
SmartVNC: An Effective Remote Computing Solution for
Smartphones

∗

Cheng-Lin Tsao, Sandeep Kakumanu, and Raghupathy Sivakumar
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

{cltsao,ksandeep,siva}@ece.gatech.edu

ABSTRACT

While a remote computing solution such as VNC is an effec-
tive technology for PC users to access a remote computer, it
is not as effective while being used from smartphones. In this
paper, we propose techniques to improve remote computing
from smartphones that help deliver near-PC level experience
to users. We introduce a key building block called smart-
macros that have the robustness of application macros but
at the same time possess the generality of raw macros. Us-
ing smart-macros we design and prototype SmartVNC, a
remote computing solution for smartphones. We show us-
ing experimental studies and a trace based analysis of real
user activity, that SmartVNC can improve user experience
considerably.

Categories and Subject Descriptors

C.2.4 [Computer-Communication-Networks]: Distributed
Systems—client/server

General Terms

Algorithm, Design, Experimentation, Performance

Keywords

Smart-macros, Remote computing, Remote desktop, VNC,
Smartphones

1. INTRODUCTION
Remote computing software allows users to remotely ac-

cess their desktops. The need for such remote access is
driven by a wide variety of application scenarios ranging
from simple remote access of files and data, to mobile work-
ers who have access to certain applications only on their
work PC, as well as to remote IT support. The more recent

∗This work was supported in part by the National Science
Foundation under grant CNS-1017234.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’11, September 19–23, 2011, Las Vegas, Nevada, USA.
Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...$10.00.

emergence of virtual desktop infrastructures (VDIs) that al-
most exclusively rely on remote computing software for ac-
cess has further elevated the importance of the latter. There
are currently over sixty different remote computing software
offerings in the market [1].

The rapid adoption of smartphones by mobile users has
led to users relying on remote computing software on their
smartphones to access their PC. Users being able to access
their PC effectively from their smartphone has both conve-
nience and productivity implications. Unfortunately, remote
computing software available for smartphones are ported on
an as-is basis from their PC counterparts and hence do not
provide good user experience. The unique limitations of
smartphones in terms of a constrained form-factor impose
severe overheads on the user, making even mundane tasks
burdensome.

To improve the performance of remote computing from
smartphones, we present a solution called SmartVNC. Smart-
VNC incorporates the following four novel design elements:
1) A new class of application agnostic macros called smart-
macros that have the generality of traditional raw macros,
but at the same time possess the robustness of application
macros1; 2) A smartphone friendly interface for the play-
back of the smart-macros that allows for seamless mixed
use of raw input and macros, and provides several accel-
eration techniques for navigation of the remote computing
view on the smartphone; 3) Macro parameterization and
preemption capabilities that allow users to accomplish tasks
that are variations of the tasks for which the smart-macros
were created for; and 4) An offline macro recommender that
transparently monitors the user behavior on a PC and sug-
gests useful smart-macros that represent tasks frequently
performed by the user.

While we present SmartVNC as a two-ended solution atop
the VNC remote computing software for the Microsoft Win-
dows operating system, the solution design can be applied to
other remote computing protocols such as RDP [2] and other
operating systems. On the smartphone, the SmartVNC
client is tightly integrated with the VNC client, but on the
desktop, the SmartVNC server requires no integration with
the VNC server and co-exists in a fully transparent manner.
The SmartVNC solution allows users to create extensible
and robust smart-macros on the PC for any application, and
invoke them from the smartphone using a simple interface
overlayed on the default VNC client. Through real user ex-

1Definitions of raw and application macros are provided in
Section 3.3.

periments with the SmartVNC prototype, we show that the
user experience on smartphones can be improved to match
PC levels both in terms of time and effort required to ac-
complish remote tasks from the smartphone. We also show
that the overheads incurred by SmartVNC are minimal.

The rest of the paper is organized as follows: Section 2
presents background on remote computing software. Sec-
tion 3 establishes the motivation and case for SmartVNC.
Section 4 presents the design highlights of SmartVNC while
Section 5 presents the system details. Section 6 presents per-
formance results, and Section 7 discusses the related work.
Section 8 concludes the paper.

2. BACKGROUND
There are two basic forms of remote computing software.

The first type is where information is passed between the
server and the client in the form of raw pixel data. The
VNC remote computing application is an example [3]. The
VNC server encodes the pixel data of the remote computer
and sends the encoded bit stream to the VNC client, which
then decodes bitstream and renders the screen display on the
local computer. To reduce the amount of data transferred,
the VNC server periodically polls the pixel data of the full
screen of the remote computer to detect the regions that are
updated, and sends only the changed portion of the screen
instead of continuously sending the full screen frames of the
remote computer. VNC is a cross-platform solution and can
work across multiple operating systems for both the remote
and local computers. Examples of solutions based on VNC
are UltraVNC and RealVNC [3]. The second type is based
on graphical primitives, which are basic drawing commands
provided by the operating system. RDP [2] is a Microsoft
application and protocol that falls under this category.

