
Asymmetric Caching: Improved Network Deduplication
for Mobile Devices∗

Shruti Sanadhya,1 Raghupathy Sivakumar,1 Kyu-Han Kim,2 Paul Congdon,2

Sriram Lakshmanan,1 Jatinder Pal Singh3

1 Georgia Institute of Technology, Altanta, GA, U.S.A.
2 Hewlett-Packard Laboratories, Palo Alto, CA, U.S.A.

3 Xerox PARC, Palo Alto, CA, U.S.A.

shruti.sanadhya@cc.gatech.edu, siva@ece.gatech.edu, {kyu-han.kim, paul.congdon}@hp.com,
sriram@ece.gatech.edu, jatinder@stanford.edu

ABSTRACT

Network deduplication (dedup) is an attractive approach to improve
network performance for mobile devices. With traditional dedupli-
cation, the dedup source uses only the portion of the cache at the
dedup destination that it is aware of. We argue in this work that
in a mobile environment, the dedup destination (say the mobile)
could have accumulated a much larger cache than what the current
dedup source is aware of. This can occur because of several rea-
sons ranging from the mobile consuming content through heteroge-
neous wireless technologies, to the mobile moving across different
wireless networks.
In this context, we propose asymmetric caching, a solution that

is overlaid on baseline network deduplication, but which allows the
dedup destination to selectively feedback appropriate portions of
its cache to the dedup source with the intent of improving the re-
dundancy elimination efficiency. We show using traffic traces col-
lected from 30 mobile users, that with asymmetric caching, over
89% of the achievable redundancy can be identified and eliminated
even when the dedup source has less than one hundredth of the

cache size as the dedup destination. Further, we show that the ra-
tio of bytes saved from transmission at the dedup source because
of asymmetric caching is over 6× that of the number of bytes sent
as feedback. Finally, with a prototype implementation of asymmet-
ric caching on both a Linux laptop and an Android smartphone, we
demonstrate that the solution is deployable with reasonable CPU
and memory overheads.

Categories and Subject Descriptors

C.2.m [Computer-communication networks]: Miscellaneous—
mobile networks, deduplication

∗This work was funded in part by the National Science Founda-
tion under grant CNS-1017234 and the Georgia Tech Broadband
Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’12, August 22–26, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1159-5/12/08 ...$15.00.

Keywords

Network deduplication, asymmetric caching, mobile traffic, mobile
networks, mobile devices, bandwidth conservation

1. INTRODUCTION
Several recent efforts have established that there are considerable

redundancies in network traffic [1, 2, 3] that are not fully leveraged
by application layer approaches [4, 5, 6]. Network deduplication
(dedup1) is a class of solutions that exploits such redundancies to
improve network performance [1, 3, 7, 8]. Briefly, a dedup source
(dd-src) intercepts traffic coming from the sender; segments the
traffic into chunks of byte-sequences; and sends across only the
hash of a byte-sequence if it is a repeating sequence. The dedup
destination (dd-dst) then inflates any hashes back to the origi-
nal byte-sequences and forwards the traffic to the eventual receiver.
The reduction in the number of bytes sent between the dd-src
and dd-dst results in improved network performance by allow-
ing the network to sustain a greater traffic load and by reducing
congestion levels for a given volume of traffic.

The application of dedup to wireless environments is an attrac-
tive proposition due to the ever-prevalent pressures on wireless ca-
pacities. Wireless service providers continually attempt to sup-
port more users and higher traffic loads without having to use ad-
ditional spectrum, and dedup is a viable low-cost solution to do
so. A straightforward deployment of dedup in a wireless environ-
ment would involve the dd-src residing in the wireless service
provider’s network (e.g. the SGSN in 3G) and the dd-dst resid-
ing on the mobile.

We argue in this paper that dedup faces a unique challenge when
used in mobile environments. In static wireline environments, the
dd-src is typically aware of the complete cache at the dd-dst
by virtue of being on the data path to the destination. However,
there exist several mobile scenarios where the dd-src is likely
to have knowledge of only a small subset of the cache at the mo-
bile. We elaborate on such scenarios in Section 2. However, if
such an asymmetry exists between the caches at the dd-src and
at the dd-dst, the efficiency of traditional dedup techniques is a
restricted function of the smaller cache.

In this context, we consider the following question: How can

all of the past cached information at the mobile be successfully

leveraged for dedup by any given dd-src? In answering the

1For brevity we refer to network deduplication as dedup in rest of
the paper.

question we categorize traditional dedup techniques as symmet-

ric caching techniques where the dd-src and dd-dst maintain
identical caches. We then introduce a new approach for dedup in
mobile environments called asymmetric caching.
Fundamentally, asymmetric caching allows for the cache at the

dd-dst to be larger than that at the dd-src. However, it en-
ables the dd-dst to send feedback about portions of its cache to
the dd-src. The feedback, sent in real-time, is selected to be per-
tinent to the ongoing traffic flow. The dd-src thus performs its
operations not just based on its regular cache, but also based on the
feedback received. The feedback selection problem is non-trivial
because not only is the goal to increase redundancy elimination,
but also to achieve a high feedback efficiency (ratio of bytes saved
from transmission to bytes sent as feedback). Thus, the core of
the asymmetric caching solution consists of an application agnos-

tic mechanism that can partition past and current traffic into con-

tiguous byte sequences called flowlets based on stationarity when
the underlying byte stream is considered as a time series. Subse-
quently, feedback selection occurs by matching an arriving flowlet
with a past flowlet, and then choosing content appropriately from
the past flowlet to send as feedback. We elaborate on these mecha-
nisms in Section 3.
Asymmetric caching achieves considerably better redundancy

elimination by virtue of exploiting a much larger cache at the dd-dst.
We show later with trace driven evaluations that asymmetric caching
can increase redundancy elimination by over 100%, and provides
such improvement even when the cache size at the dd-src is a
fraction of that on the dd-dst. Furthermore, asymmetric caching
achieves a feedback efficiency (ratio of bytes saved from transmis-
sion using feedback to bytes sent as feedback) of over 6X . In
other words, for every byte of feedback sent upstream, 6 bytes
of downstream data are saved. In terms of adoption, asymmetric
caching can be incrementally and independently deployed. A wire-
less service provider can thus deploy asymmetric caching to gain
from all the past cached content accumulated on the mobile without
requiring any cooperation from other service providers the mobile

might utilize. Also, using prototype implementations of asymmet-
ric caching on a laptop (Linux) and a smartphone (Android), we
demonstrate that the CPU and memory overhead are quite reason-
able.
In the rest of the paper we introduce the concept of asymmetric

caching for dedup in mobile environments. We also answer several
questions that arise including the following: How is the feedback
chosen to make dedup perform better? Are the dedup benefits with
asymmetric caching significant enough to justify the cost of the
feedback? How much does asymmetric caching improve perfor-
mance over a symmetric caching solution in a mobile environment?
What are the overheads of implementing asymmetric caching on
standard mobile platforms?

2. SCOPE AND MOTIVATION

2.1 Scope
The focus of this work is to enable better wireless network per-

formance through the use of improved network deduplication for
mobile devices. The technical contributions of the work broadly
apply to a variety of mobile devices and networks. Nevertheless,
we restrict the scope of the proposed work as follows:

• We specifically focus on laptops and smartphones as the
mobile devices of interest, and 3G and WiFi as the wireless
technologies used at such devices.

• With regard to the wireless environment, since spectrum is

inarguably more expensive in 3G environments, we primar-
ily focus on 3G networks as the target environment for the
proposed solution, but consider devices that consume content
through both 3G and WiFi. However, our proposed solutions
can be deployed in WiFi environments as well if required.

