
978-1-4577-0351-5/11/$26.00 c©2011 IEEE

Eliminating Communication Redundancy in Wi-Fi Networks

Zhenyun Zhuang

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
Email: zhenyun@cc.gatech.edu

Raghupathy Sivakumar

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332
Email: siva@ece.gatech.edu

Abstract—Studies have shown the presence of considerable
amounts of redundancy in Internet traffic content. Recent
works are exploring possibilities for exploiting network traffic
redundancy, but these works invariably focus on fixed wireline
networks. Unlike wireline networks, wireless and mobile en-
vironments exhibit unique challenges and opportunities in the
context of redundancy elimination.

In this work, we explore leveraging network traffic redun-
dancy, but exclusively focus on wireless and mobile environ-
ments. We first analyze real Wi-Fi traces, and based on insights
obtained from the analysis, we propose Wireless Memory (WM),
a two-ended AP-client solution to effectively exploit traffic
redundancy for such environments. Trace-driven evaluation
results show that WM can help deliver significant throughput
improvement.

Keywords-Wireless memory; Traffic redundancy;

I. INTRODUCTION

Several recent studies [1]–[4] have shown the presence

of considerable amounts of redundancy in Internet traffic

content. Such redundancies in content can be explicitly elim-

inated to improve communication performance. There are

various approaches [1]–[3], [5]–[7] that have been proposed

to eliminate such redundancy. Ranging from application-

layer to network layer strategies, these works invariably

focus on fixed wireline networks.

Similar to the above works, we too explore leveraging

network traffic redundancy, but exclusively focus on wireless

and mobile environments. Unlike wireline networks, wire-

less and mobile environments exhibit unique challenges and

opportunities in the context of redundancy elimination. On

one hand, the broadcast nature of wireless communication

enables techniques such as packet sniffing to be performed

with ease, while on the other hand, mobility and location

based channel variances could impose challenges that have

to be effectively addressed. Perhaps most importantly, given

the typical resource constraints of wireless environments,

redundancy elimination could have a profound impact on

performance delivered to users.

In this paper, we focus on one popular type of wireless

networks: 802.11b/g (or Wi-Fi). We first study the traffic

redundancy along multiple dimensions using traces obtained

from multiple real wireless network deployments. Specif-

ically, we consider three buildings and two Wi-Fi network

deployments in a major university campus. One of the build-

ings is a mixed-use environment that houses several small-

medium businesses. Based on the insights obtained from the

analysis, we propose Wireless Memory (WM), a two-ended

AP-client solution to effectively exploit traffic redundancy in

wireless and mobile environments. Generically, WM equips

AP and clients with memory to enable memorization of

content as it flows naturally through the wireless network,

and more importantly use the memory to lower the actual

cost of delivering any content to its intended destination. We

evaluate WM through simulations driven by the collected

Wi-Fi traces, and show that WM can improve the network

throughput by up to 93% in certain scenarios.

The remaining paper is presented as follows. In Section II,

we motivate our design by presenting a set of observations.

In Section III, we present the design and operations of wire-

less memory. We perform trace-driven evaluation and show

the results in Section IV. Finally we present related work

and conclude the work in Section V and VI, respectively.

II. MOTIVATION

In this section we motivate our design of Wireless Mem-

ory by analyzing collected Wi-Fi traces. The use of Wireless

Memory helps only when content stored in the memory will

be referenced for “future” communications. Consequently, a

necessary condition for Wireless Memory to provide benefits

is redundancy in traffic content. Though an extensive study

of the nature of redundancy in wireless traffic is a non-

trivial task, we present some preliminary indicators of traffic

redundancy that motivate the design of Wireless Memory.

We perform studies primarily to verify that redundancy does

exist for practical users. In addition, these results also shed

light on our Wireless Memory design.

Data redundancy has long been observed and studied in

literature, and depending on the nature of redundancy, there

are two types of redundancy: intra-redundancy and inter-

redundancy. It is well known that data redundancy inside

a data unit (e.g., a packet) can be eliminated by applying

compression mechanisms such as GZip. However, conven-

tional compressions are unable to eliminate redundancy that

exists across data units (e.g., between two packets or two

html files) unless these data units are processed with the

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(a) Building A

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(b) Building B

 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Days

Im
pr

ov
em

en
t (

%
)

(c) Building C
Figure 1. Inter-user Dimension (Dominant user vs all other users)

same compression session. We show that, by effectively

eliminating inter-redundancy, data size can be significantly

reduced, and in turn, the throughput can be improved.