In the rest of the paper, our discussions of the high level
design elements apply to both types of remote computing
software. However, most of our experiments and our proto-
type rely on VNC as the baseline for the remote computing
server, and AndroidVNC as the remote computing client [4].
The presented results and proposed solutions could be ap-
plied to other smartphone remote computing clients such as
MochaSoft RDP, iTeleport, TeamViewer, and LogMeIn ig-
nition, but such an exploration is out of scope of this work.

3. MOTIVATION
While VNC and other remote computing solutions are ma-

ture and effective solutions to provide remote access to a PC
from another PC, they are not explicitly designed for remote
access from a smartphone. Remote access from a PC is in-
tuitive to a user since the local PC provides a user inter-

Figure 1: Screenshot of a smartphone VNC client
shows an intricate interface

face that is equivalent to that of the remote PC. The full
screen display is shown on the local monitor, and the user
controls the remote PC using a mouse and a keyboard at
the local PC. In such a scenario, the overall user experience
of remote computing is close to that of using a local PC.
However, remote computing from a smartphone is signifi-
cantly more difficult because of device constraints including
a small form-factor and screen size, and the lack of a phys-
ical mouse/keyboard. We characterize the degree of such
difficulty with a metric called task effort, which is defined as
the number of operations needed to accomplish a computing
task. We define an operation as a mouse click or a keystroke
in the PC, and as a touch (including panning and tapping)
on the touch screen in the smartphone. When a user wishes
to accomplish a task from a smartphone, the user performs
the same sequence of operations that would be required on
the PC but now via the VNC interface. Each PC operation
would require one or more operations when performed in the
smartphone. The task effort in accomplishing a task from a
smartphone via VNC can be represented with the following
equation:

TaskEffortV NC = TaskEffortPC
× Inflation (1)

where Inflation is the factor representing the additional bur-
den imposed on the user by the limitations of the smart-
phone, and TaskEffortPC is the number of operations re-
quired to accomplish the same task directly on the PC. In
the rest of this section, we first provide qualitative reasons
that cause such Inflation, and then we analyze PC usage
traces collected from different users and show that there are
considerable amounts of usage redundancy to be leveraged
to reduce TaskEffortPC . In Sections 4 and 5, we show how
both factors are addressed by SmartVNC.

3.1 Inflated Effort in Remote Computing from
Smartphones

The inflation in task effort for remote computing from
a smartphone is attributable to the following reasons: (i)
The zoom problem: By default, the full desktop screen is
squeezed into the small screen on the smartphone (see Fig-
ure 1 that shows a screenshot of MS Exel via AndroidVNC
[4]). This renders it very cumbersome to directly access or
manipulate any single GUI element on the desktop. Do-
ing so requires the user to zoom in, which is commonly done
using pinching on newer smartphones. However, such zoom-
ing requires the user to perform additional operations. (ii)
The pan problem: Zooming comes with a by-product prob-
lem. Once the screen is zoomed in, not all GUI elements
on the original desktop screen is now visible to the user,
and panning is required to navigate the full screen. This
typically requires the user to swipe across the screen and
further increases the number of operations the user has to
perform. (iii) The keyboard problem: Many smartphones do
not support a full fledged keyboard. Hence, to access keys
not available in the default layout, users will have to press
additional buttons on the keyboard. For example, on the
stock Android keyboard, users will have to press the ‘123’
button to access the number keys. Some keys are specific to
PC and are unavailable in smartphone keyboard at all, such
as ‘Ctrl’ and ‘F1’ that requires a custom implementation
in the remote computing client to perform. (iv) The error
problem: Users tend to make more mistakes on the smart-
phone when performing operations. Undoing such mistakes

and re-performing the operations would require extra oper-
ations. SmartVNC is explicitly designed to reduce Inflation
but we defer discussions on how it accomplishes the reduc-
tion till later in the paper.

3.2 Measurement of Redundancy in User Ac-
tivity

While reducing the Inflation factor is one approach to re-
duce TaskEffortV NC , another complimentary approach we
consider is the reduction of TaskEffortPC by enabling oper-
ations to be performed in aggregates. Such operation ag-
gregation would specifically be relevant if users naturally
tend to perform redundant aggregates of operations. Before
we delve any further into ways to accomplish this, we now
briefly present results from a user activity analysis to study
whether there is redundancy in user operations.