• While dedup can be deployed in an end-to-end fashion, we
focus on a last-hop layer 2.5 deployment model for this
work. In such a model, the dedup functionality is realized at
entities on either side of the wireless link. While the mo-
bile device is the only candidate deployment location for
the dedup-dst, the dedup-src deployment location is
likely to be a node such as the Serving GPRS Support Node
(SGSN).2 In the rest of the paper, for brevity, we generically

refer to the upstream dedup node as the dd-src, and the

downstream dedup node as dd-dst. Where the deployment
location is relevant, we assume the SGSN as the deployment
location for the dedup-src. However, the solution may
be deployed in possibly other nodes (e.g. a dedicated dedup
server) inside the wireless service provider’s network.

• Finally, we restrict our focus in this work to dedup on the
downstream and on only unencrypted traffic. Wireless traf-
fic remains dominantly downstream and a significant portion
of the traffic is not end-to-end encrypted. Hence, we believe
that the contributions in the paper will have significant im-
pact in spite of these restrictions. We leave for future work
the extensions of the proposed strategies for upstream and
end-to-end encrypted traffic.

2.2 Motivational Scenarios
Traditional network deduplication solutions require the dd-src

to rely only upon portions of the dd-dst’s cache that it is aware
of. Such knowledge at the dd-src is implicitly accumulated when
the corresponding data traffic flows through the dd-src en-route
to the dd-dst. For static wireline hosts, such an arrangement is
quite sufficient as the dd-src is always likely to be along the data-
path to the dd-dst.

The basic premise of this work, however, is that for mobile de-
vices using wireless connections, the dd-src is likely to be aware
of only a fraction of the cache at the dd-dst. Thus, the dd-src
is unable to perform deduplication to the fullest extent possible.

We now provide three scenarios in which the above disconnect

between the contents of the dd-dst cache and the dd-src cache

manifests itself.

• Multi-homed Devices: Most mobile devices today consume
content through heterogeneous interfaces. WiFi is the pre-
ferred access technology when available due to its low cost
and high data rate properties. However, 3G is the access
technology used when users are not at locations with WiFi
access. Recent studies of wireless data usage have profiled
how both technologies are heavily used by mobile devices
[9]. Moreover, cellular data offloading to WiFi is observed
uniformly across both laptops and smartphones, and across
different smartphone platforms [10].

With traditional dedup, such data access offloaded to WiFi
cannot be leveraged for redundancy elimination when the 3G
interface is used, because the dd-src is different.

2We consider the SGSN as the point of upstream deployment as op-
posed to the Gateway GPRS Support Node (GGSN) since it already
performs per-user functions such as encryption. The dedup-src
can be Packet Data Service Node (PDSN) in CDMA networks, or
the Access Point for WiFi networks.

• Resource Pooling: Cellular providers have increasingly started
to perform IP core resource pooling that is part of the 3GPP
standard. SGSN pooling is an example of this trend. In tra-
ditional GPRS networks, each SGSN, for example, is wholly
responsible for its own service area. However, with SGSN
pooling in 3G networks, all the SGSNs in the network work
together, and the capacity load between them is distributed
by the base station controllers (BSCs) and radio network con-
trollers (RNCs). All BSCs and RNCs are connected to all
SGSNs. Any mobile attached to the network is dynamically
routed to the SGSN as per the current load distribution [11].

Thus, the specific SGSN that serves a mobile at a certain
point in time does not need to be the same SGSN that serves
the mobile at a different time. If traditional dedup were to
be used, the dd-src at a subsequent SGSN will be unable
to use the entire data cache at the mobile because it has no
knowledge of the cache entries accumulated through a dif-
ferent SGSN.3

• Memory Scalability: With traditional dedup, the dd-src
dynamically creates a complete date cache for each asso-
ciated dd-dst. A single SGSN typically serves 100,000-
1,000,000 simultaneously attached users [12]. Even if SGSN
pooling were not to be performed, requiring the SGSN to
maintain persistent state across the different attachment ses-
sions for a mobile is thus quite prohibitive. Thus, if the cache
state per user is maintained only during the lifetime of that
attachment session, then all data accumulated through past
sessions will go unused.

All of the above scenarios point to the need for an approach that
allows the dd-src to leverage the full extent of the cache at the
mobile device, even if it might not have prior knowledge of the
entire cache. In the rest of this section, we outline any additional
goals we want such a solution to satisfy.

2.3 Goals
One approach to address the above-discussed problem is to en-

able the dd-src to fully leverage the cache at the mobile device,
and therein increase the dedup efficiency for the downstream com-
munication. However, the following additional goals are critical for
the design of such a solution:

• Overall efficiency: While increasing dedup efficiency has the
implicit result of helping in spectrum conservation by de-
creasing network load downstream, any solution has to be
explicitly successful in using the overall spectrum (including
both upstream and downstream) more efficiently.

• Application agnostic: Network deduplication is a generic
technology that is application agnostic. Therefore, any so-
lution to improve dedup has to remain application unaware,
and hence applicable to any application used on the mobile
device.

• Limited overheads: Both ends of the dedup solution (the
SGSN or WiFi access point upstream, and the mobile device
downstream) are resource constrained environments. Hence,
any solution to improve dedup performance has to have de-
ployable computational and memory complexities.

3SGSN pooling does not involve state transfer between SGSNs.

2.4 Background: Baseline Dedup
Network deduplication has been widely studied in related work,

and in this paper we use the well known byte-sequence caching
as the baseline dedup technique. [1] and [7] first introduced the
concept of network deduplication, while [2] and [13] studied char-
acteristics of real network traffic to establish that there indeed ex-
ists considerable amounts of redundancy that can be eliminated.
More recently, [3] and [14] have proposed techniques to leverage
redundancies for traffic reduction in an end-to-end fashion and by
overhearing content in wireless networks, respectively. The byte-
sequence based dedup is commonly used in both commercial WAN
and storage optimization products (e.g., [8, 15]) and related re-
search (e.g., [1, 2, 3, 7, 13, 14]).

Figure 1(a) depicts the operations of the byte-sequence caching.
As shown in the figure, the byte-sequence caching algorithm es-
sentially optimizes downlink traffic by replacing previously trans-
mitted byte-sequences or segments of a packet with shorter hashes.
Once the base-station receives a downstream packet destined to a
mobile, it decomposes the packet into segments using Rabin Fin-
gerprinting [16]. For each of the k segments of a packet, the hashes
[H1, H2, ...Hk] are computed using a known hashing algorithm
such as Jenkins. If any of the hashes Hi is found in the cache, the
corresponding segment in the packet is replaced by its hash. The re-
sulting packet that includes both hashes and previously unsent data
segments is then transmitted to the mobile. By virtue of the hashes
being shorter, the load on the wireless link is reduced. At the mo-
bile, the hashes for the data segments are computed and added to
the hash table. Hashed segments are replaced with the correspond-
ing original data before the packet is passed on to higher layers at
the mobile.

(a) Baseline dedup (byte-sequence caching)

(b) Asymmetric caching

Figure 1: Baseline dedup vs. Asymmetric caching: Asymmet-

ric caching is an overlay on baseline dedup.

3. ASYMMETRIC CACHING
In the rest of the paper, we present asymmetric caching, a solu-

tion that satisfies the goals identified earlier. Asymmetric caching
performs dedup on the unencrypted downlink network traffic from
the dd-src (at the SGSN) to the dd-dst (at the mobile) as shown

in Figure 1(b). It is built atop a baseline dedup algorithm such as the
one described in Section 2.4. At a high level, asymmetric caching
enables the dd-dst to send timely feedback to the dd-src about
selected portions of its cache. The feedback should be such that the
redundancy elimination efficiency, when the dd-src uses both its
regular cache and the feedback, approaches that of a scenario where
the dd-src has complete knowledge of the dd-dst’s cache. While
we present the details of the approach in Section 4, we describe the
key design elements in the rest of this section.