In this section we study the potential improvement on data

reduction by eliminating inter-redundancy. Specifically, we

compare the resultant data size of eliminating all redundancy

(both intra- and inter-) to that of eliminating only intra-

redundancy. For simplicity, we refer to an ideal compression

that eliminates both intra- and inter- redundancy as memory-

based compression, since the elimination of inter redundancy

essentially treats the previous data as “memories”. Corre-

spondingly, we refer to the naive compressions that only re-

move intra-redundancy as non-memory-based compression.

A. Methodology

Our study is based on real Wi-Fi traces. Specifically, we

perform a 4-month wireless sniffing in 3 buildings of a major

university campus. The Wi-Fi networks sniffed are two

802.11g networks, and we use four Ubuntu PCs equipped

with Wi-Fi cards and MadWifi (http://madwifi-project.org/).

The two networks use WEP to encrypt traffic. By running

MadWifi in Managed mode, the PCs are able to decode the

live traffics of other wireless users in the same network. 1

To evaluate the potential improvement of eliminating

inter-redundancy, we adopt the following process. First, the

captured live data stream is split into packets. We consider

a naive approach to redundancy-elimination by compressing

each individual packets before transmission. Note such com-

pression is independent from application-layer compression,

as the captured live traffic is the as-is traffic, and they

may have been “compressed” by applications. Such a naive

packet-based compression can effectively eliminate intra-

redundancy (i.e., redundancy inside the packet) only. Sec-

ond, an ideal approach would eliminate both intra- and inter-

redundancy. So to mimic such an approach, we treat the pre-

vious packets as memory, and compress the current packet

based on the memory. This method is based on the fact

that most typical compression algorithms (e.g., LZW [8])

process byte streams sequentially, memorize encountered

1Though by associating to an AP, the sniffing desktop is able to see the
decrypted traffics of other users, we explicitly perform hashing operations
to store only the hash values of captured data to ensure anonymity.

byte sequences, and represent later repeated byte sequences

with codes. Thus, with such a method, the packet size after

eliminating both types of redundancy is estimated as the

incremental coded size, which is the size difference of: (i)

only compressing the data consisting all previous packets,

and (ii) compressing the data consisting all previous packets

and the current packet.

We choose a compression utility of Rzip [9] 2. Specifi-

cally, for a particular live traffic data set, we treat the trace as

a byte stream of D and split it into data pieces of di, where

0≤ i≤ I. We also use Di to denote the set of data pieces from

d0 to di, so we have Di = {d0+, ...,+di}. Assuming existing

compression algorithm (e.g., Rzip) can remove all intra-

redundancy, the coded size of di is thus Rzip(di). Similarly,

the coded size of Di is Rzip(Di). The incremental coded size

of di is the difference of the codes of Di and Di−1. Denoting

the incremental coded size is Ci, we have Ci = Rzip(Di)−
Rzip(Di−1), and we assume Ci is the ideal coded size of

di with memory of Di−1. So compared to the non-memory-

based solution which has the coded size of Rzip(di), the

effectiveness of an ideal memory-based solution is measured

by 1− Ci
Rzip(di)

= [1− Rzip(Di)−Rzip(Di−1)
Rzip(di)

]x100%. The value

also shows the degree of data reduction by using memory-

based solution when compared to the non-memory-based

solution, and the larger the value is, the higher benefit

can be achieved by eliminating inter-redundancy. For all

the following results, we choose d = 1.5KB for the simple

reason that a typical IP packet is about that size.

B. Results

We study the potential improvements of an ideal memory-

based approach in both inter-user and temporal dimensions.

We correspondingly show representative results which will

be used to motivate our design. Inter-user dimension studies

the potential benefits of eliminating the redundancy between

users. Briefly, considering a Wi-Fi network, for a particular

user Uk, other users’ data can be used as the base for com-

pressing Uk’s data. We analyze the potential improvement

of compressing each user’s trace by eliminating the user-

user redundancy with other users. Specifically, given a data

2RZip is a huge-scale compression software designed to find and encode
duplicated data over very long distances (e.g., 900 MB) in the input file.