The PC user activity trace is collected from ten different
volunteer users spanning both academia and the industry.
Each user is provided with a custom-built monitor utility
that captures all operations performed by the user and ex-
ports them onto a stored file. The monitor transparently
runs in the background on the PC so that it captures the
true activity of the users in their routine usage of the appli-
cations. Each user periodically emailed back the stored file
and the usage analysis was performed offline. The volunteers
collected the traces for an average of 12.5 days.

The usage analysis first involved analyzing the redun-
dancy in user activity, or in other words the amount of repet-
itive activity that can be reduced by operation aggregation.
We define the degree of redundancy as follows: Consider
an operation sequence“ABCABCDABE”. This contains two
repetitive substrings: “ABC”and“AB”. Each repetitive sub-
string can be replaced with a new code, and the resultant
string will reveal the upperbound of the redundancy elimi-
nation possible. For example, “ABC” can be replaced with
the code X and “AB” can be replaced with the code Y . The
original string can thus be reduced to “XXDY E”, which
reduces the length from 10 to 5. The redundancy in the
sequence is then calculated to be 10−5

10
= 50%.

To quantify the redundancy in user activity, we need to
first discover repetitive tasks. We define a repetitive task to
be a sequence of operations that has appeared in the his-
tory at least twice. To analyze the redundancy, we use the
user history to perform trace-based evaluation. We greedily
match the history with the repetitive tasks that have been
identified, and we assume that each repetitive task can be re-
placed with a single new operation. We consider only repeti-
tive tasks of at least length two for such replacement. Figure
2(a) shows the redundancy of different users participated in
the analysis. The redundancy in user activity ranges from
20% to 40% for most users, and the average is 30.96%. This
indicates that an intelligent operation aggregation technique
can reduce task effort in a significant fashion.

There are two factors that have to be considered when
translating the above degree of redundancy into effort re-
duction achievable on the smartphone: (i) The above anal-
ysis assumes that the replacement code is always of length
one, which obviously is not realistic. Hence, a notion of
lookup overhead for the newly introduced codes has to be
incorporated. We consider the lookup overhead to be ap-
proximated as logkN where k is the number of aggregate
operations that can be presented to the user at any given
point in time, and N is the total number of such aggre-

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

R
e
d
u
n
d
a
n
cy

Users

(a) Redundancy observed in
user activity

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Users

(b) Potential effort reduction
on a smartphone by user

Figure 2: Real-user activity shows redundancy and
potential effort reduction

gate operations. Although such a lookup overhead can be
achieved only if the tasks are structured with a balanced
tree with k children at each intermediate node, it serves as a
reasonable approximation of the achievable effort reduction.
(ii) The analysis also does not account for the mobile infla-
tion factor discussed earlier. Using the remote computing
experiments conducted later in Section 6 where users were
asked to perform the same tasks on both the PC and the
smartphone, we empirically determine the mobile inflation
factor to be 3.31. Figure 2(b) shows the effort reduction
after adjustment for both the lookup overhead and the mo-
bile inflation factor. The potential effort reduction on the
smartphone ranges from 20% to 80%. The effort reduction
is related to the redundancy in user activity, which is intu-
itive. The interesting observation is that the effort reduction
can be higher than the redundancy that appears in the user
activity in PC because of the potential for reduction in the
inflation factor.

3.3 Macros and Limitations
The notion of operation aggregation is related to the con-

cept of a macro, which is a sequence of instructions that has
been recorded and can be replayed by the user. In this sub-
section, we discuss two types of macro solutions that exist
today and their limitations.

The first type is application macros provided by the ap-
plication developers in certain application software. One of
the most popular application macros is the Microsoft Excel
macro [5].

Excel allows users to record their operations in the form
of a Visual Basic script. The other example is iMacros [6],
which is a browser plug-in that allows users to record their
operations when browsing the web. However, each appli-
cation macro only works for that specific application. The
user has to rely on the application developer to provide such
functionalities. The scope of the application macros is also
limited. An application macro cannot work across multiple
applications. Some functions of an application may not be
captured by the macro system. For example, iMacros does
not record the operation of printing a web page.

The second type is raw macros, which records and replays
the raw activities such as mouse clicks at a certain coor-
dinate and keystrokes. An example of raw macro systems
is AutoHotkey [7]. Although raw macros work for generic
applications in PC, it cannot replay the intended tasks ro-
bustly. Since raw macros are defined by the raw system
variables, it would fail to replay the recorded task if the
system environment is not the same as the recorded state.
For example, moving/resizing the window would cause the

mouse click at the same coordinate to activate a different
function. Raw macros cannot respond to adaptive user in-
terfaces, such as the truncated menu that shows frequent
items in Microsoft Office and other applications. The pac-
ing of the macro replay is also a big challenge with raw
macros since the availability of next function to invoke may
be delayed due to the current computational load, and raw
macros have no information regarding the application con-
text.

