changing screen content.

While a VNC server uses a compression scheme selected at
beginning of the session, Peek server selects one of three com-
pression modes by periodically monitoring its CPU/memory
load, network load and frame generation rate.
(a) last diff: Like in RFB, the difference between the last
frame and the current frame is compressed.
(b) key diff: To save bytes sent on the network in a scenario
where the current frame could be very similar to content in
the past, the Peek server identifies some representative (key)
frames in the session history. If the current frame is similar
to any one of these key frames, the difference between the
key frame and the current frame is compressed and sent
along with the index of the key frame. Peek uses clustering
techniques to identify these key frames. Frames from the
session history between a particular server and client, that
are similar to each other are clustered into groups using fast
online integer K-means clustering algorithm4. For each cluster,
a frame with the lowest possible difference with the centroid
of that cluster is considered as a cluster head. The number of
clusters to be formed is chosen based on the current memory
utilization of the server and client. Periodically, cluster heads
are communicated to the client and are stored as key frames
in the memory of both the client and server. This overhead is
negligible because cluster heads only need to be communicated
infrequently. Without changing the compression algorithm,
key diff reduces the burden on device’s resources by reducing
the amount of data to be compressed.
(c) video diff: In this scheme, the session is treated as a
motion video and MPEG4 compression is used on it. This
compression scheme is particularly designed for graphically
intensive applications like games, which have a rapidly chang-
ing frames. For these applications, a user is presented with
new content that is quickly generated through dedicated GPUs.
Using key diff that relies on session history doesn’t make sense
for these applications as the content is non repetitive. Peek
utilizes motion prediction and motion compensation algorithms
provided in the MPEG4 standard to compress these frames.

4While Peek uses K-means, it is one among a broad set of fast and light
online clustering algorithms that could be used potentially



Fig. 5: Multi-modal compression Fig. 6: System architecture of Peek

Action Description

A1 Crop a picture using Photo Editor Pro

A2 Write ’A’, ’B’ and ’C’ with finger

A3 Play 6 moves in Candy Crush

A4 Find an email in a list and delete it

A5 Open Youtube and search for ’apple’

A6 Select a paragraph in an email

A7 Find phone’s IMEI number from settings

A8 Open a document and append text to the end

A9 Draw a 3x3 grid on screen

A10 Draw a smiley face on the screen

Fig. 7: Action descriptions

Peek server continuously monitors the device and chooses
one among the three compression modes based on Fig. 5.
Since CPU/memory is the most important resource that affects
a device’s usability, not just for remote computing, but for
all other applications, Peek first considers the CPU/memory
utilization to select a mode, and chooses key diff if it is beyond
a threshold τcpu. Otherwise, if frame rate is greater than a
threshold τfr, video diff is used. If frame rate is less than τfr,
last diff or key diff is chosen depending on whether network
utilization is less or greater than a threshold τnw.

C. System Architecture

Devices running Peek have three components: (i) Input han-
dler, (ii) View handler and (iii) Network handler. The functions
of these handlers change depending on whether the device is
running in the server mode or the client mode (Fig. 6). The
client input handler captures all the touch events and sensor
events through the touch capture and sensor capture module,
respectively. These modules pass the event information to
input packer, which packages it into messages. The input
unpacker module in server input handler unpacks the messages,
interprets the parameters and sends touch/sensor parameters
to Touch/Sensor executor which executes them. Server view
handler uses the frame capture module to capture the device’s
screen. Frame encoder choses the right compression technique
for a particular frame based on inputs from the profiler on
CPU/memory, network and frame rate, and compresses the
frame. At the client view handler, the frame decoder decodes
the frames and the frame display displays it on the screen. The
client/server network handler is responsible for communication
between server and client over the network.