User Pair 1 2 3 4 5 6 7 8 9

Building A 12 12 14 27 7 3 19 11 17

Building B 8 13 10 7 10 14 9 27 11

Building C 49 42 33 26 17 31 29 11 8

Table I
REDUNDANCY OF USER-PAIRS (%): DOMINANT VS. OTHER TOP USERS)

piece of di which contains multiple users’ traffic, considering

a user Uk we denote his data as di,k and other users’ data

as d′i,k, so we have d′i,k = di−di,k. Similarly we denote the

cumulative data that eliminate Uk’s data as D′i,k = Di−Di,k.

For the particular user Uk and his data piece of di,k, the

compressed size with non-memory-based compression is

Rzip(di,k), and we can get the incremental coded size of

d(i,k) as Ci,k = Rzip(D′i−1,k +di,k)−Rzip(D′i−1,k).

We show the results in Figures 1 for all 3 buildings.

For each building, we choose 1-week of traces and study

the dominant user (i.e., having the largest portion of traf-

fic) by eliminating inter-user redundancy between himself

and all other users. We observe that there are substantial
improvements by exploiting inter-user redundancy, and the

improvement ranges between 7% to 22%.

We further study the redundancy between individual users

for the same day. For each of the 3 data sets, we choose the

dominant user and study the redundancy between himself

and the other top 9 users. The results are shown in Ta-

ble I. We see that some user-pairs have more inter-user
redundancy than other user-pairs. More studies into this

dimension suggest that the results relevant to user-pairs are

caused by the web access patterns of these users. Briefly,

users with higher inter-user redundancy tend to visit the

same set of web sites.

We also study the temporal redundancy for individual

users. We consider the top user in data sets, and choose

a representative 15-day period. Starting from the second

day, for each day we treat the previous day’ data as the

base data (i.e., memory), and compress the particular day’s

data by eliminating the inter-redundancy between the base

data and the particular day’s data. We observe that there
are considerable inter-redundancy across time for individual
users, and in certain days it can be 75%.

C. Summary

Traffic redundancy occur in multiple dimensions, and

users’ actually transmitted data sizes can be reduced by

eliminating redundancy. Reduced data size will result in

improved network performance including increased through-

put and lower response time. This is particularly true for

wireless networks, since the wireless media is often shared

by multiple users, and data transmission is subject to various

collision scenarios where smaller packet sizes are preferred.

III. WIRELESS MEMORY: CONCEPT AND BASIC

COMPONENTS

For the sake of easier presentation, the design Wireless

Memory (WM) is split into two parts: basic components

and advanced component. Basic components contain the

essential parts of WM, while advanced components enhance

Wireless Memory to deliver improved performance.

A. Concept

Though many elements of WM can be applied to any

wireless data networks, the basic network model we consider

is the popular Wi-Fi networks with APs and mobile clients.

In the following we will use Wi-Fi to describe WM. The

overall benefits of using WM are better network delivery

performance in terms of higher throughput, lower response

time, and higher network utilization levels, through the

exploitation of redundancy that naturally exists in wireless

traffic.

With the basic network model, WM works between AP

and clients. The simplest fashion in which the wireless

memory works is as shown in Figure 2. Consider a scenario

where there is an AP and a client. Initially both the AP

(denoted by S) and the client (denoted by C) have empty

memory at time T0. Assume the AP S has to deliver certain

data D to the client C at time T1. That data is memorized by

both S and C. Later at time T2, S sends another information

which contains D, S can retrieve D from the C’s memory by

sending D’s reference (i.e., d) to the client. The reference d
sent from S to C is generally much smaller than the raw data

D. For the data that are not available in memory, S sends

them directly.

B. Basic design elements

The basic elements of WM are illustrated in Figure 3. WM

maintains memory space on both AP and clients. When AP

communicates with multiple clients, it maintains separate

memory for each of the clients. For any AP-client pair, their

memories are synchronized in the sense that they contain

identical data. The synchronization is achieved implicitly as

both AP and the client see identical data being transmitted

and received. In addition, identical memory operations such

as data referencing and replacement will be performed.