4. DESIGN PRINCIPLES

4.1 Overview
SmartVNC is a software solution designed to improve the

experience of a user accessing a remote PC from a smart-
phone. It is a two-ended solution, with presence at both
the PC and the smartphone (see Figure 3). The SmartVNC
server at the PC co-exists transparently with a remote com-
puting server. The SmartVNC client at the smartphone is
integrated as an overlay with the remote computing client.
SmartVNC provides a powerful framework for users to cre-
ate robust, general and extensible macros on the PC, name
them, and invoke them easily at the smartphone within the
context of the remote computing client. In the rest of this
section we focus on the fundamental design elements in Smart-
VNC: application agnostic smart-macros that allow Smart-
VNC to provide the robustness of application macros but
with the generality of raw macros; task effort reducing front-
end on the smartphone that is presented as an overlay within
the context of the remote computing client; parameterization
and pre-emptability of macros that provide a high degree of
flexibility and extensibility; and offline macro recommender
that analyzes user activity and provides recommendations
for macros to be created. Note that the rest of the discus-
sion in this section is not meant to be an exhaustive descrip-
tion of SmartVNC, but rather an overview of the principal
design elements. We defer the complete description to the
next section.

4.2 Application-Agnostic Smart-Macros

Operation aggregation through the creation of macros is
a desirable capability for task effort reduction. However, as
explained in Section 3, traditional approaches to creating
macros have been severely limited by one of two problems:
(i) raw macros suffer from robustness issues and are noto-
riously erroneous if the playback environment differs even
slightly from the recording environment; and (ii) applica-
tion macros suffer from a lack of generality and users are
dependent on application developers to provide the capabil-
ity of macros on a per-application basis.

SmartVNC uses a new type of macros that we introduce
called smart-macros that has the robustness of application
macros but provides the generality of raw macros. The de-
sign of smart-macros is derived from a combination of key
trends and observations on how operating systems today
work. Most operating systems (OS) today provide applica-
tion developers with higher order primitives called GUI ele-
ments than simplify the ability to create graphical objects.
Thus, application developers can readily use GUI elements
such as text-boxes, buttons, and forms instead of creating
them from scratch. Because the OS also assumes the respon-
sibility of providing callbacks to the application when GUI
elements are invoked or manipulated, applications register

PC Mobile Phone

Macro

Recording

Macro

Replaying

Macro

Suggestion

Macro

Repository

Macro

Presentation

Remote

Computing

Server

Remote

Computing

Client

store

replay

retrieve

handle

parameter &

exception

SmartVNC

Underlying remote desktop

Figure 3: SmartVNC system overview

each GUI element with well identifiable information ranging
from the parent application to the specifically recognizable
name of the element, as well as to the state of the element.
Smart-macros tap into the GUI element framework directly
to facilitate the recording of robust macros in an application
agnostic fashion. Thus, a smart-macro at a high level is a
sequence of operations with each operation represented as
an addressable GUI element with its appropriate state and
the raw user input to be delivered to that GUI element.

Figure 4 shows how smart-macros compare to the other
types of macros. As we explain in Section 5, the UI automa-
tion and the .NET frameworks available in MS Windows are
used in tandem for tapping intelligently into the GUI ele-
ment framework and capturing raw user activity. We also
discuss how such frameworks are also readily available on
other OSes.

4.3 Task Effort Reducing Front-end
Once smart-macros are created, they have to be presented

to the user on the smartphone. SmartVNC uses a push tech-
nique to update the list of macros available on the smart-
phone, but we defer further discussion of the update mech-
anism to the next section. More importantly, the actual
front-end on the smartphone has to be designed carefully
with the following considerations: (i) the front-end has to be
non-intrusive and should ideally seamlessly co-exist with the
remote computing client front-end; (ii) the front-end must
be non-limiting in terms of what the user can accomplish in-
dependent of whether relevant macros are available or not;
and (iii) the front-end should be heavily tailored toward re-
ducing task effort.

The SmartVNC front-end is designed to address the above
considerations. It is designed as a collapsible transparent
overlay to the remote computing client on the smartphone
(see Figure 8). The user continues to be able to view and use
the regular remote computing client, but can opportunisti-
cally invoke macros from the overlay macros panel. The user
can collapse the macros panel if required. Creation of the
front-end in this fashion is straightforward as the SmartVNC

Application macros
Application specific

Robust

Smart-macros
Application agnostic

Robust

Raw macros
Application agnostic

Not robust

mouse clicks

keystrokes

software

component

GUI

element

operating

system

event function

call

Figure 4: Types of macro solutions

client is integrated with the remote computing client soft-
ware. When a macro is invoked, the invocation is carried
over to the SmartVNC server on the PC out-of-band of the
actual remote computing session. However, the playback of
the macro at the PC is presented back to the user in real time
through the remote computing session. Thus, the user can
actually observe the execution of the macro. More impor-
tantly, the user can seamlessly intersperse the use of macros
with raw input to the remote computing client interface.