V. EVALUATION

We implemented and evaluated Peek server and client on
two LG Nexus 5 smartphones with Android v4.4.4. We build
Peek on Android VNC Viewer [9], an open source VNC client
and DroidVNCServer [10], an open source VNC server to
handle touch and sensor messages. The two smartphones are
connected to the same WiFi AP. We evaluate the usability of
Peek by performing certain actions through the client on the
server, and measuring the time taken by the client to generate
touch messages to be sent to the server for these actions. We
obtain this time by collecting network packet traces at client,
filtering them for all touch/mouse message packets with server
as the destination and measuring the time difference between
the first and last touch/mouse packet. We also compare Peek
with VNC by installing a unmodified VNC client and server
on LG Nexus 5 smartphone and Samsung Galaxy tablet,
respectively. Here, we use a tablet instead of a smartphone

(a) Primitive Actions (b) Complex Actions

Fig. 8: Action times

as the unmodified server application is incompatible with
smartphones. Note that the method to measure time taken for
an action at the client through network level traces eliminates
for any bias related to the network conditions and processing
power of the server. We also evaluate Peek only on tasks that
can be performed on a tablet and a smartphone in the same
way, to avoid any bias related to screensize. Therefore, we
believe that the server device configuration has no bearing
on the action times. Also, to discount for any user bias, we
consider the average of 10 measurements for each action.

To benchmark Peek, we first consider a primitive action set:
tap, double tap, swipe, long press, and drag. We can observe
from Fig. 8a that Peek reduces action times significantly for
certain actions. For swipe, long press and drag, the reduction is
80.2%, 39.9% and 41.8%, respectively. According to [11], an
action time increase > 150ms results in a noticeable reduction
usability. For tap and double tap, action times are higher
for Peek by 3ms and 74ms, respectively. This is because
unlike the other actions, these actions are mapped as-is, even
without multi-touch support. However, this difference does
not affect the usability. To evaluate benefits of Peek during
regular smartphone usage, we consider a set of complex actions
(Fig. 7) that spans common touch screen usage patterns. For
these actions, Peek reduces the action time by 62.8%, on an
average (Fig. 8b). Peek achieves this by eliminating mouse
mapping and directly capturing and executing touch actions.
We also measured the CPU and memory usage of Peek and
VNC on the client and observe that Peek does not involve
any additional overheads. For a proof of concept, we also
implement proximity sensor context association and verify its
function. In the interest of brevity, we do not present these
results here.

Next, we demonstrate the potential of multi-modal com-
pression of Peek to reduce the bytes sent over the network.
We consider the following applications: (a) Ebay (commerce),
(b) Google play (commerce), (c) BBC (news), (d) Gmail (pro-



 550

 600

 650

 700

 750

 800

 850

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(a) BBC

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 540

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(b) Ebay

 110

 115

 120

 125

 130

 135

 140

 145

 150

 155

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(c) Candy Crush

 350

 400

 450

 500

 550

 600

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(d) Gmail

 300

 350

 400

 450

 500

 550

 600

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(e) Google Play

 260

 280

 300

 320

 340

 360

 380

 400

 420

last_diff key_diff
(keys=2)

key_diff
(keys=5)

key_diff
(keys=9)

video_diff

S
iz

e
 (

M
B

)

(f) Enterprise Sharepoint

Fig. 9: Peek multi-modal compression

ductivity), (e) Candy Crush (games), (f) Enterprise Sharepoint
(enterprise). This set is a representative mix that spans some
popular application categories. We collect large usage videos
for these applications and extract all distinct video frames. Test
remote computing sessions of size 5500 frames are generated
from these distinct frames as follows - each frame is either
chosen randomly from the set of distinct images or is the same
as the previous image, with equal probability. This dataset
represents typical usage behavior where in a user either sticks
with the current view or interacts with it (with 0.5 probability)
and hence provides a way to evaluate Peek during random
user behavior. Since the collection of large real application
user traces for many applications is highly intrusive, we use
synthetic datasets for evaluation. This is because recording
screens and writing them to the storage card, while the user is
using an application involves a lot of I/O operations and is a
CPU heavy task. We implement and evaluate different modes
of multi-modal compression used in Peek on this synthetic
dataset in Matlab. For last diff and key diff we use Tight
PNG, a popular compression used in VNC, to compress the
difference between two frames.

