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ABSTRACT
In this paper, we presentTHINK, a practical general-purpose
brain-computer communication platform that relies on the
OpenBCI and OpenViBE hardware and software platforms,
and allows for a simple three-alphabet vocabulary. Specifi-
cally, we consider the scenario where a subject is wearing a
sensor array (an electrode cap), and consciously manipulat-
ing her thoughts to communicate wirelessly with an external
computing entity (a smartphone) without the aid of any ex-
ternal stimuli. Using THINK, we explore general aspects of
brain computer communication that are application agnos-
tic. In particular, we study the following questions: (i) what
is the accuracy of the system? (ii) how fast can the subject
switch thoughts corresponding to symbols; (iii) is there an
impact on accuracy with learning time; and (iv) how does ac-
curacy drop with decreasing number of sensors (electrodes)?
Using purely experimental analysis, we present some results
that provide preliminary answers for these questions.

1. INTRODUCTION
The brain is the seat of all human intelligence, cognition,

and behavior [1]. Hence, for most of known history, humans
have conceptualized, fantasized, and explored the notion
of communication directly through thoughts in the brain
[2]. With the discovery of electroencephalography (EEG)
in 1929, obtaining a simple window into the functioning of
the brain became a reality [3]. At a high level, any brain
activity occurs through the synchronized electrical firing of
millions of brain cells (neurons) communicating with each
other. Such activity can be detected externally through ap-
propriate sensors on the scalp on the brain that sense ac-
tivity in specific portions of the electromagnetic spectrum
(typically in the 0.5-100 Hz). Over the last century, there
have been tremendous advancements into the understand-
ing of which sections of the brain are responsible for what
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kinds of activities, in spite of there existing several aspects of
the brain’s functioning that are less understood or complete
blind spots.

Having a window into the activities of the brain allows
for both passive measurements (where the subject is not
consciously manipulating the brain waves), and active mea-
surements (where the subject is consciously thinking for the
express purpose of manipulating the brain waves that are
then picked up by external sensors). Within active mea-
surements again, the synthetic thoughts of the subject can
be aided by external stimuli (e.g. strobe light flashing at a
certain frequency) or can be a function of purely the thought
processes of the subject. The context for this paper is active
measurements without any external stimuli. We specifically
consider the scenario where a subject is wearing a sensor
array (an electrode cap), and consciously manipulating her
thoughts to communicate wirelessly with an external com-
puting entity (a smartphone) without the aid of any external
stimuli.

This is not the first paper to explore such a scenario.
There have been numerous efforts over the last few decades
to harness brain computer communication (BCC), especially
for people with disabilities [4, 5]. The unifying thread across
all such efforts though is the singular focus on enabling a
very specific application of brain computer communication
in each of the settings. The goal of this paper though is dif-
ferent. With the very recent advent of open brain computer
interface (BCI) platforms and technologies, it has indeed be-
come possible to consider BCC through a broader lens. The
focus of this paper is to consider BCC as a general-purpose
communication platform, and study certain key properties
such as accuracy rate, think rate, learn rate, scalability, etc.,
in an application agnostic fashion.

Briefly, we develop and present an experimental BCC
platform called THINK that relies on two open platforms -
OpenBCI and OpenViBE. THINK allows for BCC through
the imagined movement of limbs, has a vocabulary size of
three, and uses Bluetooth LE for communicating out.
THINK is built as a general-purpose communication plat-
form and can conceivably be linked to any application sim-
ply as an input mechanism. We then use THINK to study
generic properties of BCC such as the rate of accuracy, the
rate at which symbols can be thought and hence commu-
nicated, and the impact of learning on the accuracy. We
also consider some practical questions such as the accuracy
to form-factor trade-off that could inform future practical
BCC platform designs.



Figure 1: Motor Cortex and
Cortical Homunculus

Figure 2:
International 10 − 20 System

We hasten to add that this is preliminary work and sev-
eral of the results presented in the paper require further
exploration and follow-up work. There are also several in-
teresting avenues of exploration within BCC that the scope
of this paper does not include. However, we do consider the
contributions of this work as a key stepping stone to such
deeper exploration. The rest of this paper is organized as
follows: Section 2 provides a high level primer on the bi-
ology and physics of brain waves. Section 3 describes the
two open platforms we rely on for our experiments. Section
4 presents the THINK architecture and prototype details.
Section 5 discusses the experimental results and insights.
Finally, Section 6 concludes the paper and presents future
challenges.