3.1 When is the feedback sent?
Asymmetric caching uses a reactive strategy for sending feed-

back. Feedback is sent upstream only when data traffic is flowing
to the destination. The matching of arriving content with past data
in the cache is explicitly used for the selection of feedback that is
likely to be most useful. Such a reactive strategy for sending feed-
back improves the redundancy elimination efficiency in the down-
stream while maximizing the feedback efficiency. An alternative
proactive strategy that sends feedback even during idle downstream
periods might have a better redundancy elimination performance by
virtue of being able to send a larger volume of feedback. However,
such an approach will not fare well in terms of feedback efficiency.

3.2 Where from is the feedback chosen?
The dd-dst cache, in asymmetric caching, is partitioned into

flowlets. Each flowlet is a contiguous subset of a byte stream. The
currently arriving traffic is partitioned into flowlets, and any arriv-
ing flowlet, say flowletarr is matched with one of the past flowlets
in cache. The feedback is then selected from that past flowlet.
The concept of flowlets is motivated by the fact that most con-

tent arriving at the destination is a composition of a collection of
objects. For example, an HTTP connection carries different ob-
jects such as JPEG images, HTML files, CSS scripts, etc.; an SMB
connection carries independent blocks of data as per the scope and
sequence of requests; and a peer-to-peer application connection
carries different chunks of data, not necessarily contiguous, as re-
quested by the receiver. Thus, a desirable approach for matching
arriving traffic to past content would be to match the currently ar-
riving object to an object in the past, and then select feedback from
that past object. This would enable the selection of relevant feed-
back and hence will be favorable to feedback efficiency. While
objects may be identified easily if application knowledge is used,
such an approach would violate the goal to remain application ag-
nostic. Instead, in asymmetric caching, flowlets are considered as
approximations of underlying objects in the data traffic, but are ex-
tracted using purely application unaware techniques. We elaborate
on the approach next.

3.3 How are flowlets extracted?
In keeping with the application agnostic goal of the design, asym-

metric caching employs statistical segmentation to break each down-
stream flow4 into flowlets without any knowledge of the applica-
tion. Asymmetric caching relies on the stationarity of the content
of individual objects when considered as a time series to perform
the segmentation. Thus, changes in the statistical distribution of
the underlying byte stream is used to identify flowlet boundaries.
Each flowlet is then stored as a sequence of hashes at the dd-dst
cache. For any flowletarr , the dd-dst selects hashes from the
past flowlet that matches the most.

4A flow consists of contiguous bytes/packets with same (source IP,
destination IP, source port, destination port) tuple. A connection
consists of an upstream and downstream flow.

The flowlet segmentation used in asymmetric caching is a vari-
ant of the strategy originally introduced in [17]. The segmenta-
tion strategy in [17] segments a piecewise stationary time series
{X1, X2,, XN} into several separate time series {Xi, ..., Xj},
which are individually stationary. In asymmetric caching, the se-
quence of bytes in a flow is considered to be a time series, but
the algorithm is simplified to grossly approximate position of the
boundaries between the time series in return for a lowered compu-
tational complexity that is better suited for a resource-constrained
mobile environment.

The approach takes a parameter l that is the minimum number of
observations required to estimate reliable statistics of a series. At
any given location s(> l) in the series, three segments of the series
are considered: segment fromX0 toXs, segment fromXs toXs+l

and the aggregated segment from X0 to Xs+l. An autoregressive
(AR) model of order p is attempted to be fit on each segment, i.e.

Xi =

j=p∑

j=1

aiXi−j + σǫ (1)

on each segment, where ǫ is a white noise (error term).
The gain (σ2

a:b) of the white noise for the best fitting model on
segment {Xa, ...Xb} is computed from the sample covariance ma-
trix of that segment. Next, a distance value d0:s:s+l is computed
as:

d0:s:s+l = (s+ l) log σ2
0:s+l − s log σ2

0:s − l log σ2
s:s+l (2)

This is intuitively the extra power of the white noise (error) if
the two segments are considered in one model as opposed to be-
ing in separate AR models. If this distance is more than a given
threshold dthresh, a boundary is said to exist between s and s+ l.
If a boundary is not detected, the next considered boundary is af-
ter l bytes. An empirical evaluation of the above solution shows
that when presented with a mixed-source traffic consisting of dif-
ferent object types such as JPEG, TXT, XML, etc., the object byte
boundaries are indeed approximately identified.

Finally, the flowlet in cache that has maximum number of match-
ing hashes with the arriving traffic is identified to be flowletmatch,
the flowlet from where feedback is selected.

3.4 How is the feedback selected?
Once flowletmatch is identified, the specific feedback to be sent

is selected based on two parameters: the location of the last match-
ing hash between the flowletarr and flowletmatch and the la-
tency for feedback on the upstream. Specifically, the location of
the last matching hash in flowletmatch offset by δ hashes, where
δ is the number of segments that the dd-src is likely to have trans-
mitted before the feedback reaches, is used as the start point for the
feedback. δ depends on the average segment size, upstream data
rate, and downstream data rate; all parameters computable at the
dd-dst. γ hashes are selected from the start point, aggregated
into a single packet and transmitted. Note that to ensure that the
feedback is always new, the mobile keeps track of all the hashes
that have occurred in past downstream packets from this dd-src
or have been sent upstream in the past. Such hashes are explicitly
removed from any feedback.

3.5 How is the feedback used?
Finally, the dd-src maintains a feedback cache in addition to

its regular cache. Structurally, the feedback cache is identical to
the regular cache and consists of a list of hashes available at the
dd-dst. However, the feedback cache is populated only with
hashes received through explicit feedback from the dd-dst. When

Algorithm 1 Operations at the dd-src

Input: in_packet = Packet received
Variables:
regular_cache = Regular cache at dd-src
feedback_cache = Feedback cache at dd-src
out_packet = Packet to be sent
pkt_chunks = List of chunks
pkt_hashes = List of hashes
seg_hash = Hash of a single chunk
on_flow = Flow to which in_packet belongs
shim_hdr = 16-bit header: first bit tells if the following sequence is a hash
or original text, next 15 bits are used to specify the length of the sequence
Functions:
hash(chunk) = Compute hash of chunk
rabinF ingerprints(string) = Return value based chunks of string
dd-srcDedup(in_packet)

1: if in_packet is going to dd-dst then
2: pkt_chunks← rabinF ingerprints(packet)
3: for each chunk in pkt_chunks do
4: if hash(chunk) in regular_cache or hash(chunk) in

feedback_cache then
5: out_packet ← out_packet + shim_hdr +

hash(chunk)
6: else
7: out_packet← out_packet+ shim_hdr + chunk
8: add hash(chunk) to regular_cache
9: end if

10: end for
11: send out_packet to dd-dst
12: else[packet is coming from dd-dst]
13: pkt_hashes← hashes in in_packet
14: for each seg_hash in pkt_hashes do
15: add seg_hash to feedback_cache
16: end for

17: out_packet← IP and TCP headers of in_packet
18: send out_packet to upstream node
19: end if

data arrives at the dd-src, each of its hashes is first looked up in
the regular cache, and if there is no hit, the hash is added to the
regular cache, but the same hash is then looked up in the feedback
cache. If either of the cache lookups results in a hit, the hash is
sent to the dd-dst. Otherwise, the original data segment is sent
as-is. When a hash encounters a hit in the feedback cache, the hash
is deleted after its first use since a corresponding entry would have
been made into the regular cache.

