
Look Who’s Talking: A Practical Approach for
Achieving Scheduled WiFi

in a Single Collision Domain ∗

Chao-Fang Shih, Yubing Jian, and Raghupathy Sivakumar
Georgia Institute of Technology

{cshih,yubing,siva}@ece.gatech.edu

ABSTRACT
We ask the following question in this paper: Can the goals
of centralized WiFi scheduling be achieved using purely dis-
tributed operations? We present a solution called Look Who’s
Talking (LWT) that allows for arbitrary schedules to be dis-
tributed to nodes in a WiFi network. The nodes in the net-
work then use purely local and distributed operations to achieve
the prescribed schedule. The scope of LWT in this paper
is restricted to a single collision domain (single or multiple
cells), but we discuss how LWT can be extended to multi-
ple collision domains. We use both experimental evaluations
(using a WARP-based testbed) and simulation-based analy-
sis (using ns3) to evaluate LWT.

CCS Concepts
•Networks→Network protocols; Wireless local area net-
works;

Keywords
centralized WiFi, scheduled WiFi, media access control

1. INTRODUCTION
Most WiFi deployments today use the distributed coordi-

nation function (DCF) mode of the IEEE 802.11 standard
[1]. The DCF mode of operation is simple and scalable,
and requires a participating node to listen to the channel and
make contention decisions purely on locally available infor-
mation. The contention algorithm in turn is controlled by
∗This work was funded in part by the National Science
Foundation under grants IIP-1343435 and CNS-1319455,
and the Wayne J. Holman Endowed Chair.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’15 December 01-04, 2015, Heidelberg, Germany
c© 2015 ACM. ISBN 978-1-4503-3412-9/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2716281.2836116

a set of parameters including the maximum contention win-
dow that are adaptively adjusted based on local information.
While the approach is simple and scalable, the goal of DCF
is to achieve coarse-level fairness and efficiency in the net-
work. Any finer-level goals are beyond the scope of DCF.

The IEEE 802.11 point coordination function (PCF) mode
on the other hand relies on centralized scheduling by the
access-point (AP) [1]. Theoretically, the scheduling algo-
rithm at the AP can be arbitrarily defined. The problems
with PCF are two-fold: i) it uses a polling process that incurs
heavy overheads, especially in dynamic load conditions, and
ii) the standard does not specify how APs should coordinate
with each other to prevent collisions across cells.

There has been interest lately on the problem of achiev-
ing the benefits of centralized scheduling while retaining the
simplicity and scalability benefits of distributed operations1

[3]. The benefits of centralized scheduling are the following:

• Predictability: Applications and services that require
predictable service can expect to receive it in a setting
with centralized scheduling. The central scheduler has
complete control over what is transpiring in the net-
work, and hence provide assurances.

• Differentiation: Applications and services can be pro-
vided with different resource allocations depending on
their requirements. While there are distributed approaches
to accomplish this goal (e.g., IEEE 802.11e [1]), they
are quite coarse in the differentiation they provide.

• Efficiency: Finally, in environments where operational
efficiency is an issue (e.g., in high-density WiFi de-
ployments), centralized scheduling can lead to higher
efficiencies.

On the other hand, the advantages of purely distributed
operations are the lack of a single point of failure or bottle-
neck, scalability with the number of nodes, and backward
compatibility with how WiFi is predominantly used today
[4].

The context for this paper is this bridge between central-
ized scheduling and purely distributed operations. We ask
1In a related domain, software-defined networks (SDNs)
aim to accomplish a similar goal (e.g., OpenFlow [2]).

the following question:Can the goals of centralized schedul-
ing be achieved using purely distributed operations? We
present a solution called Look Who’s Talking (LWT) that al-
lows for arbitrary schedules to be distributed to nodes in a
WiFi network. The nodes in the network then use purely
local and distributed operations to achieve the prescribed
schedule. The scope of this paper is restricted to a single
collision domain (single or multiple cells), but we briefly
discuss how LWT can be extended to multiple collision do-
mains.

The core research contributions are however in how LWT
tackles (i) work conservation under dynamic load conditions;
(ii) schedule tracking when transmissions are outside de-
codable (but detectable) ranges; and (iii) expansion of lo-
cal information when hidden terminals exist. We use both
experimental evaluations and simulations-based analysis to
study the performance of LWT, and show that not only are
the mechanisms in LWT quite practical and achievable, but
the performance of LWT in terms of adherence, efficiency,
and protocol overhead is attractive.

The rest of the paper is organized as follows: Section 2
provides some background information on WiFi and presents
the problem definition. Section 3 outlines the LWT solution.
Section 4 discusses the performance of LWT, and Section 5
concludes the paper.

2. BACKGROUND AND PROBLEM
DEFINITION

2.1 WiFi DCF - A Primer
The Distributed Coordination Function (DCF) mode of

IEEE 802.11 ([1]) is a Carrier Sense Multiple Access (CSMA)
MAC protocol. It belongs to the listen before talk family of
protocols. Before a transmitter node (Tx) transmits, it senses
the channel to determine if there are other nodes transmit-
ting. If the channel is busy, the Tx 2 defers until the channel
becomes idle. If the channel is idle for a specified duration
(the DCF interframe space (DIFS)) the Tx infers the channel
to be idle and randomly selects a backoff number in [0, cw],
where cw is the the contention window. Then, the Tx counts
down the backoff number in terms of backoff slots. If the
channel becomes busy before the backoff timer expires, the
Tx freezes its backoff and defers until the channel becomes
idle again. Otherwise, the Tx transmits when the backoff
number becomes zero. If the DATA transmission is success-
fully received, the receiver node (Rx) sends an ACK after
a short interframe space (SIFS) duration. Fig. 1 shows the
timeline for a DCF transmission. An optional mechanism,
exchanging short control frames (RTS and CTS frames) be-
fore the data transmission, can be used to decrease the prob-
ability and impact of collisions, but is rarely used due to its
associated overheads.

2.2 Scheduled WiFi
2In this paper, we use Tx to refer transmitter node and Rx to
refer receiver node.

PIFS

Busy Medium DATA
SIFS

timeTx

Rx ACK

SIFS

DIFS
Backoff

Backoff slot

Figure 1: Time line of a DCF transmission

Figure 2: System architecture for scheduled WiFi

Scheduled WiFi is the notion of making WiFi nodes trans-
mit according to an order specified in a target schedule S.
Fig. 2 shows a possible system architecture for scheduled
WiFi consisting of a central controller and a multi-cell WiFi
network. The central controller (which can either be an on-
site controller in an enterprise WiFi deployment or a cloud
controller for APs that do not belong to the same adminis-
trative domain) communicates with all APs in the WiFi net-
work. Protocols such as CAPWAP([5]) and LWAPP([6]) fa-
cilitate the communication between the APs and the central
controller. WiFi-related network information is sent to the
central controller periodically. Based on the collected infor-
mation and other configured policies, the central controller
determines a target schedule S = {s0, · · · , sk−1}, where
si = (txi, rxi) indicates the scheduled link in schedule po-
sition i (txi and rxi are the MAC addresses of the Tx and
Rx of the link). The schedule is then pushed to the nodes in
the network through the APs.

For the work in this paper, we define a metric called ad-
herence, adh, to measure how well the WiFi nodes track
the prescribed schedule. The transmission pattern of WiFi
nodes is T = {t0, · · · , tm−1}, where ti can be a success-
ful transmission ((txi, rxi)) or a transmission without ACK
(Col). We partition T into several regions {T ′0, · · · , T ′l }
using ti = Col (Fig. 3) as a separator. The adherence
is adh = 1

mΣl
i=0 max{HCC(T ′i , S)}, where HCC is the

hamming cross-correlation function. Note that adh ≥ 0, and
adh = 1 means perfect adherence.