2. BRAIN WAVES: A PRIMER
The presence of billions of neurons in the brain and their

inter-communication through electrical impulses forms the
basis of cognition in humans. Chemical activities inside the
neuron cell body and dendrites result in depolarization and
hyper-polarization of the cell membrane resulting in the gen-
eration of electrical activity. Neurons located in different
parts of the brain are associated with different function-
alities respectively. The electrical impulses produced are
meant for either processing or transmitting information to
the specific body part responsible for that functionality. The
superposition of a large number of electric pulses results in
the generation of brain waves.

Brain waves can be observed by planting electrodes ei-
ther inside the grey matter (invasive) or on the scalp (non-
invasive). Electroencephalography (EEG) is one of the most
widely used non-invasive methods to record electrical changes
on the brain scalp. EEG cannot capture a single neuronic
activity. Instead, it measures electrical activity of a group
of neurons (typically millions). It is similar to observing a
wave arriving at a shore after it was generated in the heart
of the ocean. EEG activity is generally measured in terms of
frequency in Hertz. Brainwaves are categorized into six main
categories: Delta (< 4 Hz), Theta (4-7Hz), Alpha (7-14 Hz),
Beta (15-30 Hz), Gamma (>30 Hz) and Mu waves (8-12 Hz).
Each category (frequency band) has specific characteristics
associated with different biological processes. An Internally
or externally paced event leads to a change in EEG activ-
ity in the form of event-related synchronization (ERS) or
desynchronization (ERD). ERS[6] and ERD[7] are charac-
terized by an increase and decrease in the power spectrum

of particular frequency bands respectively. Mu and central
beta rhythms display attenuation in power (a typical ERD)
during imagination of specific limb movements [8]. These
ERDs present contralateral spatial localization i.e. imagina-
tion of movement on the right side of the body is captured
in the left hemisphere of the brain and vice-a-versa. The
mu-rhythms are specifically localized over the motor and
sensory areas of the brain, and hence are known as sensori-
motor rhythms. A mapping of the primary motor cortex and
the primary somatosensory cortex in the brain to motor and
sensory body parts is illustrated in the cortical homunculus
diagram shown in Fig.1. Left and Right hand movements
are primarily concentrated over C4 and C3 positions respec-
tively according to the international 10 − 20 system shown
in Fig.2.
A successful brain-computer communication system can be
designed by capturing EEG and relying on modalities in-
cluding Visually Evoked Potentials (VEPs), Mu waves, P300
and Alpha rhythms. Of these, Mu waves and Alpha rhythms
do not require any external stimuli. As Mu waves are also
theoretically capable of larger vocabulary sizes (unlike Al-
pha waves that differentiate only between rest and active
states), for the platform presented in this paper, we rely
only on detection and processing of Mu waves that are con-
sciously manipulated by the subject through imagined limb
movements.

3. OPENBCI & OPENVIBE PLATFORMS
TheTHINK prototype described later in the paper heav-

ily relies on two related but independent open platforms,
OpenBCI and OpenViBE, respectively for hardware and
software. We briefly describe these platforms below.

Hardware Platform (OpenBCI). Before the launch of the
OpenBCI board in 2014, all available BCI devices were lim-
ited in terms of limited access they allowed to raw EEG data,
their closed architectures and costs. ‘Open Source Brain
Computer Interface (OpenBCI)’ radically impacted BCI re-
search by delivering a portable low-cost hardware interface
to access raw EEG data. The OpenBCI platform is built
with the ADS1299 IC at its core and a re-programmable 32-
bit PIC micro-controller [9]. This low noise, 8-Channel, 24-
bit analog to digital converter IC acquires, digitizes and am-
plifies the tiny EEG signals captured by the scalp electrodes.
To enable the OpenBCI board to communicate outward, it
is equipped with an RFduino and USB dongle that allows for
a Bluetooth wireless link. Specifically, the RFduino present
on the board is capable of communicating with smartphones
or tablets over Bluetooth 4.0 Low Energy.

Software Platform (OpenViBE). OpenViBE is an open
source software tool written in C++ and used for designing
and testing BCIs [10]. It can acquire, filter, process, classify
and visualize EEG data in real time. Its modular design al-
lows for the processing and visualization of brain waves. It
consists of several software modules/boxes that can be inte-
grated and connected in order to design a signal processing
chain. The latest version (1.0.0) comes with an OpenBCI
driver to acquire signals from OpenBCI directly. It includes
pre-configured scenarios for motor imagery and other BCI
applications.