Finally, the front-end is also designed to minimize the task
effort when invoking macros. When the replay of macros re-
quires user-input (see discussion on Parameterization later
in the section), the front-end automatically pans and zooms
to the concerned GUI element that needs manipulation by
the user. This eliminates the need for the user to navigate
to that element. Note that because the SmartVNC server
has the exact information about the GUI element on the
PC, identifying its coordinates on the smartphone through
the API of the remote computing client is straightforward.
Finally, if the GUI element can take default values (e.g.
text-boxes, check boxes, radio buttons, etc.) SmartVNC
pre-populates the GUI element with the default values de-
rived from the state of the GUI element when the macro was
recorded or last replayed whichever was later. The front-end
provides users with the option of replaying an entire macro
with default values in which case the user is not prompted
for input during the replay. Finally, the replay of the macro
itself is done faster than real-time minimizing the task-time
for users.

4.4 Parameterization and Preemptability
Operation aggregation using macros is useful when the

user wants to replay the exact sequence of operations repre-
sented by the macros. However, in reality users could want
minor variations in tasks every time a macro is replayed.
SmartVNC accommodates such variations by supporting pa-
rameterization of the smart-macros. At a high level when
the user records a macro, certain operations can be classified
as parameters. The macro is then recorded as a sequence
of only the operations with appropriate indicators for when
user input should be sought for the parameters. The original
input for the parameters is also preserved as default input
values for the macro. This provides a powerful abstraction
to users as macros can now be used with variations on the
fly. To the best of our knowledge, this is the first approach
to enable parameterization of generalized macros.

The classification of an operation into either a parame-
ter or not is done by distinguishing whether the operation
merely changes the state of the associated GUI element or
invokes the GUI element respectively. During playback of
a parameterized macro, SmartVNC provides users with the
option of executing the macro in continuous mode with just
the default values and not pausing for input. If a user does
choose to replay the parameterized version of a macro, an
option is still provided to resume the macro in continuous
mode after every parameter input.

Another form of macro extensibility SmartVNC supports
is the ability to pause macros, perform raw input, and then
resume the original macro. This provides a further degree
of extensibility than parameterization as macros now can
be extended with arbitrary introduction of new operations
as well. By default, the pausing of macros is allowed in
SmartVNC only when the playback is stopped for user input.

However, it is possible to instrument the playback to occur
slower than real-time and allow users to pause the macro at
any given point in the playback.

4.5 Offline Macro Recommender
The effectiveness of the SmartVNC solution depends on

the user creating useful macros. While the user is very likely
to know the most important aggregates of operations it is
challenging for a user to be able to create all useful macros.
Hence, one of the important design elements in SmartVNC is
the offline macro recommender. The SmartVNC server mon-
itors user activity even when a macro is not being recorded
and logs the activity after classifying parameter operations
from others. The macro recommender component of SmartVNC
then, on demand, parses the log to generate a list of repeti-
tive tasks observed in the user activity. For each such task,
the application, the length, the exact sequence of operations,
and the frequency of occurrence of the task are presented.
The report is generated simply as readable text. The tasks
are first filtered based on user specified length and frequency
thresholds, and rank ordered based on decreasing values for
length ∗ frequency. Users may then choose to explicitly
record a subset of the macros specified in the report2.

The tracking of user activity is done intelligently to ac-
count for users switching from one application to another.
Thus, if a user performance activity A1 at time t1 in appli-
cation App1, moves on to another application, and returns
back to App1 to perform activity A2, SmartVNC will track
the concatenation of A1 and A2 as a continuous task. Also,
the Macro Recommender only finds the longest matched se-
quences to eliminate redundantly identifying sub-strings of
tasks as also repetitive tasks. Briefly, this is accomplished
using a suffix tree for building task patterns from the user
activity log. The Macro Recommender takes the history
of user activity since the last time a recommendation re-
port was generated, and it inserts all suffixes of the history
into the suffix tree. After inserting all suffixes, the Macro
Recommender traverses the suffix tree to identify repetitive
tasks, which are nodes that satisfy both the length (node
depth) and the frequency thresholds. We defer the detail
mechanism to the next section.

5. SOLUTION
In this section we present the system realization of the

SmartVNC solution. We present the system architecture,
the details of our implementation and the various compo-
nents involved in the building the system.

Figure 5 shows the software architecture and the compo-
nents that reside in four functional blocks described in Sec-
tion 4. The solution is designed as a server-client architec-
ture, where the server resides on the desktop and the client
resides on the smartphone. Since the SmartVNC design is
centered around operation aggregation that is orthogonal to
the core remote computing functionality, the solution is im-
plemented as an overlay to an existing remote computing
solution but does not change any of the native behavior of
the remote computing software. The SmartVNC client re-
quires integration with the remote computing client on the
smartphone, but the integration is merely to gain access to
the UI and the remote computing protocol is left untouched.