The ability to make nodes transmit while following a pre-
scribed schedule has many benefits as outlined in Section 1.
Specifically, the benefits center around predictability of ser-
vice, efficiency under heavy load conditions, and weighted
differentiation when applications and services require differ-
ent resource allocations. More generically, once nodes in a
network can be made to follow a schedule, any MAC prob-
lem (e.g. energy-efficient scheduling, transport-layer aware
scheduling, usage-based scheduling, etc.) can now be solved
in a much easier fashion, since only a centralized solution to
the problem needs to be constructed. The output of the cen-
tralized scheduler is simply furnished to the network nodes
that then achieve that schedule.

T

S s0 s1 sk-1

t0 t1 Col tm-1Col Col

(tx,rx) T’0 T’1 T’l

Figure 3: Adherence of a transmission pattern

2.3 Related Works
It is possible to achieve scheduled WiFi using a purely

centralized MAC protocol such as the point coordination
function (PCF) [1] or Soft-TDMAC [3]. However, these
protocols require queue status of nodes or use polling for
scheduling. They either assume that nodes always transmit
or incur large overheads in collecting queue status from all
the nodes. Also, the protocols require tight time synchro-
nization for good efficiency, adding to the burden on the net-
work operations. On the other hand, the requirement of time
synchronization for LWT is the same as that of the 802.11
standard. Thus, general WiFi nodes can support LWT’s re-
quired time synchronization level.

Hybrid MAC protocols that try to schedule WiFi transmis-
sions have also been proposed more recently: CENTAUR
[7], Chain [8], and DOMINO [9]. For example, CENTAUR
schedules certain conflict links to avoid collisions generated
by hidden terminals. However, it only controls downlink
traffic. Chain [8], on the other hand, only schedules uplink
traffic.

DOMINO [9] is an approach that has some properties sim-
ilar to that of LWT. Both approaches utilize relative schedul-
ing to workaround the tight time synchronization require-
ment. In order to efficiently collect queue information from
all nodes, DOMINO uses the sub-carriers of WiFi. LWT also
relies on subcarriers for its flash signals [10]. DOMINO uses
Gold codes [11] while LWT utilizes flash signals. However,
there are three main differences between LWT and DOMINO
in the context of a single collision domain: (i) DOMINO
exactly follows the schedule specified by the central entity.
DOMINO collects queue information from all the nodes and
updates the schedule frequently. It is thus impacted by the
delay between the central entity and APs. The collection of
queue information also incurs non-negligible overhead. On
the other hand, LWT doesn’t need any queue information
and can dynamically adjust the slot usage without help from
the central entity. (ii) The schedule decision of DOMINO is
restricted by the network topology. This increases the sched-
ule design complexity. On the other hand, LWT can support
any schedule decision. LWT also saves on the overheads
involved in gathering network-wide topology information.
(iii) DOMINO cannot handle hidden terminal problems un-
der certain scenarios while LWT can handle all scenarios in
a single collision domain. We illustrate this difference fur-
ther in Section 4.

2.4 Scope and Challenges
The focus of this paper is on WiFi networks in a single

collision domain, in which any two simultaneous transmis-
sions cause a collision. WiFi network deployments typically
have auto-channel-selection mechanisms (3 to 12 orthog-

onal channels depending upon the spectrum used). For a
given channel, most networks are practically either in a sin-
gle collision domain or are totally disconnected, and hence
can operate independently. We discuss how to extend LWT
for multiple collision domains in Section 3.5.4 briefly, but
leave its in-depth exploration for future work.

Thus, the problem addressed by this paper can be stated
as follows. Consider a multi-cell WiFi network containing
n nodes in a single collision domain. The central controller
decides a target schedule S, which is delivered to all nodes.
Having S, how can the nodes achieve scheduled WiFi ef-
ficiently? We present below a list of non-trivial challenges
that need to be addressed by any scheduled WiFi solution:

Non-backlogged Nodes: A common problem in sched-
uled WiFi is to deal with non-backlogged nodes. When nodes
do not always have packets to transmit, it is hard to deter-
mine whether to schedule the node. While collecting queue
status from all the nodes is one solution to the problem, this
collection incurs non-negligible overheads and delays, espe-
cially when there are a large number of APs or large delays
between the APs and the central controller. Thus, it is desir-
able to deal with non-backlogged nodes without collecting
queue status.

Decodability vs. Detectability: The WiFi PHY layer
uses multiple rates for data transmissions. Thus, overheard
packets cannot always be decoded correctly. This prevents
nodes from fully relying on information from overheard trans-
missions. To deliver control-plane information, one possible
solution is to use extra signals or control frames, which in
turn increases overheads. Hence, it is desirable to construct
a solution to tackle such non-decodable scenarios while in-
curring minimal overheads.

Partial Connectivity: Due to any partial connectivity caused
by network topology or obstacles, hidden terminals exist
even in single collision domains. A well-known solution
for the hidden terminal problem in WiFi is the exchange of
RTS/CTS before data transmissions. However, RTS/CTS in-
troduce considerable overheads. Also, the mechanism can-
not solve unfairness problems under certain scenarios (we
illustrate this in Section 3.4). Thus, it is desirable to achieve
scheduled WiFi even in the presence of hidden terminals.

Backward Compatibility: Since it is unrealistic that all
devices in a target deployment can be updated, backward
compatibility is an important property of any newly designed
MAC protocols. Some MAC protocols (e.g., DOMINO [9])
deal with legacy nodes by separating their transmissions into
different time period. This introduces delay for legacy nodes
and requires extra control overheads. It is thus desirable to
construct a solution that allow legacy nodes to operate nor-
mally without additional overheads and delay.

Sleeping Nodes: WiFi radios can be put to sleep to con-
serve energy. Nodes whose radios were put to sleep need
to be able to rejoin the network and sync with the schedule
dynamically. A naive solution is to use a fixed duration for
each transmission (e.g., DOMINO [9]), so that nodes can
use the time elapsed to estimate the current schedule slot
after sleeping. However, WiFi supports multiple rates for
data transmissions, and packet sizes can vary for different

S s0 s1 sk-1sj

(txa,rxa)
(txb,rxb)

Pos current schedule slot
(txb,rxb)

Figure 4: Position synchronization

applications. The fixed transmission times require packet
aggregation and fragmentation, which in turn introduces ex-
tra delays. Hence, it is desirable to address sleeping while
allowing for different transmission durations.

Schedule Changes: It is also important to allow for changes
in the target schedule. Unicasting the schedule to each node
on any update is reliable but introduces large overheads. Broad-
casting the schedule is efficient but can cause problems if the
schedule is not delivered reliably to some nodes. Thus, it is
desirable to design a solution that allows for updates to the
target schedule.

In the following section, we start with an idealized sce-
nario that does not have several of the above challenges, and
then progress systematically in presenting a solution that ad-
dresses all the challenges.

3. LWT: SCHEDULED-WIFI
USING DISTRIBUTED CONTENTION

3.1 Baseline algorithm
Consider a simple scenario with a fully connected topol-

ogy, in which overheard packets can be successfully decoded
and nodes are always backlogged. Under this scenario, we
introduce the baseline algorithm of LWT, LWT-Baseline.