Fig. 9 shows the post-compression dataset sizes after using
different modes of Peek’s multi-modal compression. We can
observe that using key diff and video diff results in better
compression. For example, compared to last diff (used in
VNC), key diff with 5 key frames results in a reduction of
dataset size by 27.2%, 36.8%, 37.4%, 31.4% and 32.6% for
BBC, Ebay, Gmail, Google play and Enterprise Sharepoint,
respectively. For all applications, last diff results in highest
post-compression sizes. For Candy Crush, video diff performs
the best. This is because it is a game having rapidly changing
screen content, with little repetition from the past as the user

advances to new levels. We can also observe that, increasing
the number of stored key frames results in better compression.
However, this reduction is not prominent and considerable
benefits can be achieved by using just 2 key frames.

VI. RELATED WORK

There are several remote computing protocols for desktops
in use today. For example, RDP (Microsoft) [3], RFB (VNC)
[4], RGS (HP) [5], ALP (Sun/Oracle) [6], ICA (Citrix) [7],
PcoIP (Teradici) [8], etc. For mobile thin clients, some opti-
mizations have been proposed in related literature. SmartVNC
[12] reduces the burden of doing tasks in a remote computing
session from smartphone to a desktop, by identifying macros.
Mobidesk [13] proposes WAN traffic optimization for mobile
thin clients. Modeap [14] uses translation between graphical
primitives of desktop and those of a mobile web browser.
[15] and [16] are other solutions that target gaming and
multimedia delivery on smartphones, respectively. However,
all these solutions assume the server is a desktop.

VII. CONCLUSION

In this work, we presented Peek, a remote computing
protocol for smartphone to smartphone remote computing
with multi-touch support, context association and multi-modal
frame compression. We evaluated Peek and show that it reduces
the time taken to perform certain actions by over 60% and has
a potential of reducing the number of bytes transmitted into
the network by over 30%, compared to traditional VNC. To
the best of our knowledge, Peek is the first ever mobile to
mobile remote computing protocol for smartphones.

REFERENCES

[1] “Smartphone sales exceed those of pcs for first time,
apple smashes record,” http://www.digitaltrends.com/mobile/
smartphone-sales-exceed-those-of-pcs-for-first-time-apple-smashes-record/.

[2] “Symantec survey,” www.symantec.com/about/news/release/article.jsp?prid=20120221
02., Feb 2012.

[3] “Remote Desktop Protocol,” http://msdn.microsoft.com/en-us/library/
aa383015(v=vs.85).aspx.

[4] “Remote Frame Buffer Protocol,” http://www.realvnc.com/docs/
rfbproto.pdf.

[5] “Hp remote graphics software,” http://www8.hp.com/us/en/campaigns/
workstations/remote-graphics-software.html.

[6] “Appliance link protocol,” https://docs.oracle.com/cd/E35310 01/
E25747/html/security-alp.html.

[7] “Citrix reciever, http://www.citrix.com/go/receiver.html.”

[8] “Pcoip technology,” http://www.teradici.com/pcoip-technology.

[9] “android-vnc-viewer, vnc viewer/client for android platform,”
https://code.google.com/p/android-vnc-viewer/.

[10] “Droid vnc server,” https://github.com/oNaiPs/droid-VNC-server.

[11] N. Tolia et al., “Quantifying interactive user experience on thin clients,”
Computer, vol. 39, no. 3, pp. 46–52, March 2006.

[12] C.-L. Tsao et al., “Smartvnc: An effective remote computing solution
for smartphones,” in Proc. 17th ACM MobiCom, Las Vegas, NV, USA,
2011.

[13] R. A. Baratto, S. Potter et al., “Mobidesk: Mobile virtual desktop
computing,” in Proc. 10th ACM MobiCom, New York, NY, USA, 2004.

[14] H. Li et al., “Modeap: Moving desktop application to mobile cloud
service,” Mobile Networks & Applications, vol. 19, no. 4, pp. 563–571.

[15] C.-Y. Huang, K.-T. Chen et al., “Gaminganywhere: The first open
source cloud gaming system,” ACM Trans. Multimedia Comput. Com-

mun. Appl., vol. 10, no. 1s, pp. 10:1–10:25, 2014.

[16] B. Joveski et al., “Semantic multimedia remote display for mobile thin
clients,” Multimedia Systems, vol. 19, no. 5, pp. 455–474, 2013.