2Future work could facilitate users simply choosing an iden-
tified task and the macro automatically being recorded.

The SmartVNC server on the other hand is fully decoupled
from the remote computing server and has no direct interac-
tions with it. The arrows in the figure show the interaction
between components in terms of function calls.

5.1 SmartVNC Server on Desktop
The SmartVNC server resides on the desktop and im-

plements three functional blocks of the solution - Macro
Recording, Macro Replaying, and Macro Suggestion. The
desktop also maintains a persistent database for all the recorded
macros. All the desktop components are developed using
C#. The persistent database is an SQL-based relational
database called HyperSQL [8]. We use an unmodified re-
alVNC [3] server on the desktop as an independent process.
While a number of components constitute the SmartVNC
server we explain the key ones below and only briefly sum-
marize the others.

Macro Recorder Frontend: This is a simple GUI appli-
cation that allows the user to start/stop/abort the recording
of a macro and also allows playback for verification. Figure
6 shows a screenshot of the frontend.

GUI Element Extractor: This component has two re-
sponsibilities: converting raw operations into GUI elements
and retrieving a unique identity for each element. The GUI
element extractor uses the APIs provided by the accessibility
frameworks for extracting the handle for the GUI element.
In the context of MS Windows, the UIA framework provides
functions FromPoint() and FocusedElement() to determine
the AutomationElement for a mouse entry and a keyboard
entry, respectively. Next, the GUI element extractor has to
retrieve a unique identity for the GUI element so that it can
be reliably located while executing a macro. The Automa-
tionElement has several properties that could be used to
identify it, such as name or automation ID. However, even a
combination of these properties is not sufficient to uniquely
identify an element. Automation ID is not provided by all
GUI elements, and multiple GUI elements in a GUI applica-
tion window can have the same name. SmartVNC, instead,
traces the GUI tree hierarchy from the target GUI element
back to the root and uses the full ancestor list as the unique
identity.

Parameter and State Identifier: To allow parame-

Macro

Recommender

Raw Action

Recorder

GUI Element

Extractor

Parameter and

State Store

Macro

Generator

Macro

Recorder

Frontend

Macro Initiator
Operation

Replayer

Parameter

Handler
Exception

handler

User Behavior

History

Overlay Panel

UI Updater

Parameter and

Exception

Presenter

Macro

Presenter

Notification

Receiver

Desktop Mobile

Macro

Repository

Macro Recording

Macro Suggestion

Macro Presentation

Macro Replaying

Figure 5: SmartVNC software architecture

Start

recording

Abort

recording

Recorded

operations

Replay the

last recorded

macro

Finish

recording

Figure 6: SmartVNC desktop UI screenshot

terization, we categorize GUI elements as a parameter type
based on the control type. Table 1 show the classification
of parameter and non-parameter operations. We record the
operation performed during the recording of the macro as
the default value for the parameter. We also maintain the
state of those GUI element which function is stateful, such
as setting/unsetting a check box.

Table 1: Operation classification in parameteriza-
tion

Parameter check box, combo box, edit, list item, and ra-

dio button

Non-parameter button, document, list, menu, menu item,

pane, scroll bar, etc.

Macro generator: When the user clicks the stop button
on the macro recording frontend, all the individual opera-
tions are aggregated into a single macro. The macro is a dy-
namic array of GUI element information recorded for each
operation. Each entry in the array is self-sufficient to replay
the necessary operation and the information stored contains
the process on which an operation is performed, the unique
identity of the GUI element so that it can be retrieved, the
GUI element’s state and the operation performed. The user
can manually provide a name for the macro.

Operation Replayer: The Operation replayer is respon-
sible for replaying an individual operation. Since SmartVNC
records the full path of the GUI element handle in the GUI
element tree, it simply walks through the tree from the root
element of the tree to reach the required GUI element and
thus retrieve its handle. In our implementation we use the
FindChild() method provided by the UIA library to traverse
the GUI element tree. Next, the recorded state of the GUI
element is restored before the operation is performed on the
element. Lastly, the operation is performed on the GUI el-
ement. For a mouse click operation, a mouse click is sent
to the GUI element retrieved. The sendInput() function
(available in the user32.dll) is used to replay a mouse click.
Similarly, focus is set to the GUI element that is supposed
to receive the keyboard operation and the raw keys are sent
to the GUI element. The sendKeys() function available in
the MS Windows Forms library is used to send the keyboard
input to the focused GUI element.