3.1.1 From Centralized Scheduling to Distributed
Contention

Scheduled WiFi is achieved by centralized scheduling pro-
tocols through the following steps in each node: i) access to
the target schedule , ii) get the current schedule slot, iii) trig-
ger a specific transmission, iv) know when the current trans-
mission ends, v) adjust to the next schedule slot, and get back
to step iii). Similarly, LWT achieves scheduled WiFi through
the following steps in each node: i) receive the broadcast of
the target schedule, ii) use “position synchronization” to get
the current schedule slot, iii) reuse backoff mechanism for
self-triggering, iv) track transmission completions, v) move
the “position pointer” to the next schedule slot, and get back
to step iii). Below, we describe the detail of each step in
LWT.

i) Broadcast of Schedule
In LWT, APs broadcast the target schedule S to all nodes. S
can be put into a beacon every few seconds. Broadcasting
generates negligible overheads , which is: k×48×2

Rb×Tp
(the time

percentage used to transmit S), where 48 is the length of a
MAC address, k is the length of S, Rb is the sending rate of
beacons, and Tp is the period of updating S. Consider Rb =
6Mbps, k = 100, and Tp = 1s, the overhead of broadcasting
S is only 0.2%. However, broadcasting is unreliable and

Algorithm 1 LWT-Baseline

1: function POSSYNC
2: if (r0 == Col) or (r0 == Null) then
3: ST=RAND, Pos=Null
4: return
5: else if ST==RAND then
6: Pos=PosMatch(-1)
7: else
8: Pos=(Pos+1)modk
9: end if

10: if Pos! =Null then
11: ST=SYNC
12: end if
13: end function
14: function POSMATCH(prevPos)
15: i = (prevPos+1) mod k
16: for j = 1 to k do
17: if si == r0 then
18: return i
19: end if
20: i = (i+ 1) mod k
21: end for
22: return Null
23: end function

can cause problem if the schedule is not reliably delivered
to some nodes. We will deal with this issue in Section 3.5.3
when considering the problem of change to schedule.

ii) Position Synchronization
In order to follow a schedule, nodes need to know the current
schedule slot. In LWT, this is achieved by synchronization
in a schedule position pointer Pos. Each node in the network
maintains a schedule pointer Pos that points to a position (0
to k− 1) in the schedule; the next position where Pos points
to is the current schedule slot (Fig. 4).

Pos synchronization is achieved by transmission overhear-
ing. Initially, nodes perform random backoff as in DCF.
Once a node wins the contention and finishes a transmis-
sion successfully, all nodes learn the MAC addresses of the
Rx and Tx of this transmission through overhearing. Then,
all nodes find the smallest position of this transmission in
S, and set Pos to that position. For example, in Fig. 4, the
smallest position of link (txb,rxb) is 1. Matching a link to
the smallest position avoids ambiguity when a link is sched-
uled multiple times 3. Pos synchronization gives all nodes a
common current schedule slot. After the first synchroniza-
tion, it is sufficient to maintain Pos synchronization by in-
crementing the position of Pos after each transmission. Note
that since DCF requires nodes to always listen to the channel
for the backoff mechanism, nodes can track the start and end
time of schedule slot. Also, the active listening time of LWT
is the same as that of DCF.

Algorithm 1 illustrates the Pos synchronization of LWT-
Baseline. Assume that a target schedule S = {s0, · · · , sk−1}
is known to all nodes in the network. Nodes record the most
recent transmission r0 (Can be its own transmission or an
overheard transmission). r0 ∈ {si}

⋃
Col, where Col rep-

resents a transmission without ACK. Nodes update Pos ac-
cording to r0 and a synchronization state ST. There are two

3We will talk about how to handle sleep nodes or new nodes
in Section 3.5.

states of ST: RAND and SYNC. Initially, ST is RAND. If
r0 is Null (never heard any transmissions) or Col, nodes
set ST to RAND and Pos to Null. If r0 ∈ {si} and ST
is RAND, which means there is no Pos synchronization be-
fore this transmission, nodes set Pos to the smallest position
matching r0 in S and set ST to SYNC. If r0 ∈ {si} and ST is
SYNC, nodes simply increment the position of Pos by 1 (line
8).

iii) Self-Triggering
The backoff mechanism is used to trigger the transmission
of the current scheduled link. Note that, as mentioned in
Section 2.1, since nodes need to freeze the backoff timer
once the channel becomes busy, nodes constantly listen to
the channel when counting down the backoff number. Thus,
once a new transmission is overheard, a node freezes the
backoff timer, updates Pos, and determines a new backoff
number according to the state ST. If ST is SYNC, it uses Pos
to find the current schedule slot. If the node is scheduled
in the current schedule slot, it sets the backoff number to 0.
Otherwise, it sets a large backoff number and waits for Pos
update. If ST is RAND, the node carries out random backoff
as DCF.

iv) Transmission Completions
Nodes need to learn the completion of the current transmis-
sion to start the next transmission in schedule. In DCF, nodes
always track the completion of each transmission in order to
start the backoff mechanism. LWT utilizes the same mecha-
nism to track transmission completions.

v) The Next Schedule Slot
In LWT, nodes go to the next schedule slot simply by incre-
menting the position of Pos by 1.

3.1.2 Efficiency Estimation
We give a brief efficiency estimation of LWT-Baseline by

estimating the overhead caused by collisions and packet er-
rors. Assume the success of transmissions when n nodes
contend using DCF are independent Bernoulli trials, andPcol

is the probability of having a collision (failure) for each trial.
In LWT-Baseline, one successful transmission achieves Pos
synchronization and avoids collisions. Thus, the average
overhead caused by collision in m transmissions is Ocol =
(Pcol+···+(m−1)P (m−1)

col)

m (1−Pcol)+P
(m)
col =

1
1−Pcol

−1
m . When

m → ∞, Ocol → 0. That is, the overhead is 0 in long
term when there is no packet error. Assume Perr is the
packet error rate. The overhead caused by packet errors
and collisions in DCF is Oerr_col = (1− Pcol)Perr + Pcol;
this overhead in LWT-Baseline is Perr × (1 − Pcol)(1 +
Pcol × 2 + P 2

col × 3 + · · ·) ≤ Perr × 1
1−Pcol

. Considering
Perr = 1% and Pcol = 15%, Oerr_col = 15.85% in DCF,
and Oerr_col ≤ 1.18% in LWT-Baseline.

3.1.3 Limitations of Baseline algorithm
Even though LWT-Baseline achieves scheduled WiFi effi-

ciently, it is limited to simple scenarios where nodes are al-

Figure 5: CS/CCA in a backoff slot

85%

90%

95%

100%

-64 -60 -56 -52 -48 -44 -40 -36 -32 -28Id
e

n
ti

fi
ca

ti
o

n

ra
te

Average receive power (dBm)

Tx transmits sync slots

Tx transmits rand slots

Figure 6: Identification rate of different slots

ways backlogged and transmissions can always be overheard
and decoded. As mentioned in Section 2, we will consider
other practical issues sequentially in the following subsec-
tions.

3.2 Work conservation with non-backlogged
nodes

In this section, we consider scenarios with non-backlogged
nodes. As mentioned in Section 2, it is hard to determine
the schedule when nodes do not always transmit. However,
collecting queue status from all nodes brings overheads and
delays. We introduce a work-conserving mechanism in LWT
(LWT-WC), which utilizes the carrier sense/clear channel
assessment (CS/CCA) mechanism of WiFi to automatically
release unused resources to other nodes when the scheduled
node doesn’t transmit.

3.2.1 CS/CCA of WiFi
The core insight of LWT-WC lies in the CS/CCA mecha-

nism of WiFi. WiFi packets contain a PLCP preamble in the
beginning for synchronization. It is also used for CS/CCA to
identify the start of a transmission through auto-correlation
or cross-correlation. The IEEE 802.11 standard specifies
that an OFDM transmission at a receive level no less than
the minimum sensitivity (-82dBm for 20MHz channel) shall
cause CS/CCA to indicate channel busy with a probability
over 90% within 4 µs (for 20MHz channel)[1]. This timing
is sufficient for nodes to identify the start of a transmission
within a backoff slot (9 µs). Fig. 5 gives a detailed illustra-
tion. A node starts to transmit at the beginning of a backoff
slot if its backoff timer expires. The propagation delay is
around 1 µs, and nodes take 4 µs to identify the start of a
transmission. If a transmission is detected, nodes hold the
backoff timer. If no transmission is detected, since the re-
ceive to transmit turnaround time of a node is less than 2 µs
[1], it is sufficient for a node to prepare to transmit in the be-
ginning of the next backoff slot if its backoff timer expires.