Figure 3: Workflow of THINK Prototype

Figure 4: Signal Processing Architecture of THINK in
OpenViBE

4. THE THINK PROTOTYPE
The goal of this work is to develop an interface to control

handheld mobile devices via thought alone. THINK serves
as a communication interface between the ‘Human’ and the
‘Machine’ with a vocabulary size of 3 (‘Left’, ‘Right’, ‘Rest’).
It transmits binary data (0 or 1) when the subject imagines
the lifting of the ‘Left ’or the ‘Right’ hand respectively. In
‘Rest’ state i.e. no imagination of limb movements, the sys-
tem remains in idle state and does not initiate any data
transfer. While exploration of a larger vocabulary size is
out of scope for this work, we choose a vocabulary size of 3
for its balance of simplicity and usability (e.g. the system
can support simple directives such as ‘yes/no/no operation’,
‘left/right/no operation’, etc.).

THINK is based on active measurements of the brain
waves as the user consciously tries to manipulate the waves
to effect control. The core mechanism behind THINK is
motor imagery, since it does not require any external visual
stimuli to operate and users can voluntarily control the sys-
tem. THINK requires the user to wear an electrode-cap
attached with the OpenBCI board, which is further con-
nected to a smartphone over Bluetooth link1. The current
prototype uses CAP-100C (by BIOPAC Systems Inc.) and
32-bit OpenBCI board. The OpenViBE application resides
on an Internet server and receives raw EEG signals, pro-
cesses them and labels them as one of the states out of ‘Left’,
‘Right’ and ‘Rest’ as depicted in Fig.3. The corresponding
decoded state is transmitted as necessary to the smartphone
on the same network through a vanilla TCP/IP session. The
Smartphone application then displays the decoded state on
the mobile screen. However, an observant reader would re-
alize that the system can be modified to allow it to drive
other third-party applications as well.

4.1 Signal Processing
For the signal processing component of THINK, the mo-

tor imagery scenarios present in OpenViBE are modified to
suit the system requirements. Fig. 4 depicts the signal pro-
cessing chain of THINK in OpenViBE. Briefly, the process-
ing functions as follows:
1) EEG Data: Raw EEG data is acquired at the acqui-
sition server running independently on an Internet server.
2) Filtering: The received EEG signals are digitally fil-
tered in the 8-30 Hz band that includes Mu and central
1Productized versions of the system can be more elegant and
practical in terms of form-factor. We study the dependency
on the number of electrodes to this effect later in the paper.

beta rhythm frequencies. The frequency filtered signals are
allowed to pass through a CSP Spatial Filter. The CSP Spa-
tial Filter generates new output channels by applying a lin-
ear combination to input channels (8-channels in this case)
such that the variance for one class is maximized while at
the same time the variance for the other class is minimized.
The coefficient of the CSP Spatial Filter is learned by per-
forming offline training sessions.
3) Feature Extraction: A signal epoch of the past one-
second is generated every 1/16th of a second. The average
power of epoch signals is computed and stored as features.
4) Classification: Finally, the features are classified into
one of three categories ( ‘Left’, ‘Right’, ‘Rest’ ) using a Lin-
ear Discriminant Classifier (LDA). If the probability for de-
coded ‘Left’ and ‘Right’ classes is less than the preset thresh-
old value, they are labeled as belonging to the ‘Rest’ class
to boost the system accuracy.
5) Connecting with Smartphone: The decoded states
from OpenViBE are finally sent to the smartphone through a
TCP/IP session. The smartphone application plays the role
of a client role and simply displays the result periodically.