Exception Handler: This component is responsible for
handling one of the following exceptions that occur while ex-
ecuting a macro: 1) process latency caused by the underlying

OS when it is heavily loaded presenting the rendering of the
next target GUI element in time; 2) missing prerequisite op-
erations in the recorded macro (Ex: clicking on a hyperlink
before the webpage if fully loaded); 3) notifications or alerts
from the application that block the interaction in the user
interface. All the above cases create a scenario in which the
macro replayer is unable to find the next GUI element. The
exception handler retries several times to avoid the latency
issue and then hands control to the user via the exception
presenter.

Macro Recommender: This component analyzes the
user activity history on an on-demand basis and suggests
macros for the user to create. The Raw Operation Recorder
and the GUI Element Extractor are reused to keep track of
the user activity on the PC. As introduced in the previous
section, the macro recommender uses a suffix tree to process
the user activity. A suffix tree is a well-known linear-time
solution to the longest common substring problem. Figure
7 uses an example history of operations, say “ABCABCD-
ABE” to show the steps in determining all longest-matching
repetitive sequences using a suffix tree. (1) Each node in the
suffix tree represents a sequence of operations and also the
number of occurrences of the particular sequence (e.g. the
leftmost “C2” in (1) represents that “ABC” appears twice).
By traversing the suffix tree once, the Macro Recommender
is able to find all repeated sequences (shown in boldface).
(2) The Macro Recommender removes redundant patterns
by filtering the longest-matching repetitive sequences from
the found sequences. It first removes redundant prefixes by
leveraging the information stored in the suffix tree. “A” is a
redundant prefix of “AB” since node “B3” has a equal num-
ber of occurrence as its parent “A3”, which means “A” only
appears as a sub-string of “B” but not separately. (3) The
Macro Recommender removes redundant suffixes by estab-
lishing a reverse suffix tree and apply the same technique.
The Macro Recommender keeps track of the discovered pat-
terns and suggest the new patterns to the user for macro
creation. The construction of the suffix tree can be achieved
with an algorithm that has linear complexity in both com-
putation and space [9]. As explained above, the removal of
redundant patterns only require two traversal of the suffix
tree. Thus, the proposed macro recommendation has com-
putation and space requirements linear to the length of the
user activity in terms of the number of operations.

A3 B3 C2 D1 E1

A1E1 D1 A1B3

E1

C2

C2

A1 D1

A1

B1

E1

B1

A1 D1

A1

B1

E1

B1

A1

B1

E1

B1

B1

C1

C1

A1C1 D1

D1 A1

D1

B1

E1

...

(1) all repetitive substring: {A, B, C, AB, BC, ABC}

A3 B3 C2

B3 C2

C2

A3

B3

C2

(2) after removing redundant

prefixes: {B, C, AB, BC, ABC}

(3) reversed suffix tree,

after removing redundant

suffixes: {AB, ABC}

Figure 7: An example of macro suggestion with a
suffix tree

Other Components: We now describe the other com-
ponents that constitute the SmartVNC server: 1) Raw Op-

eration Recorder is involved in capturing the raw user input
like mouse clicks and keyboard entries. 2) Macro Reposi-
tory provides an interface to store and retrieve the recorded
macros in the persistent database. 3) The Macro Initiator
handles the replaying of macros on the desktop. It interfaces
with the SmartVNC client app and retrieves the macro from
the repository when required and executes each operation in-
volved in the macro using the Operation Replayer. 4) The
Parameter Handler takes care of replaying parameter oper-
ations on the desktop. The handler provides the bounding
box and a default value for the parameter, and it applies the
user input to the GUI element.

5.2 SmartVNC Client on Smartphone
The SmartVNC client contains all the components of the

Macro Presentation functional block and some components
of the others. We prototype the solution by modifying An-
droidVNC, an open-source VNC client. We modify only
two files of the AndroidVNC source namely VncActivity,
the main Activity object, and VncCanvas, the main GUI
object of VNC interface. All SmartVNC communication
from the smartphone to the desktop is asynchronous and
bidirectional. We now explain the different components:

Overlay Panel: The overlay panel is a control panel that
is embedded into the remote computing client and provides
a set of buttons to the smartphone user. Figure 8 shows
a screenshot of the overlay panel and the underlying VNC
client. There are five sets of buttons shown in the control
panel depending on the stage of macro execution: applica-
tion menu, macro menu, macro execution menu, parame-
ter menu, and exception handling menu. The overlay panel
shows only one menu at a given time and the panel added
to the remote computing client using a layout that allows
overlapping. The switching between menus is realized by
toggling the visibility of the previous and the current menus.
The overlay panel is added to the content of the VncActivity
object with a FrameLayout that overlaps the panel on top of
the VNC client. Since Android only allows the UI thread to
modify the UI, other components that want to update the
overlay panel need to go through the UI updater, a compo-
nent created by us in the UI thread.