3.2.2 Work-Conserving

Algorithm 2 LWT-WC

1: function POSSYNC
2: if (r0 == Col and wt < wt_thd) or (r0 == Null) then
3: % rand slot does not trigger reset of ST
4: ST=RAND, Pos=Null
5: return
6: else if ST==RAND then
7: Pos=PosMatch(-1)
8: else
9: Pos=(Pos+1)modk

10: end if
11: if Pos! = Null then
12: ST=SYNC
13: end if
14: end function
15: function SELFTRIGGER
16: if ST==SYNC and myself==current scheduled node then
17: set backoff to zero
18: else if ST==SYNC then
19: do random backoff as DCF with b ≥ 1
20: else
21: do random backoff as DCF
22: end if
23: end function

Utilizing the ability of identifying the start of a transmis-
sion within a backoff slot (which is an ability required by
IEEE 802.11 standard [1]), LWT-WC classify schedule slots
into different types according to the timing of the start of the
transmission.

Classifying Schedule Slots
LWT-WC classifies slots into two types: “sync slot” and
“rand slot.” If the current scheduled node transmits, it is
identified as a sync slot. Otherwise, this slot becomes a rand
slot, and all nodes can contend for this slot using DCF. The
identification of sync slot and rand slot is automatically car-
ried out with CS/CCA and backoff mechanism. In LWT-
WC, when nodes are not scheduled in the current schedule
slot, they pick a random backoff number ≥ 1. Since the
current scheduled node sets backoff number to zero, nodes
identify the start of a transmission within the first backoff
slot if the current scheduled node transmits. Otherwise, if
there is no transmission starting within the first backoff slot,
nodes continue to backoff and this slot becomes a rand slot.

3.2.3 Experimental Validation of Work-Conserving
We set up WiFi communications using WARP [12] to val-

idate the core insight of LWT-WC. In our experiment, one
node acts as Tx and transmits unicast packets to the other
node, which acts as Rx and tries to figure out which slot
the Tx uses. We evaluate slot identification rate when the
Tx always transmits in sync slots and when the Tx always
transmits in rand slots. When transmitting in rand slots, the
Tx sets backoff number to one, which creates the smallest
time difference between rand slots and sync slots. Fig. 6
shows the correct identification rate of both scenarios under
different receive power. The experiment result shows that it
is reliable (over 98% correctness) to use CS/CCA to iden-
tify a sync slot and a rand slot. In Fig. 6, the identification
rate when Tx transmits in sync slot goes down to 98% when
the receive power is -64dBm. It is because that the probabil-
ity of CS/CCA correctly indicating channel busy becomes

lower in low receive power. If CS/CCA fails to identify the
transmission in the first backoff slot, the sync slot is wrongly
identified as a rand slot.

3.2.4 Algorithm
Algorithm 2 illustrates the Pos synchronization and self-

triggering mechanism of LWT-WC. Nodes record a parame-
ter wt, which is the waiting time between the current trans-
mission and the previous transmission, and a parameterwt_thd.
If the previous transmission is Col, wt_thd is set to (EIFS
+SlotT ime/2), where EIFS is the interframe space after an
erroneous transmission [1] and SlotT ime is the time du-
ration of a backoff slot; otherwise, wt_thd is set to (DIFS
+SlotT ime/2). Transmissions in rand slots won’t trigger
reset of ST even if it is a collision Col. That is, if there is a
collision in a rand slot, ST will remain the same value, and
if ST is SYNC, nodes simply increase Pos by one (line 9).
When nodes are not scheduled in the current schedule slot,
they pick a random backoff number b ≥ 1.

3.2.5 Efficiency Estimation
Implementing work-conserving mechanism can increase

the overhead of LWT since the rand slots can have larger
backoff slots and collisions. As estimated in Section 3.1.2,
the overhead caused by packet errors and collisions in DCF
is Oerr_col = (1− Pcol)Perr + Pcol; this overhead in LWT-
Baseline is ≤ Perr × 1

1−Pcol
. The overhead of LWT-WC

is the linear combination of the overhead of DCF and LWT-
Baseline, weighted by the time portion of the rand slots and
sync slots. When the traffic load is high, the channel effi-
ciency of LWT-WC approaches that of LWT-Baseline, which
is near-optimal. When the traffic load is low, the channel ef-
ficiency of LWT-WC approaches that of DCF, which is effi-
cient enough in low traffic load.

3.3 Decodability vs. Detectability
In this section, we consider scenarios in which overheard

transmissions cannot be decoded. As mentioned in Sec. 2,
nodes sometimes can not get information from overheard
transmissions. However, using extra signals/control frames
introduces overheads. Although nodes in LWT only need the
Tx and Rx addresses of the first successful transmission for
Pos synchronization, re-synchronization can be triggered by
change of schedule, sleeping nodes, new nodes, transmission
errors, and collisions. Identifying the addresses of transmis-
sions in sync slots is important under those re-synchronization
situations. Thus, we introduce a conditional Viterbi algo-
rithm in LWT (LWT-CV) to help nodes identify addresses
of a transmission when it cannot be decoded.

3.3.1 Theoretical Error Rate of Identifying Ad-
dresses

The core insight of conditional Viterbi algorithm is: in-
stead of consider all decode paths, consider only a subset
of decode paths when decoding4. Since the target sched-
ule S contains addresses of all nodes in the network, we
4Please find the definition of decode path in Chapter 10.5 of
[13]

(a) 2m=50 possible ad-
dresses

(b) 2m=20 possible ad-
dresses

Figure 7: Address identification error rate

can consider only the n addresses in S rather than all MAC
addresses, which reduces the number of decode paths from
2.8 × 1014 to n (the number of nodes), which practically is
less than 50 in a single collision domain. The large reduction
of number of decode paths greatly increases the distance be-
tween paths and also restricts the possibility of errors to only
certain bits, thus the error rate decreases significantly.

3.3.2 Conditional Viterbi Algorithm

Convolutional Code
WiFi uses convolutional code for channel coding. Convolu-
tional code [13] is an error-correcting code . Small bit errors
can be recovered by observing the whole sequence. The en-
coder can be viewed as a finite-state machine.

Decoding with an Address Tree
Viterbi algorithm is an optimal algorithm for decoding con-
volutional codes. It utilizes dynamic programming to find
the decode path with minimum distance. Conditional Viterbi
algorithm is based on Viterbi algorithm, but only considers
certain decode paths. An address tree is built according to
addresses in S, and only the decode paths in the address tree
are considered.

3.3.3 Algorithm
Algorithm 3 illustrates the conditional Viterbi Algorithm,

where tree is the address tree built according to addresses
in S. Each time the received/overheard transmission can not
be decoded, conditional Viterbi algorithm is used to identify
the Rx and Tx addresses. A parameter, tree_state, is used
to trace the current location in the address tree. tree_state
is set to the root of address tree at the first bit of each address
(line 12). Then, only the input that has a path in the tree will
be considered when decoding (line 15).

