SmartVNC: An Effective Remote Computing Solution for Smartphones

Cheng-Lin Tsao, Sandeep Kakumanu, and Raghupathy Sivakumar Georgia Institute of Technology

ACM MobiCom `11 Las Vegas, NV, USA, Sept. 20, 2011

Remote Computing from Smartphones

O Smartphones: mobile phones w/ advanced capabilities

• Overtook PCs in global shipments in 2010 [source: CNN, Feb 2011]

O Remote computing from smartphones

- Allowing users to access a remote PC, ex. VNC and RDP
 - Accessing applications and data in a PC when being away from it
 - Accessing a PC instance in VDI (Virtual Desktop Infr) cture)
 - Remote IT support for troubler

SCHMOLOGIW

- Knowledge workers spend 35% • Availability and popularity of re of time at their desks. [source:
 - AndroidVNC, TeamViewer, etc Harvard Business Review, Sept 2011]

Research

User Experience Today

O Demo of remote computing from a smartphone

- Client: AndroidVNC in Samsung Galaxy S Android phone
- Server and PC application: MS Windows and Intuit QuickBooks
- Task: generating a sales report and exporting it into csv format

O Real-user experiments

- 22 users, 9 applications, 54 tasks of 3 complexity levels
- Metric: opinion score (1=poorest, 5=best)
- Poorer user experience with remote computing from smartphones
 - Consistent observation with Linux, iPhone, and/or RDP
- More serious degradation from higher task complexity when using smartphones

Understanding User Experience

O Task effort: number operations required for a tasko Mouse clicks & keystrokes in PCs; touch actions in smartphones

O Task effort inflation from smartphones

• Causes: the zooming, panning, keyboard, and error problems

 $TaskEffort^{RCS} = TaskEffort^{PC} \times Inflation$

O Correlation analysis

• Correlation between task effort and opinion score in remote computing from smartphones

Research

Core Construct: Aggregation

• Reducing task effort by aggregating repetitive sequences of operations in user activity

Q1. Does redundancy exist in user activity?

Tracing user activity

- Activity monitor tool
- 10 volunteer users
- Recording all operations in all applications
- Average period:12.5 days
- Analyzing activity redundancy
 - Average redundancy: 34.32%

Q2. How do we efficiently harness the redundancy?

Macros: a recorded sequence of instructions

- Application macros [Mickens '10, Leshed '08, Hupp '07, Bolin '05, Excel]
- Raw macros [Chang '04 , AutoHotkey]

Q3. How do we design and realize a system for smartphone users?

SmartVNC

Goals	Application macros (ex. Excel)	Raw macros (ex. AutoHotKey)
Application agnostic	X	0
Robust	0	X
Extensible	X	X
Task effort reducing	X	X
Easy adoption	X	X

O Overview

- Creating robust, general, and extensible macros to aggregate operations on the PC
- Invoking macros easily in remote computing from the smartphone
- Generic design elements for any PC platform, smartphone platform, and remote computing protocol

Application-Agnostic Smart-Macros

O Smart-macros: robustness of application macros and generality of raw macros

Smart-macros Effort reducing frontend Parameterization Offline recommendation

- **O** Key design
 - Tapping into a GUI accessibility framework (ex. Microsoft UI Automation) for addressable GUI element information
- **O** Details

iechnologw

- Extracting the GUI element handle for each operation
 - FromPoint() for mouse clicks and FocusedElement() for keystrokes
- Retrieving an identifier as (name, auto_id, ctrl_type)

Task Effort Reducing Front-end

• Easy and non-intrusive access to macros in remote computing from smartphones

Smart-macros Effort reducing frontend Parameterization Offline recommendation

- O Key design
 - Tailored interface in reducing task effort from smartphones with seamless integration into the remote

O Details

eoraia Institute

ech nologiv

- Collapsible overlay on the remote col
 - Showing macro playback progress via
- Task effort reduction
 - Grouping macros by application
 - Automatic application opening
 - Automatic zooming and panning the front-end view to the focused GUI element
 - Fast playback that minimizes time on task

Remote beide patient in parale bolan and the second and the second secon

Parameterization and Extensibility

- O Accommodating variations and extensions in macro playback
 - Parameterization: replacing certain operations
 - Extensibility: interrupting playback to add/remove operations

O Key design

• Identifying parameter operations that only change the state of the associated GUI element

O Details

- Automatically categorizing operations by the control type
- Allowing the user to manually specify parameter operations
- Providing choices for parameter operations in runtime
- Allowing the user to add raw inputs to a macro or abort it

Smart-macros

Effort reducing frontend Parameterization

Offline recommendation

System and Prototype

of **Tech**nology

• Two-ended enhancement solution on top of remote computing

Performance Evaluation Methodology

O Metrics

- Macroscopic: time on task and task effort
- Microscopic: subjective opinion and system overhead

O Experimental methodology

- o 22 volunteers
 - Students of ages between 20 and 30
- 54 tasks of 3 complexity levels (easy, medium, and hard)
 - 9 PC applications: Word, Excel, PowerPoint, Outlook, Quicken, IE, Visio, Project, and SharePoint
- Real-user experiments
 - Using (after practicing) PC, mobile VNC, and SmartVNC
 - Pre-recorded macros for SmartVNC
- Trace-based experiments
 - Evaluating achievable effort reduction in real user behavior

Performance (1/2)

O Macroscopic performance

- Mobile VNC inflates task effort by 3.32x to 4.55x (average 3.73x).
- SmartVNC reduces task effort from smartphones by 83% to 86%.
- SmartVNC requires less effort than PC in certain tasks (average 0.61x).
- Time on task is similar to task effort.

O Subjective opinion

Georgia Institute

ecnnologiv

- Lots of users have poor experience with mobile VNC.
- Almost all users give good or best opinion to SmartVNC.
- Task effort reduction improves UX.

Performance (2/2)

Overhead analysis

- Server (measured w/ MS perfmon)
 - CPU: higher usage due to fast playback ⁵
 - Memory: unoptimized code but sustainable
- Client (measured w/ SystemPanel)
 - CPU: lower usage w/ less interaction
 - Memory: efficient integration

O Trace-based evaluation

- Split operations in the collected traces
 - Repetitive or non-repetitive
- Calculating total effort in smartphones
 - Repetitive: reduced effort (0.61x)
 - Non-repetitive: inflated effort (3.73x)

• Average reduction from VNC: 37.71%

Summary

- **O** Poor user experience and high task effort in remote computing from smartphones
- O Propose SmartVNC to reduce effort with operation aggregation
 - Application-agnostic smart-macros
 - Task effort reducing front-end
 - Parameterization and extensibility
 - Offline macro recommendation

O Prototype and evaluate SmartVNC in testbed

- Significant performance improvement in task effort, time to task, and subjective opinion score
- Minimal system overheads at the client