� ��� �

� ���
�

� ��	

�
�����

�����
�����

�
�����

�����
�����

� �
�
�����

�����
�����

Figure 2. Concept of WM

Figure 3. Basic component of WM

WM works at packet-level and has two types of oper-

ations: Memory Referencing and Memory De-referencing
to encode and decode the data packets, respectively. Their

pseudo-codes are shown in Figure 4. Specifically, (i) Mem-

ory Referencing sequentially invokes three components of

Delimitation, Memory Lookup and Packet Composition.

When WM receives a data packet, it firstly delimitates (i.e.,

splits) the data payload into a sequence of data segments

(i.e., data pieces). For each segment, it performs memory

lookup to determine whether the segment is in memory or

not. If present, the segment will be replaced with a code,

and the code can be simply the index of the corresponding

memory entry. If not present, then the segment is left as-

is. After all segments are processed, a new packet will

be composed containing both raw segments and codes.

(ii) Memory De-referencing contains the complementary
components of Packet De-composition, Memory Lookup and

Packet Assembly. When a coded packet is received, WM

firstly separates the raw segments and codes. For each code,

it performs memory lookup to recover the corresponding

segment. When all segments are recovered, it assembles

them to form the original data packet.

C. Other Considerations

There are some other considerations regarding the afore-

mentioned operations which we briefly describe below. (i)

The Delimitation component is based on Rabin-based delim-

iters [10], which has been shown to have many advantages

over fixed delimiters when used to identify redundancy [1].

(ii) Packet Composition results in a coded packet which

consists of two regions. The first region is the data region,

which contains all segments that cannot be found in memory.

The second region is the code region, which consists of a list

of <code, offset> entries. Each entry represents a redundant

segment with the code and the starting offset in the data

region. (iii) When Packet De-composition receives a coded

packet, it can insert the recovered segment back to the data

region to recover the original packet. (iv) When a WM-

enabled client firstly associates to a WM-enabled AP, they

exchange certain WM-related information to initialize and

synchronize WM operations. These information include the

memory space size and delimitation parameters. (v) Though

memories maintained on both sides are designed to enforce

synchronization, when errors do occur (e.g., a reference

Variables
P: Current packet

SetP: Segment set of P
SetC: Code set of P

Received a packet P:

If P is an outgoing packet

Delimitate P into segment set of SetP
For each segment S in SetP

Do memory-lookup

If Cache-hit

Reference the segment with code

Update the corresponding memory entry

Else (// Cache miss)

Create and enqueue the memory entry

Else (// Incoming packet)

Extract code set SetC
For each code C in SetC

Do memory-lookup

If found in memory

De-referencing the code

Update the memory entry

Else (// Cache miss)

Report error back to sender

Figure 4. Pseudo code for Basic WM Elements

being unable to decode), WM will report error back to the

sender and the sender will retransmit the original packet.

D. Advanced Element: MFE

The aforementioned basic elements are enhanced by an

advanced element of Memory Fidelity Enhancement (MFE),

which allows clients to eliminate user-user redundancy by

overhearing other clients’ traffic. MFE can function indepen-

dently and can be selectively loaded, thus allowing module-

based structure to cap the processing overhead and in turn

the response time. For clarification, from now on, we will

use WM to refer to the complete design of WM, while refer

to the basic elements of WM as Memory Referencing and

De-referencing (MRD). WM is designed to be application

transparent, meaning no application needs to be changed,

and WM can improve the performance of all applications.

We assume a design residing at layer-2.5 between the

Network layer and Link layer.

Since inter-user redundancy exists, clients can exploit

such redundancy to reduce the sizes of their own data.

Memory Fidelity Enhancement (MFE) is designed for this

purpose. To learn about other users’ traffic, a client should

explicitly sniff network traffic. Such sniffing is a trivial

task in non-encrypted networks, as all data are transmitted

openly. For encrypted traffics such as WEP-based, a client

can still easily decode other users’ raw data.