3.3.4 Evaluation of Conditional Viterbi Algorithm
We use Matlab simulation to evaluate conditional Viterbi

Algorithm. In the simulation, m MAC addresses are ran-
domly generated. For each of the m addresses, another ad-
dress that has different last 4 bits to it is generated. (Note
that for each address, there is another address having the
same first 44 bits.) From the 2m addresses, two addresses
are randomly selected. Transmissions containing the two ad-
dresses and random payload are received though an AWGN
channel with different SNR. Fig. 7(a) and 7(b) shows the

Algorithm 3 Conditional Viterbi Algorithm

1: function CONDVIT(recv_bits, trellis, end_of_addr, init_of_addr, tree)
2: NumStates= trellis.numStates
3: n_addr_bit = 48
4: metrics = zeros(NumStates, end_of_addr+1)+inf
5: path = zeros(NumStates, end_of_addr+1)-1
6: tree_state = zeros(NumStates, end_of_addr+1)-1
7: metrics(1,1)=0
8: for i = 1 to end_of_addr do
9: for state = 1 to NumStates do

10: if metrics(state,i)!=inf then
11: if (i==init_of_addr)or(i== init_of_addr + n_addr_bit)

then
12: tree_state(state,i)=root
13: end if
14: for input = 0 to 1 do
15: if (i<init_of_addr)or(tree(tree_state(state,i),input)!=NULL)

then
16: next_state=trellis.nextStates(state,input)
17: output= trellis.outputsstate,input
18: mt=sum_diff(output,recv_bits(i))+metrics(state,i)
19: if mt < metrics(next_state,i+1) then
20: metrics(next_state,i+1)= mt
21: path(next_state,i+1)= state
22: if i ≥ init_bit_addr then
23: next_tree_state=tree(tree_state(state,i),input)
24: tree_state(next_state,i+1)=next_tree_state
25: end if
26: end if
27: end if
28: end for
29: end if
30: end for
31: end for
32: % trace back the path with minimum metrics
33: decode = TraceBackPath(path, min(metrics), trellis)
34: decoded_addr=decode(init_of_addr:end_of_addr)
35: end function

address identification error rate of conditional Viterbi algo-
rithm when the transmission rate is 54Mbps (64-QAM with
3/4 coding rate) with 2m = 50 and 2m = 20. Only the
least robust rate is shown to keep the graph clear. The iden-
tification error rate of other rates are smaller than that of
54Mbps. The packet error rate of 6Mbps (Pkt 6Mbps) and
54Mbps (Pkt 54Mbps) are also shown as references. The er-
ror rate of choosing the addresses in S that has minimum dis-
tance to the decoded addresses of Viterbi algorithm, which
is the “minDiff” in figures, is also presented. As indicated in
figures, conditional Viterbi algorithm greatly decreases the
identification error rate of addresses.

3.4 Partial Connectivity
In this section, we consider scenarios in which some trans-

missions cannot be overheard, causing hidden terminals prob-
lems. RTS/CTS is a famous solution for hidden terminal
problems. However, it introduces considerable overheads
and has unfairness problems in certain scenarios. Thus, we
propose a transparent transmissions mechanism in LWT (LWT-
TT) to deal with hidden terminal problems in a single colli-
sion domain.

3.4.1 Hidden Terminal Problem in a Single Col-
lision Domain

We define a single collision domain as “a set of links in

a

b

d

c e

(a) Single Collision
Domain

A

B

C

D

(b) HtRx

A

B

C

D

(c) HtNRx

Figure 8: Examples of hidden terminals in a single collision
domain

which transmissions through any two of them cause a col-
lision.” Fig. 8(a) shows a single collision domain. Hidden
terminal problems happen when Tx of links cannot be over-
heard. We classify hidden terminal problems in a single col-
lision domain into 2 types: i) HtRx: at least one node of
each link can be overheard by all nodes in the single colli-
sion domain. ii)HtNRx: there exists a link where both Rx
and Tx cannot be overheard by some nodes in the single col-
lision domain. Fig. 8(b) and 8(c) show examples of both
scenarios.

A well-known solution for hidden terminal is exchanging
RTS/CTS before a data transmission. However, RTS/CTS
introduces extra 116 µs to each transmission. Consider a
packet of 1500bytes transmitting in 54Mbps, the overhead
caused by RTS/CTS is 26%. Also, RTS/CTS can not solve
unfairness problems in HtNRx scenarios. In Fig. 8(c), it is
very hard for node D to win a contention. Since the trans-
mission of node B interferes the reception of node C, but
the transmission of node D does not interfere reception of
node A or B, RTS transmitted from node D to node C can
be corrupted by node A or B easily. Also, since node D
can not hear the RTS/CTS of node A and B, it can keep re-
transmitting RTS while any of the 2 nodes are transmitting.
This makes node D use unnecessary large backoff numbers.

In order for LWT to gain Pos synchronization, the start
and end time of a transmission need to be learned by all
nodes in the single collision domain. We first declare that
“if every node that hears a transmission, broadcasts the in-
formation of this transmission, all nodes in a single collision
domain can get the information of this transmission.” The
proof of this statement is simple. If there is a node that can
not get the information of a transmission, this means that
all of its Rx cannot hear this transmission, thus this node
actually can transmit without interfering with the on-going
transmission, which contradicts the definition of a single col-
lision domain. Below, we use this statement and introduce
the transparent transmissions mechanism.

3.4.2 Transparent Transmissions
In order to pass the transmission information to all nodes

in the single collision domain, we propose a mechanism named
transparent transmissions. When a node receives or over-
hear a transmission, it transmits a special signal, tt_Start, to
indicate the start of a transmission. After the transmission is
finished, the node transmits during SIFS another special sig-
nal, tt_End, indicating the end of this transmission. Fig. 9

illustrates the time line of a transparent transmission. Nodes
receive tt_Start and tt_End can use the timing of these sig-
nals to estimate the start and end time of the current trans-
mission. Since all nodes that hear the current transmission
transmit those signals, all nodes in the single collision do-
main learn the start and end time of the current transmis-
sion. Transparent transmissions needs to satisfy the follow-
ing conditions: i) when overlapping with data packets, the
special signal can be easily identified under low SNR with-
out extra hardware requirements, ii) the transmission of the
special signal can not disturb the reception of data packets,
and iii) the reception of special signal can not disturb the
reception of data packets.

Flash Signal
We use flash signals introduced by Flashback [10] as the spe-
cial signal in transparent transmissions 5. Flash signals are
sinusoids with frequency equal to a certain subcarrier of the
current Wi-Fi channel, and with duration equal to a OFDM
symbol (4µs). Since flash signals can use any of the 36 sub-
carriers in a WiFi channel, there are at least 36 different flash
signals, and transparent transmissions only use 2 of them for
tt_Start and tt_End. Since the Fourier transform of a sinu-
soidal wave is delta functions, as evaluated in the experi-
ments of Flashback [10], flash signals can be detected eas-
ily by simple peak detection algorithm without extra hard-
ware requirements (the transmit/detect of flash signals can
be achieved through software/firmware changes by reusing
OFDM DSP blocks.). The ease of detection guarantees the
robustness of transparent transmissions. Still, packet recep-
tions won’t be disturbed by flash signals as long as the flash
rate is less than 50,000 flashes per second.

Switch to Transmit while Receiving
Due to the half-duplex property of WiFi radios, a node can
not transmit a flash signal while receiving. Thus, we intro-
duce a “switch to transmit while receiving” mechanism for
nodes to transmit flash signals while receiving. A tt_padding,
which contains only zeros, is inserted after the PHY header
of each packet. After receiving the PHY header of a packet,
a node switches to transmit tt_Start, and then switch back to
continue receiving. Since the received portion that missed
due to transmitting tt_Start is tt_padding, the packet can be
received successfully. tt_padding also ensures that the re-
ception of special signal does not disturb the reception of
data packets. The length of tt_padding considers both switch
time and signal transmission time. As will be shown in the
experimental results in Section 3.4.3, we select the length of
tt_padding based on the time synchronization requirement
of IEEE 802.11 [1].

5Transparent transmissions can work with other special sig-
nals such as Gold codes [11] used by DOMINO [9] or the
correlatable symbol sequences in 802.11ec [14], as long as
the signals can be easily identified. Flash signals is selected
due to its simplicity.

PHY Header tt padding

receiving receiving

receiving
SIFSswitch to tx

tt_Start

switch to rx

tt_End

time
Tx

Rx ACK

22㎲ 51㎲

20㎲

estimate start time estimate end time

44㎲

Figure 9: Time line of transparent transmissions

Rx Waveform (I)

0.5

1.0

0.0

-0.5

-1.0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x10^4

Rx Waveform (I) Large Scale

0.5

1.0

0.0

-0.5

-1.0
8100 8200 8300 8400 8500

Figure 10: Rx wave of transparent transmissions

Transmit during SIFS
In order to inform other nodes the end of the current trans-
mission, another flash signal, tt_End, is transmitted after the
DATA transmission is finished. Nodes utilize the SIFS du-
ration between DATA and ACK to transmit tt_End. Since
SIFS is 10µs, the duration of tt_End is 4µs, and the receive
to transmit turnaround time is smaller than 2µs, the time du-
ration of SIFS is quite sufficient for transmitting tt_End.