5. EXPERIMENTAL ANALYSIS
To evaluate the performance of the system, the ‘Graz

Motor Imagery BCI Stimulator’ ([10]) script was modified
to display ‘Left’, ‘Right’ and ‘Rest’ stimulation cues to the
subject. Eight subjects were studied through trials that
each lasted 11 minutes and 30 seconds. Each trial starts
with the presentation of a fixation cross at the center of the
monitor screen. After 3 seconds, a red arrow appears that
indicates the corresponding stimulation cue. Users are re-
quired to imagine the lifting of limbs in order to initiate data
transfer. THINK is capable of capturing different types of
movements with different body parts, in this work we only
evaluate THINK for the particular limb movements (Lift-
ing of Left/Right hand). One experimental run consists of
randomized distributed 30 ‘Rest’ stimulation cues and 15
cues each for ‘Left’ and ‘Right’. The rest of the settings
are kept to the default values as in the script. During the
imagination task, subjects were asked to remain motionless.
The wireless data-rate of the system was measured to be
approximately 64.45 Kbits/s. No optimization of this com-
munication overhead was performed although there is scope
for the same. The EEG Data was sampled using Biopac’s
CAP100C over T3, F3, F4, C3, C4, Cz, P3 and P4 posi-
tions according to the international 10 − 20 system at 250
Hz. The ground and bias electrodes were attached to the
left and right ear lobes respectively. The system is fully
functional on its own without any requirement of external
stimuli. External stimulations are used to evaluate the sys-
tem performance.

5.1 Accuracy
Fig.5 shows the confusion matrix (where each row rep-

resents the predicted class while the columns represent the
instances of actual class) for target and decoded stimula-
tions in a graphical form for (a) best experiment, (b) best
subject, (c) worst subject, and (d) all subjects. The ‘best
experiment’ results show the performance for the best indi-
vidual trial (Fig.5(a)) across all subjects. Out of the total
of 80 trials (8 subjects, twice a day for 5 days), an average
of 10 trials for each subject is calculated, and the best and
the worst performances amongst the subjects are presented
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Figure 5: Accuracy Measure
Best
Exp.

Best
Subject

Worst
Subject

All
Subjects

Correct
Classification 81.2% 72.3% 47.9% 53.4%

Mis
Classification 11.3% 12.5% 15.9% 15%

Neutral
Classification 7.5% 15.2% 36.2% 31.6%

Table 1: Accuracy Metric

in Fig.5(b) and Fig.5(c) respectively. Fig.5(d) presents the
averaged performance across all 80 trials. For the best ex-
periment, the system outputs 85% of time correct stimula-
tions for ‘Left’ cue, 79% for ‘Right’ and 80% for the ‘Rest’
cues. We define the accuracy measure using three different
quantities which are presented in Table 1.
1. Correct-Classification: Counts all target stimulations
that were decoded correctly.
2. Misclassification: Stimulations corresponding to the
following target-decode pair, ‘Left’ to ‘Right’ or ‘Right’ to
‘Left’ or ‘Rest’ to ‘Left/Right’. This quantity hurts the per-
formance of the system.
3. Neutral-Classification: Counts instances when ‘Left’
or ‘Right’ target stimulations are decoded as ‘Rest’. This
reduces the data rate of the system by keeping system in
idle state when a transmission is intended.
For the best experiment, the three defined accuracy mea-
sures are 81.2%, 11.3% and 7.5% in order.
A relatively large variation in the accuracy measures for dif-
ferent subjects across different experiments can be observed
in Fig.5. The averaged correct classification accuracy ob-
tained for best subject, worst subject and all subjects is
72.3% , 47.9% and 53.4% respectively , which is signifi-
cantly lower compared to the highest (81.2%) indicating a
large variance value. Even with the 53.4% accuracy rate, a
practical system can be realized as misclassification occurs
only 15% of the time (the rest of the errors are due to the
Neutral-Classification (31.6%) status that simply lowers the
data rate of the system.). Note that a completely random
decision process would have an accuracy rate of 33%.

The system accuracy is highly dependent on the user’s
performance. Among all experimental trials, the accu-
racy metric attained a maximum of 81.2%. The same
metric turns out to be 53.4% if averaged for all trials.
Even a low accuracy rate (53.4%) is sufficient for practical
BCC systems as long as there are few misclassifications
(15%) occurring in the system.

5.2 Learn Rate
In this section, we evaluate the effect of training on indi-

vidual’s performance. Eight different subjects were studied
twice a day over a course of five days. Their correct clas-
sification accuracy was averaged for each day and reported
in Fig.6. It should be noted that these experimental runs
did not involve providing of any kind of neurofeedback ( a
technique for training of brain) to the users.
From Fig.6, we can see that although performance metric
improves for subject S2, S3 and S6 but there is no fixed
pattern for the other users. Accuracy for subject S7 lies
in 65%-80% block and rest of the subjects lies in 40%-60%
block. From this, we can conclude that the mu-rhythms are
indeed characteristic property of different individuals.
Evaluation of impact of biofeedback on learning rate would
be part of our future work. We plan to design a system that
can learn classification parameters simultaneously with al-
lowing user to adapt to the system during experiment.