4. SOLUTION DETAILS
This section presents the details of the asymmetric caching so-

lution. We first describe its operations at the dd-src and the
dd-dst respectively, and then discuss system details for the so-
lution including packet formats and software architecture.

4.1 Operations at the dd-src (SGSN)
The operations of the asymmetric caching at the dd-src can

be explained in two parts: downstream and upstream (see Algo-
rithm 1). For every downstream packet, asymmetric caching first
divides the packet into value based chunks using Rabin Finger-
printing (line 2). These chunks are then deduplicated using the
regular_cache and feedback_cache (lines 3 to 10). Specifi-
cally, if a matching hash is found in either of the caches, the orig-
inal chunk is replaced with a shim header and hash of the chunk.
Otherwise, it is replaced with a shim header and the original chunk.
For every new chunk, its hash is added to the regular_cache for
future use. The new packet is then sent to the dd-dst.
Next, for an upstream packet, if it carries feedback from the

dd-dst, asymmetric caching extracts all the hashes and inserts
them into the feedback_cache (line 14 to 16). If the upstream
packet was a piggybacked packet, the packet stripped of the feed-
back is forwarded upstream.

4.2 Operations at the dd-dst (mobile)
The asymmetric caching algorithm at the dd-dst can be ex-

plained in terms of three functions: cache maintenance, cache or-
ganization, and feedback selection.

First, for cache maintenance, asymmetric caching at the dd-dst
(dd-dstDedup) maintains a local cache, called dd-dst_cache,
that keeps chunks indexed by their hashes and all the flowlets seen
thus far. When a packet is received from the dd-src, the dd-dst
first reconstructs the original packet (line 3 to 10). The incoming
packet is parsed into hashes and clear content by looking at the shim
headers. The hashes are replaced by their corresponding chunks
found in the dd-dst_cache, while clear content is copied as it is,
without any shim headers. The reconstructed packet is sent up the
network stack. The dd-dst then hashes all the Rabin chunks of
the packet to create a list seg_hashes (lines 12 and 13).

Next, for cache organization, asymmetric caching uses the list of
hashes, created and maintained by the above mechanism, to select
relevant feedback for the ongoing flow. Specifically, the dd-dst
first checks if a new flowlet has started in the current flow. This
is done by the updateF lowlets module, which uses the segmen-
tation approach presented in Section 3.3. It checks if a statistical
boundary has occurred right before the current packet (line 6 and
7). If yes, a new flowlet is added in the current flow and the last
flowlet of the flow is linked to it (line 8 to 11). The gain method is
used to compute the power of white noise error term of any given
series (i.e., sequence of bytes). The flow byte series is modified to
remember the content of this packet (line 12). In case this is the
first packet, a new flowlet is created for the ongoing flow and the
flow byte series is set to be the packet’s content (line 1 to 5)

Once the dd-dst has updated the current flowlet in the flow,
the dd-dst can select and advertise feedback (feedback selec-

tion) using seg_hashes. To reduce the complexity of searching
in the cache, the dd-dst_cache maintains a mapping from each
hash to a list of past flowlets in which it had appeared. Only the
past flowlets that have seen any of the hashes in the current flowlet
are considered for feedback. After extracting these, seg_hashes
are inserted in the dd-dst cache along with the current flowlet
ID (line 17). Next, the bestMatchedF lowlet module takes the
hashes of the packet and determines the number of hits seen in any
past flowlet in the cache. The hit count for each past flowlet with the
current flowlet is updated using the subsequenceMatch method.
This method searches for the seg_hashes among (win_factor×
num_hashes) hashes in the past flowlet after the last matched
hash in that past flowlet (line 5). The algorithm remembers where
the current flowlet has last matched with the old flowlet. After
these updates, the bestMatchedF lowlet selects the old flowlet
with overall maximum hits for feedback. In case the best matching
flowlet is the current flowlet itself, the module selects the second
best matching flowlet that has K% of the maximum hits (line 5 to
9). Feedback is then selected from this old flowlet by the method
selectAdvertisement.

The selectAdvertisement method keeps track of the last hash
that matched between current flowlet and any old flowlet and also
the last advertised hash for the pair. For the best matching flowlet,
it first determines the later of these two pointers and then jumps
δ hashes after that. This δ is the temporal offset to account for
the feedback delay incurred by the underlying network. The larger

Algorithm 2 Operations at the dd-dst

Input: in_packet = Packet received
Variables:
d_thresh = Distance threshold to determine start of new flowlet
p = Order of AR() model to fit on the series
ar = Estimated coefficients of the p order AR model
win_factor = Region to be searched in the past_flowlet
dd-dst_cache = Extensive cache at dd-dst
out_packet = Packet to be sent
on_flow = Flow to which in_packet belongs
id_count = Number of flowlets seen so far, used as flowlet id
current_flowlet[on_flow] = Latest flowlet being created from
on_flow
hit_count[flowlet][past_flowlet] = Redundant bytes between current
flowlet and an old flowlet in dd-dst_cache
parsed_pkt = Mixed list of chunks and hashes in dedup packet
seg_hashes = List of hashes of chunks
adv_hashes = List of hashes to advertise
last_match[flowlet][past_flowlet] = Pointer to last matching hash in
past_flowlet for flowlet
last_adv[flowlet][past_flowlet] = Pointer to last hash advertised from
past_flowlet for flowlet
δ = Temporal offset to account for network delays
Functions:
hash(chunk): Compute hash of chunk
unhash(element): Fetch chunk (from cache) whose hash is element
rabinF ingerprints(string) = Return value based chunks of string
gain(bseries)

1: N ← len(bseries)
2: covariance matrix C ← [Ci,j], for 0 ≤ i, j ≤ p, where Ci,j ←

1

N−p

∑N
k=p bseries[k − i] ∗ bseries[k − j]

3: matrix D ← [Di,j], for 0 ≤ i, j ≤ p− 1, where Di,j ← Ci+1,j+1

4: column vector b← [bi,0], for 0 ≤ i ≤ p− 1, where bi,0 ← Ci+1,0

5: α← D−1 ∗ b ⊲ estimate AR coefficients
6: vector ar ← [1, α0, ..., αp−1]

7: return N ∗ log(ar ∗ C ∗ arT)

updateFlowlets(on_flow,packet)

1: if series[on_flow] is null then
2: series[on_flow]← packet ⊲ First packet in the flow
3: current_flowlet[on_flow]← (++id_count)
4: return

5: end if
6: dpacket ← gain(series[on_flow] + packet) − gain(packet) −

gain(series[on_flow])
7: if dpacket > dthresh then

8: last_flowlet← current_flowlet[on_flow]
9: current_flowlet[on_flow]← (++id_count)
10: link last_flowlet to current_flowlet[on_flow]
11: end if

12: series[on_flow]← packet
13: return

subsequenceMatch(seg_hashes, flowlet, past_flowlet)

1: num_hashes← len(seg_hashes)
2: if last_match[flowlet][past_flowlet] is null then
3: last_match[flowlet][past_flowlet] ← first hash in

past_flowlet
4: end if
5: max_seq ← hashes in seg_hashes found among win_factor ∗

num_hashes hashes after last_match[flowlet][past_flowlet]
6: last_match[flowlet][past_flowlet]← last hash inmax_seq
7: return length ofmax_seq

bestMatchedFlowlet(flowlet,seg_hashes,old_flowlet_list)

1: for each past_flowlet in old_flowlet_list do
2: Add subsequenceMatch(seg_hashes, flowlet, past_flowlet)

to hit_count[flowlet][past_flowlet]
3: end for

4: best_past ← past_flowlet with maximum
hit_count[flowlet][past_flowlet]