3.4.3 Experimental Validation of Transparent Trans-
missions

Experiments using WARP [12] are carried out to validate
transparent transmissions. In the experiment, a Tx generates
a preamble following random data bits using 300 OFDM
symbols. After receiving the preamble from the Tx, a Rx
switches to transmit mode and transmits a sine wave (rep-
resents tt_Start) for 4µs. After this transmission, the Rx
switches back to receive mode and keep receiving. Fig. 10
shows a received signal wave with 2 different scales; the unit
of x-axis is 2.5e-8 seconds. There is a small duration (around
8µs) of “no received signal” when the Rx switches to trans-
mit. Table 1 shows the summary of the results. The duration
of “switch to transmit” measured by WARP is : (avg: 8.7µs,
max: 9µs, min: 8µs). Since the duration of one OFDM sym-
bol is 4µs, “switch to transmit” usually damages reception of
3 OFDM symbols. The total number of error symbols in the
300 symbols is: (avg: 3.2, max: 5, min: 2). Since the sym-
bol error can be caused by channel noise, it is more accurate
to estimate the damage using time duration. According to
the experiment results, we use 3 OFDM symbols (12µs) for
tt_padding.

3.4.4 Algorithm

Measurement Avg Max Min
Duration of switching and transmitting 8.7µs 9µs 8µs

Total Number of Error Symbols 3.2/300 5/300 2/300

Table 1: Evaluation of transparent transmissions

temp-
SYNC

SYNC

RAND

Initial
state

Sync to
itself

Sync with
sync slots
or the first
successful
transmission

Collision in
sync slots

Sync with
sync slots

Figure 11: State Diagram of ST

The Pos synchronization and self-triggering of LWT-TT
is similar to that of LWT-WC, only with small differences.

For self-triggering, every node maintains a record of “over-
heard nodes.” Initially, a node assumes that it can not over-
hear any node and update this record as it starts to overhear
transmissions. If the Tx of current schedule slot is recorded
as “can not overhear,” the node waits extra 24µs after DIFS
for possible flash signals. Otherwise, the self-triggering is
the same as that of LWT-WC.

For ease of Pos synchronization, since transparent trans-
missions only carry information of the start and end time of
a transmission, there are 2 unknown information: i) if ACK
is transmitted, and ii) the Rx and Tx addresses of the trans-
mission. Again, nodes utilize the “overheard nodes” record.
If the Rx of the transmission cannot be heard, nodes assume
that ACK is transmitted and will not reset its ST to RAND.
If the Tx of the transmission cannot be heard, nodes stay in
RAND when ST is RAND, and increase Pos by 1 if ST is
SYNC. (Note that nodes still can use timing to identify sync
slots and rand slots.)

A new state of ST, tempSYNC, is introduced for ease of
Pos synchronization. If nodes hear sync slots while its ST is
RAND, it tries to synchronize using those sync slots. How-
ever, if the number of overheard sync slots is not enough for
a node to figure out the position of Pos, a node can synchro-
nize to itself and switches its ST from RAND to tempSYNC
when it has the first successful transmission in a rand slot.
When ST is tempSYNC, nodes setup its Pos (match to its
own successful transmission) and transmit in its scheduled
slots indicated by its Pos. If the transmissions (transmit us-
ing sync slots) in the scheduled slots succeed, nodes switch
its ST from tempSYNC to SYNC after a schedule duration.
Otherwise, if any collision happens in the sync slots, ST is
switched from tempSYNC to RAND.

On the other hand, if a collision happens in a sync slot, a
node will not directly switch from SYNC to RAND. It first
switches from SYNC to tempSYNC for a schedule duration.
If a collision happens in a sync slot again when ST is temp-
SYNC, it switches from tempSYNC to RAND. Fig. 11 shows
the state diagram of ST. The rest of the algorithm is same as

that of LWT-WC.

3.4.5 Efficiency Estimation
The protocol overhead of transparent transmissions is the

extra time duration of tt_padding in a packet. Assuming a
1500byte packet transmitting in 54Mbps, the overhead caused
by tt_padding (12µs) is only 3%, and this overhead decreases
as the transmission rate becomes lower. Comparing to the
26% overhead caused by RTS/CTS, transparent transmis-
sions is much more efficient.

3.5 Other challenges and considerations

3.5.1 Supporting backward compatibility
LWT is backward compatible, and can operate with legacy

nodes without separating them to a different time duration.
Legacy nodes can transmit in rand slots, in which all nodes
operate DCF. If the traffic load from legacy nodes is high, the
central controller can schedule special legacy-only slots that
LWT nodes won’t contend for. Although the probability of
legacy nodes disturbing sync slots is non-zero, this probabil-
ity decrease exponentially due to the exponential grow of the
contention window (cw) in DCF. For example, the probabil-
ity of a legacy node disturbing a sync slot is 6% (the proba-
bility of a legacy node selecting zero as its backoff number
with cw=15) in the first time, 3% (cw=31) for the second
time, and becomes less than 1.5% (cw≥63) after the third
time. The tempSYNC state also helps LWT nodes to be more
robust against disturbance.

If there are legacy nodes that can not overhear the cur-
rent transmission, the Tx will use a tt_padding of 13 OFDM
symbols and the Rs transmits CTS (44 µs) with tt_Start dur-
ing the tt_padding. The disturbing probability, which also
decreases exponentially, is 18% in this situation (the proba-
bility of a legacy node selecting a backoff number≤2, which
leads to a backoff time ≤ 22µs).

LWT can also use PIFS, an IFS shorter than DIFS, in sync
slot to decrease the disturbing probability. PIFS is used by
APs and non-AP nodes under PCF, in which the behavior of
non-AP nodes is under control of the AP. Since the behavior
of nodes in sync slots is also under control of the central
controller, it is reasonable to allow nodes to use PIFS in sync
slots.

In LWT, nodes need information of all MAC addresses
in the network for LWT-CV. Since all legacy nodes need to
associate with an AP, the MAC addresses of legacy nodes
can be collected by APs and give to all nodes the same way
as the target schedule S. Nodes can also collect legacy MAC
addresses by learning from overhearing.

3.5.2 Sleeping nodes
LWT nodes lose Pos synchronization after sleeping since

they cannot overhear transmissions during sleeping. As men-
tioned in Section 2, using fixed duration for each transmis-
sion can make sleeping nodes keep Pos synchronization. How-
ever, fixed transmission time requires packet aggregation and
fragmentation, which introduces extra delays. Thus, instead
of using fixed duration for each transmission, sleeping nodes

achieve Pos synchronization by overhearing sync slots or
synchronizing to itself through tempSYNC state (Fig. 11).
Once a node wakes up from sleeping, it operates DCF un-
til it hears enough sync slots to identify the position of Pos.
However, if the node didn’t hear any sync slots for a sched-
ule duration, it switches to tempSYNC state when it success-
fully finishes a transmission in a rand slot (synchronizes to
itself). If the later transmissions in sync slots succeed, nodes
switches to SYNC state after a schedule duration. Otherwise,
if any collision happens in sync slots, ST is switched from
tempSYNC to RAND.

3.5.3 Schedule updates and membership changes
The target schedule is determined by the central controller

using scheduling algorithms such as [15]. The target sched-
ule is broadcasted by APs periodically. Although broadcast-
ing is efficient, it is not reliable. Transmitting following dif-
ferent schedules can cause collisions in sync slots. Thus,
LWT requires a mechanism that quickly indicates the update
of S. The update of S is indicated by another flash signal,
S_update, transmitted by APs along with DATA or ACK.
Since flash signals can be transmitted frequently (50,000 flashes
per second) without disturbing receptions, and can be identi-
fied even when colliding with other flash signals, nodes learn
the update of S quickly and reliably. Once receive S_update,
nodes operate DCF until they overhear the new S. Thus,
although there might be some delay of getting the new S,
nodes won’t disturb sync slots once they receive S_update.