There is no considerable effect of training on learn rate
without biofeedback. Performance for S7 varies in 65%-
80% range while rest of the subjects lies in 40%-60%
range, indicating mu-rhythms as characteristic property
of an individual.

5.3 Think Rate
This particular experiment investigates the system per-

formance as the time between thinking states is varied. Think
duration is defined as the period of time a user is required
to imagine the limb movements. This quantity controls the
data rate of the system and could be impactful in developing
a practical BCC system.
For the experiments, the Think duration was varied from
4 down to 0.5 seconds. It was not reduced below 0.5 sec-
onds due to practical issues with a human responding to a
fleeting stimuli. Experimental results were calculated keep-
ing the epoch rate fixed to 0.25 seconds and the results are
plotted in Fig. 7 for subjects S3 and S7. We observe that the
performance metric increases with a decrease in the think
duration. The performance curve increases from 46.1% to
66.9% and 51.4% to 68.6% in case of S3 and S7 respectively,
accounting nearly 20% increment in the correct-classification
accuracy in both the cases. An explanation for this trend is
that subjects usually tend to think moving limbs for a fixed
amount of time even if the stimuli duration is longer due to
focus issues. Hence, all averaged signal epochs would not
necessarily contain corresponding stimuli features resulting
in mislabeling of data and a dip in performance for the longer
think durations.

An additive increment of 20% is obtained in the system
accuracy when the think duration is reduced from 4 sec-
onds to 0.5 seconds. This enables the system to be more
accurate when run on the faster think rates.
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Electrode Count Electrode Combination
2 C3,C4
3 C3,C4,Cz
4 C3,C4,Cz,F4
5 C3,C4,Cz,T3,F3
6 C3,C4,Cz,P4,F4,T3
7 C3,C4,Cz,F43,P4,F3,T3
8 C3,C4,Cz,P3,P4,F3,F4,T3

Table 2: Electrode Selection for Best Performance

5.4 Number of Electrodes
The form-factor of the electrode cap is a direct function of

the number of electrodes required. Hence, the total number
of electrodes and their selection are key aspects in design-
ing BCC systems. Fig.8 presents the best and the worst
obtained classification accuracies when the electrode count
is varied from 2 to 8. The best and worst case scenarios
are identified after a brute-force search of all possible accu-
racies with a given electrode count. The accuracy increases
from 66.19% to 79.24%, and attains steady state afterwards.
This shows that only 3 electrodes are sufficient if chosen op-
timally. Table 2 presents the best combination of electrodes
against the electrode count. ‘C3’, ‘C4’ and ‘Cz’ being sub-
stantial positions in motor imagery context are subsets of
electrode-sets for higher number of electrodes.
An exponential increase can be noticed for the worst case
scenario with increasing number of electrodes, ranging from
33.33% to 82.39%. The considerable gap between the worst
and best performance curves highlights the importance of
electrode selection.

T hree electrodes are sufficient to design a practical sys-
tem with accuracy up to 79.24%. The performance met-
ric varies from 36.52% to 79.24% depending on the ap-
proach for electrode selection.

6. CONCLUSION
This paper considers the potential of BCC as a general-

purpose substitute for current Human-Computer Interaction
Systems. We demonstrate that a simple motor imagery sce-
nario can improve the communication experience of users
with a machine whether it be a smartphone, a tablet or a lap-
top. The accuracy results obtained through the experimen-
tal runs is promising enough to advance research in the field.
BCC has historically been considered for the challenged and
disabled people and EEG has been looked at for medical pur-

poses only. We believe that the presented THINK platform
and the associated experimental analysis serve as a valuable
starting point for several new research directions in the area
of brain-computer communication. There are a slew of chal-
lenges that we will explore as part of future research, includ-
ing the following: (i) how large can the vocabulary size be
for practical brain-computer communication? (ii) can other
modalities of brain waves (e.g. VEPs, alpha rhythms, etc.)
be used in tandem with Mu waves for better performance?
(iii) what are the usability issues (e.g. wet vs. dry elec-
trodes, perceived appearance when wearing electrode cap)
with brain-computer communication systems? and (iv) how
intense and in what form does training need to be to elicit
better accuracy rates?
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