5: if best_past is flowlet then ⊲ Ongoing flowlet matches most
6: top2← past_flowlet with 2nd most hits

Algorithm 2 Operations at the dd-dst(continued)

7: if hit_count[flowlet][top2] ≥ K% of
hit_count[flowlet][best_past] then

8: best_past← top2
9: end if
10: end if
11: return best_past

selectAdvertisement(flowlet,matched_flowlet)

1: anchor ← later of last_match[flowlet][matched_flowlet] and
last_adv[flowlet][matched_flowlet]

2: anchor ← δ + 1 hash after anchor
3: adv_hashes ← MTU/(2 ∗ hash_length) hashes after anchor in

matched_flowlet
4: Remove all hashes from adv_hashes which have been seen down-

stream or sent upstream before return adv_hashes

dd-dstDedup(in_packet)

1: if in_packet is coming from dd-src then

2: on_flow ← (src ip, dest ip, src port, dest port) of packet
3: parsed_pkt← Parse in_packet into chunks and hashes
4: for each element in parsed_pkt do
5: if element is a hash then
6: out_packet← out_packet+ unhash(element)
7: else
8: out_packet← out_packet+ element
9: end if
10: end for
11: send out_packet to the application above
12: pkt_chunks← rabinF ingerprints(out_packet)
13: seg_hashes← list of hashes of pkt_chunks
14: updateF lowlets(on_flow, out_packet)
15: flowlet← current_flowlet[on_flow]
16: old_flowlet_list← all the past_flowlet in dd-dst_cache in

which any of seg_hashes have appeared
17: Insert seg_hashes with flowlet in dd-dst_cache
18: if old_flowlet_list is null then
19: adv_hashes← null
20: else
21: best_flowlet ← bestMatchedF lowlet(flowlet,

seg_hashes, old_flowlet_list)
22: adv_hashes← selectAdvertisement(flowlet, best_flowlet)
23: end if
24: else ⊲ packet is going to dd-src
25: if adv_hashes is not null then
26: out_packet← in_packet+ adv_hashes
27: end if
28: send out_packet to the dd-src
29: end if

the feedback delay, the more the offset must be for the feedback
to be relevant when it reaches the dd-src. In our implementa-
tion we derive δ from the uplink and downlink data rates seen at
the dd-dst. After including the temporal offset, the dd-dst se-
lectsMTU/(2∗hash_length) hashes to advertise to the dd-src.
We choose these many hashes as the minimum chunk size cre-
ated by our rabinF ingerprints method is 2 ∗ hash_length, so
MTU/(2 ∗ hash_length) is the maximum number of chunks ex-
pected in a downstream packet.

This feedback is further optimized by removing from it all hashes
that have occurred in the downstream or have been advertised up-
stream by the dd-dst. Note that if there are no hits in this packet,
no feedback is generated (line 18 of dd-dstDedup). The feed-
back to the dd-src is opportunistically piggybacked on upstream
data packets, e.g. TCP ACKs. If the dd-dst has some feedback
to send in the form of hashes, it inserts these hashes into the pay-
loads of upstream packets (line 26 in dd-dstDedup) and sends
the packet upstream. If upstream data packets are not pending to
be transmitted, a custom packet is constructed and transmitted.

Table 1: Performance of hash algorithms in collision handling

Hash Digest Data set Collisions TCP checksum
algorithm size size detection

SHA1 20B 5GB 0 N/A

MD5 16B 5GB 0 N/A

Jenkins-8B 8B 5GB 0 N/A

Jenkins-4B 4B 5GB 0.02% 100%

4.3 Related Issues
Although the detailed algorithms presented above have estab-

lished key insights for asymmetric caching, there are several issues
associated with the design choices of the algorithms.

• Hash function selection: We use Bob Jenkins hash algorithm
to create 8B hashes of the packet chunks on the dd-src and
dd-dst [18]. The choice of hash is based on two conflicting
goals: desire for more bandwidth savings by reducing the num-
ber of bytes sent on the network and minimum collision rate
so that packets are not corrupted during dedup. Popular hash
functions such as SHA1 and MD5 are typically computationally
heavy and the digest size is large. We compare the aforemen-
tioned hash algorithms and the two versions of Jenkins hash (a
4B digest size and an 8B digest size) to hash the Rabin finger-
prints generated over 5GB of traces. As shown in table 1, we
observe no collisions with SHA-1, MD5 and Jenkins 8B hash,
but 0.02% collision rate with Jenkins 4B hashing. Jenkins 8B
provides a good trade-off between bandwidth savings and col-
lisions, making it our choice for the implementation. Jenkins
hash has also been used in prior work on network dedup [3, 14]

• Handling hash collisions: We use TCP checksum to detect hash
collisions. A TCP checksum is computed on the header and the
payload of a packet. As we do not mangle TCP headers, the
checksum is sent unchanged. After reconstructing the original
packet from a deduped packet the dd-dst device checks to
see if the checksum matches. If not, it sends a control message
upstream to the dd-src, requesting it to delete all the hashes
that it had sent in the corresponding packet. The dd-dst also
includes the hashes in the upstream packet. In our hash algo-
rithm evaluation, we also apply this detection test to all cases.
While the test was not invoked with SHA1, MD5 or Jenkins 8B,
it was invoked by the Jenkins 4B hash. Table 1 shows that TCP
checksum was able to detect 100% of the collision events.

• Cache management: Both the dd-src and dd-dst have fi-
nite cache space. Thus, asymmetric caching uses an LRU cache
eviction policy. At the dd-src, LRU runs independently on
the regular cache and the feedback cache, and evicts the least
recently used hashes in each cache. As the dd-dst cache is
organized in flowlets, the LRU on the dd-dst evicts least re-
cently used flowlets at every run. All the state maintained for
that flowlet is removed. The hashes (and chunks) seen in that
flowlet are also removed unless they have also appeared in some
other flowlet, which is still in the cache. A hash (and the original
chunk) is evicted once the last flowlet referencing it is removed
from the cache.

4.4 System Architecture
In the rest of this section we present a system architecture for

asymmetric caching that is detailed in Figure 2. As shown in the
figure, asymmetric caching (AC) works at layer 2.5 on the dd-src
and dd-dst.

• Dedup source: This module (shown in the dotted-line box in

(a) Base-station

Network Layer

Packet capture

& parsing

AC packet

send

Link Layer Link Layer

Packet type

filter

Feedback

handler

Cache

AC Packet?

Hash computation

Population of

regular cache

Header & hash

insertion

Packet capture

parsing

AC Packet?

Hashed packet

handler

Packet

Formatting

NO

Yes

NO

Packet

Reformatting

Yes

Cache

AC packet

send

AC

Advertiser

(b) Mobile

Figure 2: Software prototype of asymmetric caching: It consists

of dd-src at 2.5 layer of the base station and dd-dst at 2.5

layer of the mobile.

Figure 2 (a)) captures the downstream packets at the base-station.
The captured packet is then broken into chunks using Rabin Fin-
gerprinting and hashes of each chunk are searched in the regular
and feedback cache. If a matching hash is found, that chunk is
replaced with its hash in the packet. If any packet is modified
from its original, the IP options value is changed to reflect the
same. We consider transport layer payload for dedup. Inside the
transport layer payload, 2B5 shim headers are inserted before
every individual chunk and hash to demarcate original content
from hashed content. Shim headers are not added if the entire
packet is to be sent as original. This modified packet is then
inserted back in the stack to be routed out.

• Dedup receiver: At the mobile, the dedup packet is received
by the receiver module (the dotted-line box in Figure 2 (b)).
This module takes care of inflating the packet into its original
form, updates flowlets in the caches, and selects the hashes to be
advertised. It then passes the reconstructed packet to the higher
layer (i.e., network layer).