After a client learns other users’ traffic, in order to encode

his traffic with AP, AP needs to know what the particular

Figure 5. Illustration of Memory Fidelity Enhancement

client has overheard. Though a straightforward solution is

to ask clients to acknowledge the packets overheard, the

additional traffic associated with such acknowledgement

makes the approach prohibitive. Instead, MFE allows the

AP to “intelligently” estimate what clients overhear which

clients’ downloading traffic. Specifically, each client Ci has

an associated data rate Ri which is determined solely by

the channel situation. Since clients can always overhear and

decode traffics that are sent with lower rates, a client Cj can

learn another client Ck’s traffic provided that R j ≥ Rk. Since

AP knows each client’s rate, it can estimate the overhearing

capability of each client at any time. One exemplary scenario

is shown in Figure 5, where AP has three clients of Ci,

Cj and Ck. Assuming their respective data rates are 1Mbps,

2Mpbs and 0.5Mbps. When AP sends data D to Ci, Cj is able

to decode since R j > Ri and later transmission of D can be

replaced by its reference d. On the other hand, since Ri >Rk,

Ck is unable to take advantage of this. The advantage of

such technique is that it eliminates the necessity of explicitly

verifying the overhearing results.

E. Overall Process on AP and Clients

The operations of MRD and MFE complement each other

on both sides. We now briefly describe the overall operations

on both sides. For simplicity, we only consider the downlink

traffic, with AP sending and clients receiving. The process-

ing of the other direction of traffic only differs slightly. (i)

When AP receives a packet, the packet is delimited into

segments with MRD and replaced with codes when possible.

(ii) Then MFE will determine whether other clients are able

to overhear this packet. If another client can overhear the

packet, the corresponding segments will be put into the

client’s memory. (iii) When clients receive a encoded packet

from AP, MRD extracts the codes and decodes them back to

original segments. MFE requires clients to actively overhear

other clients’ traffic whenever possible, and the overheard

data will be put into its memory.

IV. EVALUATION

We evaluate WM with trace-driven simulations, and the

traces are described in Section II. The direct result of

applying WM is the reduced data size, which in many

network environments translates to higher throughput. Thus,

the performance metrics we consider are the resultant data

size and the network throughput with a typical network

setup. The simulation software we use is NS2, with which an

802.11 Wi-Fi network is configured. We integrate the seven

components of WM inside NS2 so that the input traces can

be processed by WM before being transmitted by NS2.

We compare WM to a baseline scenarios where data

packets are sent as-is. For WM, we evaluate each of the

4 components separately, as well as the integrated solution.

Except the baseline scenario, we assume all clients are WM-

enabled, unless otherwise stated. To ensure consistency of

various evaluations, we always use the following network

setup. The 802.11 network consists of a AP and 8 wireless

clients with random placement. Each of the clients sets up

a single TCP connection with another fixed host behind

AP. The RTT of the wired network is 60ms and bandwidth

is 100Mbps. Some other important parameters about the

802.11 setup are: Slot-Time 20us, SIFS 10us, Preamble-

Length 72 bytes, Data-Rate 11Mbps, and no RTC/CTS.

With our collected traces, we evaluate WM along the

following dimensions. First, we choose the same data sets

as used in Section II (i.e., three buildings) and study the

aggregate network throughput. Second, we study the impact

of redundancy level on both coded packet size and aggregate

throughput. Since our data set is very diversified in terms of

varying redundancy degrees, we choose three typical users

who have comparatively low, medium and high redundancy,

respectively.

A. Aggregate network throughput

We use the same data sets as described in Section II-B.

For each data set, we choose the top 8 users based on traffic

volumes and use their traffics as the simulation inputs. The

results are shown in Figure 6. We observe that the aggregate

throughput for the baseline scenario is about 6.24 Mbps. For

all data sets and different days, the improved throughput vary

between 7.25 Mbps and 12.03 Mbps, or an improvement

between 16% and 93%. The average improvement is about

40%. Note that the throughput results are the effective
throughput as experienced by applications rather than raw

throughput. Since WM can significantly reduce packet size

by eliminating traffic redundancy, the effective throughput

can be larger than the physical bandwidth limit of 11 Mbps.

B. Impact of redundancy level

We now examine the impact of redundancy level on both

coded packet size and aggregate throughput. We choose

three representative users that exhibit different levels of

redundancy and use their respective data as the inputs of

all clients. The redundancy level is estimated based on the

averaged packet sizes when coded by MRD. Specifically,

the three users have about 10%, 35% and 60% redundancy,

respectively.