When a node wants to join the network, it operates DCF
until overhearing S from APs. New nodes get Pos synchro-
nization the same way as sleeping nodes. Each AP maintains
a client list and periodically sent it to the central controller
for updating S.

3.5.4 Multiple collision domains
So far, we propose algorithms for WiFi networks in a sin-

gle collision domain. It is possible to extend them for mul-
tiple collision domains, but it is beyond the scope of this
paper. The main idea is using different flash signals to deliv-
ery transmission information of different collision domains.
There are 36 subcarriers that can be used by flash signals and
LWT only needs 2 for each collision domain. In multiple
collision domains, multiple transmissions can be scheduled
in the current schedule slot. Nodes increase Pos by one only
after confirming the end of transmissions of all collision do-
mains in the current schedule slot. This can be learned by
either overhearing or receiving flash signals. We leave the
in-depth exploration of multiple collision domains for future
work.

4. EVALUATION
In this section, we evaluate LWT using real-time experi-

ments and ns-3 simulations [16].

4.1 Experimental Evaluation
We implement LWT in a software defined radio platform:

Wireless open-Access Research Platform (WARP) v3. WARP

Figure 12: WARP test-bed

Link Number LWT(Mbps) DCF(Mbps)
1 9.00 6.62
2 8.03 8.98
3 9.00 6.62
4 8.03 9.00

Total 34.16 31.22

Table 2: Experiment results of LWT vs.
DCF

Parameter Value
Frame size 1500byte

Basic transmission rate 6Mbps
Data transmission rate 54Mbps

Slot time 9µs
SIFS 10µs
DIFS 28µs
AIFS 37µs

RX/TX switching delay <2µs

Table 3: ns-3 parameter

15

20

25

30

35

40

2 4 6 8 10

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Number of APs

LWT Domino

DCF DCF/RTS

(a) Network Throughput

0

2

4

6

2 4 6 8 10

D
el

a
y

(s
)

Number of APs

LWT Domino
DCF DCF/RTS

(b) Delay Per Packet

0%

20%

40%

60%

80%

100%

2 4 6 8 10

A
d

h
er

en
ce

Number of APs

LWT Domino

DCF DCF/RTS

(c) Adherence to schedule

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

J
a

in
's

 F
a

ir
n

es
s

In
d

ex

Number of APs

LWT Domino

DCF DCF/RTS

(d) Fairness

Figure 13: Saturated traffic with fully connected topology

supports modification and monitoring of parameters and func-
tions in both the MAC and PHY layer, and can operate fast
enough to perform WiFi communications with off-the-shelf
WiFi devices.

As shown in Fig. 12, we set up 3 WARP nodes in a fully
connected topology. One acts as AP and the other 2 act as
STAs. The experiment is set up in an indoor environment
using 802.11a in 5.18 GHz channel with 54Mbps data trans-
mission rate. We use iperf to generate traffic on the 2 uplinks
and 2 downlinks. Each link is scheduled once in S.

Table 2 shows the throughput of LWT and DCF from ex-
perimental evaluation. Comparing to DCF, LWT gives better
throughput and fairness. Due to the low contention (only 3
nodes), the difference in throughput is not large. The two up-
links (link 2 and 4) have slightly better throughput in DCF.
It is because DCF roughly gives each node the same access
rate, which gives each node approximately 1

3 access rate.
LWT gives each link the same access rate, which gives each
link approximately 1

4 access rate. Since 1
4 <

1
3 , links 2 and

4 get slightly higher throughput in DCF.
Although there are only 3 nodes in the WARP-based eval-

uation, it proves that: (i) the schedule tracking, slot start/end
time tracking, and CS/CCA mechanisms all work harmoni-
cally under LWT design to achieve better system throughput
and fairness. (ii) This implementation is done without spe-
cial time synchronization mechanism or hardware change
support, which proves that LWT requires only the time syn-
chronization level of 802.11 standard and can be implemented
with only software/firmware changes. We would also like to
point out that other features of LWT, such as slot identifica-
tions and Transparent transmissions, though not be evaluated
under the three-node experiment setting, have been evalu-
ated through other WARP experiments in previous sections.

We take these experiment results as a proof of concept of
implementing LWT and evaluate the performance of LWT

in more complicated situations using ns-3 simulations.

4.2 Simulation Based Evaluation
We present the performance evaluation of LWT, DOMINO,

DCF, and DCF with RTS/CTS (DCF/RTS) using ns-3 simu-
lation. Table 3 shows the simulation parameters, which fol-
lows 802.11g. In all scenarios, traffic is generated on all
uplinks and downlinks, and each link is scheduled once in
S.

We first evaluate the performance of each mechanism un-
der fully connected topology (no exposed terminals and no
hidden terminals). Scenarios with and without non-backlogged
nodes are both considered. Then, the performance of each
mechanism is evaluated under the 2 types of hidden terminal
scenarios: HtRx and HtNRx.

4.2.1 Saturated traffic in fully connected topolo-
gies

We set up fully connected topologies with saturated traffic
using different number of APs. Each AP has 2 clients. We
consider different number of nodes since there can be a large
diversity in node density in practice.

Fig. 13(a) measures the throughput of LWT, DOMINO,
DCF, and DCF/RTS. Due to transmitting according to a sched-
ule and thus avoiding collisions, DOMINO and LWT achieves
much higher throughput than DCF and DCF/RTS. DCF per-
forms worse as the number of APs increases because of in-
creasing contention. DCF/RTS performs worse than DCF
in low contention scenarios since RTS/CTS generates large
overhead, and performs better than DCF in high contention
scenarios since RTS/CTS successfully decreases the over-
head of collisions. Since DOMINO requires each AP to poll
its clients for queue information periodically, the through-
put of DOMINO slightly decreases as the number of AP in-
creases.

15

20

25

30

35

40

0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Range of on/off duration (ms)

LWT Domino

DCF DCF/RTS

(a) Network Throughput

1.0

1.4

1.8

2.2

0 500 1000 1500 2000

D
el

a
y

(s
)

Range of on/off duration (ms)

LWT Domino

DCF DCF/RTS

(b) Delay Per Packet

0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000

A
d

h
er

en
ce

Range of on/off duration (ms)

LWT Domino

DCF DCF/RTS

(c) Adherence to schedule

0

0.5

1

1.5

2

0 1000 2000

M
in

 T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Range of on/off duration (ms)

LWT Domino

DCF DCF/RTS

(d) Minimum throughput

Figure 14: Dynamic traffic in fully connected topology

Fig. 13(b) shows the average packet delay, which is the
time between a packet’s arrival at the queue and the time it
is successfully transmitted. DCF and DCF/RTS have higher
delay due to larger contention time and more collisions. As
the number of APs increases, delay increases due to longer
schedule in LWT and DOMINO.

Fig. 13(c) presents the adherence of each mechanisms.
Since DCF and DCF/RTS does random backoff, their ad-
herence is very low. LWT and DOMINO follow the sched-
ule almost perfectly. Fig. 13(d) measures fairness, and all
4 mechanisms can provide good fairness in fully connected
topologies.

4.2.2 Non-backlogged nodes in fully connected
topologies

In this section, we consider scenarios with non-backlogged
nodes. We use dynamic on/off traffic in a fully connected
topology with 2 APs, each with 5 STAs. We consider dif-
ferent traffic dynamic since there can be a large diversity in
traffic patterns/loads in practice. The on/off duration of traf-
fic is randomly determined by each link during each on/off
switch, and the range of randomness is changed from 100ms
to 2000ms.