• Feedback source: This module on the mobile device (the thick
solid line box in Figure 2 (b)) is responsible for getting the
hashes chosen by the dedup receiver and piggybacking the hashes
on the next upstream packet. This module captures an outgo-
ing packet, using Netfilter[19], modifies the IP options field and
adds feedback to the packet. This packet is then inserted into
the stack to be routed out.

• Feedback receiver: At the base-station, the feedback receiver
(the thick solid line box in Figure 2 (a)) captures upstream IP
packets with header options set. It then strips off the feedback
from the payload, restores the original header and forwards the
new packet to upstream nodes. The extracted hashes are inserted
into the feedback cache at the base-station and used for further
network deduplication.

5. PERFORMANCE EVALUATION
We evaluate asymmetric caching via trace-based analysis of real

network traces. We first explain the trace collection environment,
and then describe the trace analysis methodology. Finally, we present
trace-based evaluation results as well as prototype-based experi-
mental results.

5The first bit is set if it is a hash value and the rest of the bits
indicate the length of the following chunk/hash

5.1 Collecting Network Traffic
We use real network traffic collected from 30 different mobile

users (volunteers), 5 of whom are smartphone users and the rest are
laptop users. We use these traces for performing the trace-based
evaluation. Below are the details of the trace collection process.

• Connectivity: The laptop users relied only on WiFi connectivity
for their network access. The smartphone users relied on both
WiFi and 3G connectivity. The data collection spanned a period
of 3months and yielded over 26Gigabytes of unsecured down-
link data. Since we do not require any change in the user access
pattern for the trace collection, users accessed the internet as per
their normal behavior.

• Devices and tools: The laptop users ran Windows 7 and Linux
operating systems and used Wireshark to collect their traces.
The smartphone users used the Samsung Vibrant Galaxy phone
and the HTC G2 phone, both running the Android 2.1 operat-
ing system on the T-Mobile network and relied on Tcpdump for
trace collection. Users were able to parse trace files and remove
any sensitive information before submitting them for analysis.
Only unencrypted traffic was used in the analysis.

• User demographics: The volunteers included full-time employ-
ees at an industry research lab and an enterprise, as well as grad-
uate students at a large university campus. The users span the
age group of 21 to 50 and were spread over two different geo-
graphic regions.

5.2 Analysis Methodology
We use a custom trace analyzer to operate on the above traces.

The analyzer models components of asymmetric caching presented
in Section 4 and is configured and used for analysis, as follows:

Caches: The analyzer maintains three caches in the form of hash
tables (i) dd-src regular cache (ii) dd-src feedback cache and
(iii) dd-dst cache. It also maintains additional data structures
required by the asymmetric caching algorithm at the dd-dst. We
set the default dd-src cache size (i.e., regular + feedback) to 1MB
and the default dd-dst cache size to 250MB. We explicitly study
the sensitivity of the solution to cache sizes later in the section.

Past and Present Trace: To emulate the temporal history of the
traces, the packet trace for each user is split equally into a past
trace and a present trace (e.g., a 40MB trace was split into a 20MB
past and a 20MB present. Then, the past trace is used as an in-
put to the analyzer to populate the initial cache at the dd-dst.
This is the memory collected at the dd-dst without the knowl-
edge of the current dd-src. Next, in the present trace, a set of
30 connections is randomly selected and used for the second set
of inputs to the analyzer.6 We use a minimum threshold of 5KB
for the size of connections under consideration to avoid very small
(redundant) connections and to filter out insignificant connections
from the analysis.

Metrics: Given the above set-up, we monitor three values for each
user: (1) redundant bytes found in the dd-src’s regular cache,
(2) redundant bytes found in the dd-src’s feedback cache and (3)
total number of unique hashes sent as feedback from dd-dst to
the dd-src.

Comparison: We also implement and run the byte-sequence caching
algorithm (with average segment size of 128B) on a merged trace
of the past and the 30 connections from the present for each user.
This represents the scenario where the dd-src has all the hashes

6We have observed that the trend of redundancy is similar even
when considering the entire present trace for each user.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

n
d

a
n

c
y
 i
n

 n
e

tw
o

rk
 (

%
)

User Number

Total Redundancy
Average

(a) Total network redundancy

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30
R

e
d

u
n

d
a

n
c
y
 I

d
e

n
ti
fi
e

d
 (

%
)

User Number

Redundancy Identified
Average

(b) Redundancy identified

Figure 3: Identifying network redundancy: (a) shows there ex-

ist network redundancy (avg., 19.6%) and (b) shows asymmet-

ric caching finds most of network redundancy (avg., 89.7%).

that the dd-dst has ever seen and thus gives a measure of ‘ideally’
achievable dedup.

5.3 Evaluation Results

5.3.1 Identifying Network Redundancy

We first show how much network redundancy exists in the col-
lected traces and how much of that redundancy can be identified by
asymmetric caching. Figure 3(a) plots total network redundancy
that exists in the 30 user traces. Here, the total network redun-
dancy is defined as the number of total cache hits at dd-dst for
each chunk of a received packet, if the chunk exists in local cache
(cache hit), we count the chunk as redundant bytes. As shown in the
figure, there is indeed network redundancy of 19.6% on average.

Next, Figure 3(b) shows the percentage of the redundant bytes
identified by asymmetric caching (found in Figure 3(a)). Specifi-
cally, we measure the number of cache hits at a dd-src based on
both regular and feedback caches and use it for the redundant bytes
identified. As shown in the figure, the asymmetric caching is able to
identify on average 89.7% of the total redundancy, a considerable
fraction of which is attributable to the feedback (see next subsec-
tion). Also note that its variance is small across 30 different users,
owing to our fine-grained and adaptive advertisement scheme.

5.3.2 Feedback Efficiency

In this section, we present the feedback efficiency of asymmet-
ric caching. Figure 4(a) plots the ratio (λ) of the redundant bytes

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

F
e

e
d

b
a

c
k
 E

ff
ic

ie
n

c
y

User Number

Feedback Efficiency
Average

(a) Redundancy to feedback

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

n
d

a
n

c
y
 I

d
e

n
ti
fi
e

d
 (

%
)

User Number

Feedback Hit
Average (F)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

R
e

d
u

n
d

a
n

c
y
 I

d
e

n
ti
fi
e

d
 (

%
)

User Number

Regular Hit
Average (R)

(b) Feedback hits vs Regular hits

Figure 4: Feedback Efficiency: (a) shows the ratio of the total

redundancy identified to the feedback bytes (λ), and (b) shows

how much each cache (feedback and regular) contributes to the

redundancy detection.

identified to every feedback byte. If λ is greater than 1, asym-
metric caching’s feedback is effective in finding redundancy, and
vice versa. As shown in the figure, the average λ value over 30
users is 6.74. One interesting observation is that the higher a user
shows mobility (i.e., smartphone users including user 10, 28, 30),
the higher λ is.
Next, we further study how much of the redundancy elimination

is attributable to the feedback cache versus the regular cache. Re-
call that the redundant bytes are identified by searching its regular
cache and then, if not found there, the feedback cache. For this, we
analyze the redundancy found using only the feedback cache (F)
and the redundancy found using only the regular cache (R). Fig-
ure 4(b) shows relative contribution from both R and F for each
user. As shown in the figure, feedback cache largely contributes to
50.35% of the redundancy elimination, whereas the regular cache
contributes to 39.3% of the redundancy elimination. Note that the
hits in the regular cache can be considered as an indication of the
performance of conventional dedup that relies only on symmetric
caching. Hence, this result shows that asymmetric caching can im-
prove the performance of dedup significantly.