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

Th
ro

ug
hp

ut
 (M

bp
s)

Default
WM

(a) Building A

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

Th
ro

ug
hp

ut
 (M

bp
s)

Default
WM

(b) Building B

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Days

Th
ro

ug
hp

ut
 (M

bp
s)

Default
WM

(c) Building C

Figure 6. Aggregate network throughput based on three data sets

1) Low redundancy: We observe that though MRD can

effectively reduce the data size by 11%, complete solution

of WM can achieve 17% of reduction. We also see that WM

improves the default throughput of 6.24 Mbps by more than

11%, or 6.90 Mbps.

2) Medium redundancy: For medium-redundancy, we ob-

serve that WM can achieve more than 40% of data size

reduction. The throughput improvement is about 32% (i.e.,

8.22 Mbps vs. 6.24 Mbps).

3) High redundancy: In high-redundancy scenarios, we

observe that WM can reduce the packet size by about 62%,

and the throughput improvement is about 57% (i.e., 9.79

Mbps vs. 6.24 Mbps).

V. RELATED WORKS

Primarily motivated by the temporal dimension of traffic

redundancy on Internet, several approaches are proposed to

exploit such redundancy and reduce users’ response time.

Squirrel [11] provides a decentralized, peer-to-peer web

cache by enabling web browsers on desktop machines to

share their local caches and form an efficient and scalable

web cache. [12] develops a novel caching algorithm for P2P

traffic. These caching are performed on file-level, which

significantly limit their effectiveness.

Various approaches are also proposed to eliminate traffic

redundancy at finer granularity than packet-level. A value-

based web caching [1] is motivated by the facts that web files

may be changed gradually and aliased, and proposes to split

files into blocks. Also, a protocol-independent technique [3]

proposes a mechanism to detect repetitive traffic on a com-

munication link and provides a protocol-independent idea to

eliminate the repetitive segments. [4] uses digests for packets

to directly suppress redundant transfers in networks by using

a proxy on either end of a low bandwidth connection. Work

[6] proposes to deploy packet-level memories on Internet

routers and change routing protocols to explicitly remove

redundancy, and Work [7] further presents redundancy-

elimination design as a network-wide service.

VI. CONCLUSION

In this work, we investigate the traffic redundancy prob-

lem in wireless networks. We propose a solution suite called

Wireless Memory which can help deliver better performance

by eliminating redundancy.

REFERENCES

[1] S. C. Rhea, K. Liang, and E. Brewer, “Value-based web
caching,” in Proceedings of WWW ’03, Budapest, Hungary,
2003.

[2] J. C. Mogul, Y. M. Chan, and T. Kelly, “Design, implemen-
tation, and evaluation of duplicate transfer detection in http,”
in Proceedings of NSDI’04, San Francisco, CA, 2004.

[3] N. T. Spring and D. Wetherall, “A protocol-independent tech-
nique for eliminating redundant network traffic,” SIGCOMM
Comput. Commun. Rev., vol. 30, no. 4, pp. 87–95, 2000.

[4] J. Santos and D. Wetherall, “Increasing effective link band-
width by suppressing replicated data,” in Proceedings of
ATEC ’98, New Orleans, LA, USA, 1998.

[5] G. Pallis and A. Vakali, “Insight and perspectives for content
delivery networks,” Commun. ACM, vol. 49, no. 1, pp. 101–
106, 2006.

[6] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker,
“Packet caches on routers: the implications of universal
redundant traffic elimination,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 219–230, 2008.

[7] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture
for coordinated network-wide redundancy elimination,” in
Proceedings of ACM SIGCOMM ’09, Barcelona, Spain, 2009.

[8] J. Ziv and A. Lempel, “Compression of individual sequences
via variable-rate coding,” Information Theory, IEEE Transac-
tions on, vol. 24, no. 5, pp. 530–536, Sep 1978.

[9] “Rzip,” http://rzip.samba.org/.

[10] M. O. Rabin, “Fingerprinting by random polynomials,” Tech-
nical Report TR-15-81,Center for Research in Computer
Technology, 1981.

[11] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel: a decentral-
ized peer-to-peer web cache,” in Proceedings of PODC ’02,
Monterey, CA, 2002.

[12] O. Saleh and M. Hefeeda, “Modeling and caching of peer-to-
peer traffic,” in Proceedings of ICNP ’06, Washington, DC,
2006.