Fig. 14(a) shows the throughput of each mechanism under
different range of traffic on/off duration. The randomness of
traffic doesn’t affect DCF and DCF/RTS. As the range of
traffic on/off duration increases, the average number of non-
backlogged nodes increases. Throughput of LWT slightly
decreases by cause of increase in rand slots, which have
larger backoff time and collisions. Throughput of DOMINO
decreases due to missing schedules; that is, nodes cannot
get scheduled quickly when it starts to get packets in queue,
and also can be scheduled while its traffic already enter the
off period. This situation becomes more severe as the delay
between the central controller and APs increases (the simu-
lation setting of this delay is only 250 µs).

The packet delay of each mechanism is presented in Fig.
14(b). The delay decreases as the average number of non-
backlogged nodes increases. Again, LWT and DOMINO
performs better than DCF and DCF/RTS. Fig. 14(c) mea-
sures the adherence of different mechanisms. Note that when
calculating adherence, rand slots are always considered as
slots that successfully follow the schedule if the current sched-
uled link does not have packet to transmit. Again, DCF
and DCF/RTS have very low adherence whereas LWT and

DOMINO follow the schedule strictly.
Instead of showing fairness, which is not very meaningful

in dynamic traffic (each link has different traffic load), the
minimum throughput among all links is presented in Fig-
ure 14(d). LWT gives the highest minimum throughput, and
there is no starvation in any of the mechanisms.

4.2.3 Hidden terminals in a single collision do-
main

Although the probability of occurrence is not high, it is
important to deal with hidden terminals. In CENTAUR [7],
the observed ratio of hidden terminals is around 33% to 36%.
More importantly, once hidden terminal problems happen,
the performance degradation brought by it can be tremen-
dous. In Jigsaw [17], it was proposed that “co-channel inter-
ference from hidden terminals is likely the dominate cause
of interference.” Thus, we analyze the performance of dif-
ferent mechanisms in the presence of hidden terminals (HT).
We set up two types of scenarios, HtRx (Fig. 8(b)) and Ht-
NRx (Fig. 8(c)). All the topologies contains 2 APs, each has
5 STAs.

Hiddern Terminal (HtRx)
Fig. 15(a), 15(b), 15(c), and 15(d) present the throughput,
packet delay, adherence, and fairness of each mechanism in
HtRx scenarios. Both LWT and DOMINO are not affected
by hidden terminals. As the number of hidden terminals in-
creases, throughput of DCF dramatically decreases due to
collisions, which also increases the packet delay. Through-
put of DCF/RTS performs better than DCF, but it still slightly
decreases when the number of hidden terminals increases.
With large number of hidden terminals, DCF and DCF/RTS
cannot achieve good fairness.

Hiddern Terminal (HtNRx)
Fig. 16(a), 16(b), 16(c), and 16(d) present the throughput,
maximum packet delay, adherence, and minimum through-
put among all links of each mechanism in HtNRx scenarios.
LWT is not affected by hidden terminals due to implementa-
tion of transparent transmissions.

As indicated in Fig. 16(d), DOMINO, DCF, and DCF/RTS
can have starvation under HtNRx scenarios.

In DOMINO, the transmission of a link is triggered by the
previous scheduled links. A link can only be triggered if it
can hear the Rx or Tx of the triggering link. If a scheduled

5

10

15

20

25

30

35

40

0 2 4 6 8

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(a) Network Throughput

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8

D
el

a
y

(s
)

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(b) Delay Per Packet

0%

20%

40%

60%

80%

100%

0 2 4 6 8

A
d

h
er

en
ce

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(c) Adherence to schedule

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

J
a

in
's

 F
a

ir
n

es
s

In
d

ex

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(d) Fairness

Figure 15: Hidden Terminal (HtRx)

5

10

15

20

25

30

35

40

0 1 2 3 4

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(a) Network Throughput

0

5

10

15

20

0 1 2 3 4

M
a

x
 D

el
a

y
(s

)

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(b) Max Delay Per Packet

0%

20%

40%

60%

80%

100%

0 1 2 3 4

A
d

h
er

en
ce

Number of hidden STAs

LWT Domino

DCF DCF/RTS

(c) Adherence to schedule

0

0.5

1

1.5

2

0 1 2 3 4

M
in

 T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Number of hidden STAs

LWT

Domino

DCF

DCF/RTS

(d) Minimum throughput

Figure 16: Hiddern Terminal (HtNRx)

link cannot be triggered by any of the previous scheduled
links, it will be removed from the schedule and wait to be
rescheduled by the central controller. In HtNRx, there are
nodes that cannot hear the Rx and Tx of certain links. These
nodes have less chances to be triggered by previous sched-
uled links, and thus get less chance to transmit. For example,
in Fig. 8(c), link (D,C) can only be triggered by link (C,D).
If the link scheduled before link (D,C) is link (A,B) or link
(B,A), link (D,C) will not be scheduled. This causes starva-
tion of link (D,C).

As illustrated in Sec. 3.4.1, DCF and DCF/RTS have un-
fairness problems under HtNRx scenarios since the trans-
mission of certain nodes can be easily corrupted by some
other nodes. For example, in Fig. 8(c), transmission of node
D can be corrupted by transmission of node A or B.

5. CONCLUSION
In this paper, we present LWT for realizing centralized

WiFi scheduling using purely distributed operations. Mech-
anisms tackle practical challenges of non-backlogged nodes,
decodability vs. detectability, hidden terminals, backward
compatibility, sleeping nodes, and change to schedule are
proposed. Using a WARP-based test-bed and ns-3, both
experimental evaluations and simulation based analysis are
carried out to evaluate LWT. Evaluation results show that
LWT achieves better efficiency, delay, adherence, and fair-
ness comparing to related works.

6. REFERENCES
[1] “IEEE 802.11: Wireless LAN MAC and Physical Layer

Specifications,” 2012.
[2] “Openflow: Enabling innovation in your network.” [Online].

Available: http://www.openflow.org/

[3] P. Djukie and P. Mohapatra, “Soft-TDMAC: A Software
TDMA-based MAC over Commodity 802.11 hardware,”
IEEE INFOCOM, 2009.

[4] “iPass WiFi Growth Map.” [Online]. Available:
http://www.ipass.com/wifi-growth-map/

[5] B. O’Hara and P. J. K. Calhoun, “Configuration and
Provisioning for Wireless Access Points Problem
Statement,” 2005.

[6] P. Calhoun et al., “Light Weight Access Point Protocol,”
2007.

[7] V. Shrivastava et al., “CENTAUR: Realizing the Full
Potential of Centralized WLANs Through a Hybrid Data
Path,” in ACM MobiCom, 2009.

[8] Z. Zeng, Y. Gao, K. Tan, and P. R. Kumar, “CHAIN:
Introducing Minimum Controlled Coordination into Random
Access MAC,” IEEE INFOCOM, 2011.

[9] W. Zhou et al., “DOMINO: Relative Scheduling in
Enterprise Wireless LANs,” ACM CoNEXT, 2013.

[10] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath,
“Flashback: Decoupled Lightweight Wireless Control,”
SIGCOMM, 2012.

[11] R. Gold, “Optimal binary sequences for spread spectrum
multiplexing,” IEEE Transactions on Information Theory,
1967.

[12] “WARP.” [Online]. Available: http://warpproject.org
[13] S. Haykin, Communication Systems. WILEY, 2001.
[14] E. Magistretti, O. Gurewitz, and E. W. Knightly, “802.11ec:

Collision avoidance without control messages,” MobiCom,
2012.

[15] H. Fattah and C. Leung, “An Overview of Scheduling
Algorithms in Wireless Multimedia Networks,” IEEE
Wireless Communications, 2002.

[16] “ns-3.” [Online]. Available: https://www.nsnam.org/
[17] Y.-C. Cheng et al., “Jigsaw: Solving the Puzzle of Enterprise

802.11 Analysis,” ACM SIGCOMM, 2006.