5.3.3 Sensitivity to Cache (Memory) Size

In this section we measure the sensitivity of asymmetric caching
to cache size. In this experiment, we first fix the cache size of the
dd-src to 2MB. Then, while we increase the cache size of the
dd-dst (from 5MB to >250MB), we analyze the percentage of

 0

 20

 40

 60

 80

 100

5 50 100 150 250 >250R
e

d
u

n
d

a
n

c
y
 i
d

e
n

ti
fi
e

d
 (

%
)

Size of cache (MB)

(a) Sensitivity to cache size at dd-dst

 0

 20

 40

 60

 80

 100

0.4 0.8 1.2 1.6 2 >2R
e

d
u

n
d

a
n

c
y
 i
d

e
n

ti
fi
e

d
 (

%
)

Size of cache (MB)

(b) Sensitivity to cache size at dd-src

Figure 5: Sensitivity to cache size: (a) shows that asymmetric

caching can identify 89% of redundancy by using 150MB on the

mobile device. (b) shows that the asymmetric caching requires

only a small cache size at the dd-src (e.g., ∼1MB) to achieve

85% of the redundancy detection.

redundancy identified by the asymmetric caching. We also analyze
the opposite setting to study the sensitivity of dd-src’s cache size
on its performance (250MB of dd-dst cache and from 0.4MB to
>2MB of dd-src cache).

Figure 5 shows the results of the both experiments. First, as
shown in Figure 5(a), given the constant size of cache at the dd-src,
the redundancy identified by asymmetric caching increases with the
increase in dd-dst cache size. This trend is a result of fewer cache
evictions when using larger caches. In addition, with only 150MB
of cache size at dd-dst, asymmetric caching is able to identify
89% of the redundancy.

Next, as shown in Figure 5(b), even with a small cache (e.g.,
∼1MB) at dd-src, asymmetric caching is able to identify more
than 85% of redundancy. Finally, looking at the both figures in Fig-
ure 5, we can observe that for a 1:100 ratio in the cache sizes (e.g.,
∼1MB at the dd-src and 100MB at the dd-dst), asymmetric
caching effectively detects and leverages redundancy. Furthermore,
this ratio supports the design goal of asymmetric caching—the use
of large cache at the dd-dstwith a small cache requirement at the
dd-src.

5.3.4 Performance under varying data-rates

So far we have assumed that the uplink and downlink data-rates
are same, i.e. for every byte downstream, the mobile sends a byte
of feedback upstream. In this section, we analyze the performance
of asymmetric caching when the downlink and uplink data-rates
are asymmetric. We vary the ratio of downlink to uplink data-rates
from 1 through 5 and monitor the percentage of redundancy lever-
aged and feedback efficiency in each case. The results are shown
in Figure 6.

We observe in Figure 6(a) that as downlink rate grows to 5×
the uplink rate, the redundancy identified by asymmetric caching

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

R
e

d
u

n
d

a
n

c
y
 I

d
e

n
ti
fi
e

d
 (

%
)

Downlink:Uplink Ratio

(a) Redundancy leveraged

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

F
e

e
d

b
a

c
k
 E

ff
ic

ie
n

c
y

Downlink:Uplink Ratio

(b) Feedback efficiency

Figure 6: Performance with varying data-rates: (a) shows the

% redundancy identified for increasing downlink to uplink

data-rate ratio, and (b) shows the feedback efficiency in each

case.

goes down to 68%. Interestingly, for the same ratio, the feedback
efficiency grows to 8×, as shown in Figure 6(b). This shows that
when asymmetric caching is restricted to send less upstream feed-
back, the redundancy elimination performance drops modestly and
the feedback is more efficient.

5.3.5 Application-agnostic dedup

Finally, we measure how effectively asymmetric caching works
for different types of application traffic. Recall that one of the
design principles of asymmetric caching is to remain application
agnostic— not require application information— but provide dedup
performance regardless of application types. To this end, we ana-
lyze the trace of 30 users to calculate the percentage of redundancy
identified by asymmetric caching over total network redundancy
for each application. We classify the applications based on the port
numbers used for the connections.
Table 2 shows the performance results of asymmetric caching

Table 2: Application-agnostic redundancy identification

Applications Port Numbers Redundancy Identified (%)

HTTP 80 98.76

ICSLAP 2869 80.48

Android Market 5228 53.10

McAfee, HP, SAP 5555 82.13

P2P and others Ephemeral 97.70

 0

 200

 400

 600

 800

 1000

50 100 500 1000 2000 3000 4000 5000

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

Data rate (Kbps)

dd-dst
dd-src

Figure 7: Memory consumed by Asymmetric Caching

under different types of applications. As shown in the table, the
asymmetric caching is able to identify 53% to 97.76% of the net-
work redundancy and it does not have radical performance penalty
for specific types of application. This clearly supports our design
goal of application-agnostic feature.

5.4 Prototype Results
To further validate the feasibility of asymmetric caching, we im-

plement asymmetric caching in our testbed and have evaluated its
CPU and memory overhead. We implement the dd-src on a desk-
top running Ubuntu OS with a 2GHz dual-core processor and 2GB
memory. The desktop is equipped with an Atheros chipset based
network card (NIC) with Madwifi [20] driver and talks to the mo-
bile over wireless link. UsingMadwifi, the dd-src is set in master
mode. The desktop is connected to another desktop, which serves
as server, over a wired link.

Next, the dd-dst is implemented on a Samsung Nexus S smart-
phone with 512MB RAM and 1GHz pocessor, running Android
OS. The dd-dst has been implemented as a user space Linux
module on the Android system. We use Netfilter framework on
Linux to capture and modify downstream and upstream packets.

We use Iperf [21] to create packets with random content and send
them over the network. We run Iperf at different data rates (from
50Kbps to 5Mbps) for 60s, and record the CPU and memory foot-
print of asymmetric caching on both dd-src and dd-dst, us-
ing Top utility. Our experiments show that the memory footprint
of asymmetric caching is small enough to be deployed on a mo-
bile phone and base-station. As shown in Figure 7, the physical
memory taken by the dd-dst process stays around 600KB in our
experiments while at the dd-src it is even lower at 140KB. This
supports our goal of ‘asymmetric’ cache sizes, reducing the over-
head on a dd-src serving millions of mobile devices.

In terms of CPU consumption, Figure 8 shows that the CPU us-
age on the mobile phone grows with growth in data-rate, but stays
15% even at 5Mbps data-rate. The CPU usage on the dd-src
stays very minimal, less than 1% throughout. The CPU usage on
the mobile increases with the data rate as much larger caches have
to be searched to generate relevant feedback.

Overall, our user space implementation shows that asymmetric
caching is feasible on both the ends of dedup identified in our mo-
tivational scenarios.

6. RELATEDWORK

Network dedup approaches: The notion of network dedup was
first presented in [7], where packets are decomposed into segments

 0

 5

 10

 15

 20

 25

50 100 500 1000 2000 3000 4000 5000

C
P

U
 U

s
a
g
e
 (

%
)

Data rate (Kbps)

dd-dst
dd-src

Figure 8: CPU occupied by Asymmetric Caching

using the Rabin fingerprinting algorithm so that partial-packet re-
dundancy can be exploited. This approach was developed further in
value-based web caching [1], where the data is cached on its value
rather than its name. The idea of using packet caches on routers
was introduced in [13]. In [2], the authors perform an experimen-
tal study of redundancy across 12 different enterprise networks.
Both [13] and [2] identify that significant bandwidth savings can
be achieved by using packet level dedup approaches, thereby mo-
tivating the current work. Similarly, EndRE [3] is an end-to-end
solution for network dedup, which presents a new fingerprinting
scheme called SampleByte. Recently, [14] proposed overhearing
content in wireless networks to dedup across wireless users. Celler-
ation [22] is another sender-driven dedup solution that leverages
inter-user redundancy for a single point of attachment. All the
above works are designed for static scenarios, do not work across
points of attachment and do not support IP address changes due
to mobility. Asymmetric caching is complementary to the above
works and specifically optimizes wireless traffic, without requiring
modification to internet servers.

Application layer dedup: Application layer works include caching
http objects on browsers [23] and on proxy servers [24], delta en-
coding, file differencing (e.g. VCDIFF) [25], techniques for detect-
ing duplicate transfers of the same file [4] and techniques such as
base-instant caching [5], template caching [6] for enhanced cacheabil-
ity of dynamic objects. More recent developments include content-
delivery networks [26] and peer-to-peer caching solutions [27]. All
these solutions operate at the granularity of files or application-
objects and hence do not provide fine-grained redundancy elimi-
nation. Further, they are application layer solutions and have to
be realized independently for every single application. Most im-
portantly, using proxy or other intermediate caches while reducing
the load on servers does not reduce the traffic on the wireless link.
Asymmetric caching operates agnostic to different applications.

Transport layer dedup: Recently, Zohar et al [28] propose an
end-to-end receiver driven dedup solution that extends TCP op-
tions. The receiver matches TCP stream chunks with its cache
and sends predictions for future chunks in the ongoing flow to the
sender. The dedup solution in [28] is similar to asymmetric caching
in that both use receiver driven feedback to improve dedup perfor-
mance. However, there are fundamental differences. The solution
in [28] is closely tied to the TCP protocol and operates at a coarse
data-granularity. Asymmetric caching on the other hand is trans-
port protocol agnostic and operates at sub-packet level granularity.
The solution in [28] is an end-to-end solution, whereas asymmetric
caching is a last hop solution. This is important as wireless ser-

vice providers who have the motivation to utilize their spectrum
better can deploy asymmetric caching without any dependencies
on the content provider. Also, the solution in [28] does not parti-
tion old connections into flowlets and hence maintains connections
in their entirety. However, asymmetric caching partitions content
into flowlets depending on their stationarity and this helps when the
composition of connections changes in terms of a few objects or in
terms of the ordering of the objects. Finally, the solution in [28]
does not address how feedback might be chosen when chunks ex-
perience hits with multiple old connections. The feedback selection
algorithm in asymmetric caching explicitly tackles this problem by
choosing from multiple flowlets. This capability is especially im-
portant when operating at fine data granularities.

7. CONCLUSION
In this paper, we propose asymmetric caching, an improvement

to baseline network deduplication that allows the dedup destination
to selectively feedback appropriate portions of its cache to the dedup
source with the intent of improving the redundancy elimination
efficiency. We show using traffic traces collected from 30 mobile
users, that with asymmetric caching, over 89% of the achievable
redundancy can be identified and eliminated even when the dedup
source has less than one hundredth of the cache size as the dedup
destination. Further, we show that the number of bytes saved
from transmission at the dedup source because of asymmetric
caching is over 6× that of the number of bytes sent as feedback.
Finally, with a prototype implementation of asymmetric caching on
both a Linux laptop and an Android smartphone, we demonstrate
that the solution is deployable with reasonable CPU and memory
overheads.

8. ACKNOWLEDGEMENTS
The authors would like to thankMr. Nitin Agarwal at the Univer-

sity of Illinois for early discussions and pointers on techniques to
identify changes in stationarity in a time-series. The authors would
also like to thank Dr. Ulas Kozat for acting as a shepherd for the
camera-ready version of the paper.

9. REFERENCES
[1] Sean C. Rhea and Kevin Liang. Value-based web caching. In

The 12th Int. World Wide Web Conference, 2003.

[2] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and
Ramachandran Ramjee. Redundancy in network traffic:
findings and implications. In ACM SIGMETRICS, 2009.

[3] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula
Balachandran, Pushkar Chitnis, Chitra Muthukrishnan,
Ramachandran Ramjee, and George Varghese. Endre: an
end-system redundancy elimination service for enterprises.
In NSDI, 2010.

[4] Yee Man Chan, Terence Kelly, and Jeffrey C. Mogul. Design,
implementation, and evaluation of duplicate transfer
detection in http. In NSDI, 2004.

[5] Barron C. Housel and David B. Lindquist. Webexpress: a
system for optimizing web browsing in a wireless
environment. In ACM MobiCom, 1996.

[6] Fred Douglis, Michael Rabinovich, and Antonio Haro. Hpp:
Html macro-preprocessing to support dynamic document
caching. In USENIX Symposium on Internet Technologies

and Systems, 1997.

[7] Neil T. Spring and David Wetherall. A protocol-independent
technique for eliminating redundant network traffic. In ACM

SIGCOMM, 2000.

[8] Riverbed,
www.riverbed.com/us/solutions/wan_optimization/.

[9] Comscore Report: Digital Omnivore, October 2011. URL:
www.comscore.com/Press_Events/

Presentations_Whitepapers/2011/Digital_

Omnivores.

[10] WeFi Analytics Report, August 2010. URL:
mobilemarketingmagazine.com/sites/

default/files/WeFi\%20Wi-fi\%20Data\

%20Report\%20Q1\%202010.pdf.

[11] Ip core pooling tutorial, august 2006. URL:
archive.ericsson.net/service/internet/

picov/get?DocNo=1/28701-FGB101256.

[12] Ericsson SGSN-MME. URL:
www.ericsson.com/ourportfolio/products/

sgsn-mme?nav=fgb_101_256.

[13] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan
Seshan, and Scott Shenker. Packet caches on routers: the
implications of universal redundant traffic elimination. In
ACM SIGCOMM, 2008.

[14] Ashok Anand Shan-Hsiang Shen, Aaron Gember and Aditya
Akella. Refactor-ing content overhearing to improve wireless
performance. In ACM MobiCom, 2011.

[15] EMC Data Domain, www.emc.com/backup-and-
recovery/data-domain/data-domain.htm.

[16] M. O. Rabin. Fingerprinting by random polynomials. In
Technical Report TR 15-81, Department of Computer

Science, Harvard University, 1981.

[17] Ulrich Appel and Achim V. Brandt. Adaptive sequential
segmentation of piecewise stationary time series.
Information Sciences.

[18] Bob jenkins hash functions. URL:
burtleburtle.net/bob/.

[19] Netfilter, www.netfilter.org/projects/libnetfilter_queue/.

[20] MadWifi Driver, www.madwifi.org.

[21] Iperf, iperf.sourceforge.net/.

[22] Eyal Zohar, Israel Cidon, and Osnat (Ossi) Mokryn.
Celleration: loss-resilient traffic redundancy elimination for
cellular data. In ACM HotMobile, 2012.

[23] RFC 2616: Hypertext Transfer Protocol – HTTP/1.1,
www.w3.org/Protocols/rfc2616/rfc2616.html.

[24] The apache HTTP Proxy, httpd.apache.org.

[25] RFC 3284: The VCDIFF Generic Differencing and
Compression Data Format, www.faqs.org/rfcs/rfc3284.html.

[26] The Akamai Content Delivery Network, www.akamai.com.

[27] On Saleh and Ma Hefeeda. Modeling and caching of
peer-to-peer traffic. In IEEE ICNP, 2006.

[28] Eyal Zohar, Israel Cidon, and Osnat (Ossi) Mokryn. The
power of prediction: cloud bandwidth and cost reduction. In
Proc. of the ACM SIGCOMM, 2011.