Remote desktop Hide overlay panel Application menu (scrolling)

Figure 8: SmartVNC client screenshot

Macro Presenter: This component maintains the ap-
plication menu and the macro menu, and it also responds to
the selection of the user. It connects to the macro reposi-
tory to retrieve the list of applications and the list of macros
associated with a specific application. The applications and
the macros are alphabetically ordered so that the users can
easily find the macros. When an application is selected by

the user, the macro presenter sends a request to the macro
initiator to bring the application to the foreground. When
a macro is selected by the user, the macro presenter sends a
request to the macro initiator to execute the selected macro.
Both requests are sent with asynchronous communication so
that the UI of the smartphone is not blocked. While a macro
is being executed by the macro initiator, the macro presen-
ter shows the macro execution menu that allows the user to
control the timing of the execution. As we have discussed
in Section 4.4, the timing control allows the user to extend
the recorded macros with new operations in runtime.

Parameter/Exception Presenter: This component han-
dles the presentation of parameters and exceptions to the
user. While receiving a notification of a parameter from the
parameter handler, this component first shows the parame-
ter menu in the overlay panel via the UI updater. Then it
zooms into the bounding box of the parameter. This is done
by using the zooming and panning functions in the inter-
face provided by the underlying remote computing client,
which is VncCanvas in our prototype. The response from
the user could be a new value or selecting a default value
provided by the parameter handler. Lastly, the presenter ac-
cepts the response from the user and returns it to the param-
eter handler to proceed with the execution. Similarly, the
parameter/exception presenter shows the exception menu
upon an exception notification from the exception handler
on the desktop side. The exception menu contains three op-
tions namely “Retry”, “Ignore” and “Abort”. These options
are self-explanatory.

Notification Receiver: This component receives notifi-
cations of new macros from the macro generator and gives
updates to the user in the overlay panel.

5.3 Future Implementation Considerations
Portability to other PC platforms: Since Mac OS

and Linux also have their own accessibility frameworks [10,
11], the SmartVNC solution can be easily ported to other
PC platforms as well.

Portability to other smartphone platforms: The
SmartVNC solution can also be ported to other smartphone
platforms such as iPhone, RIM,Windows Phone 7, Symbian,
PalmOS as long as the source code of the target remote com-
puting client is available. Note that the integration required
with the client is very simple.

Extension to native mobile apps: The task effort on
smartphones is high irrespective of whether an application
is accessed through a remote computing or through a native
app. While a native app might have an optimized GUI for
the smartphone screen, operation aggregation will be never-
theless be useful in reducing task effort for repeated tasks.
We plan to explore the use of SmartVNC for accessing net-
worked, but native, applications on the smartphone as part
of future work.

6. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of

our implementation of SmartVNC with experiments involv-
ing real users.

Prototyping: Our prototype testbed consists of 1) a Dell
desktop running Windows XP SP3 with a Pentium-4 2.8
GHz CPU, 3GB RAM, and a 19-inch monitor (1280x1024)
and 2) a Samsung Galaxy S smartphone running Android
2.1 with 1GHz CPU, 512MB RAM, and a 4-inch screen

(800x480). We evaluate our solution with nine Windows
applications and six tasks of varying complexities for each
application. The full list of tasks and applications is shown
in Table 2. While the tasks are pre-determined, they are
derived from real-user activity dumps collected for the moti-
vation results in Section 3.2. Since we observe that users not
only use easy-to-find GUI elements but also those hidden in-
side layers of menus, we define the tasks with different levels
of complexity to fully capture typical user activity. For com-
parison, we use AndroidVNC [4], the VNC client having the
highest rating (4.5 stars) and most downloads (more than
250,000) in the Android Market. Both the AndroidVNC and
SmartVNC apps are installed in the Android phone which
connects to the PC via a local Wi-Fi network. In the rest
of the section, we refer to AndroidVNC as simply VNC.

Metrics: We compare the user experience of SmartVNC
with that of VNC and direct PC access using two objec-
tive performance metrics, time on task and task effort. Our
definition of task effort only focuses on mouse/keyboard op-
erations that can be identified and automated by a software
system. Our definition of task effort can be considered as a
variant of the Keystroke-level Model in GOMS family [12],
which contains mental operations such as mental prepara-
tion and concentration shift that are not directly related
to our solution. We also get subjective feedback from real
users. We provide a CPU and memory profiling analysis of
VNC and SmartVNC to show the overheads introduced by
our solution. Finally, we provide statistics from the offline
macro suggestion for the user dumps collected from ten users
and the potential task effort reduction for these users using
SmartVNC.

Experimental methodology: We invited twenty-two
volunteers for our experimental evaluation, and all of them
are students whose ages are between 20 and 30. While some
of them are not smartphone users, all of them actively use
their PCs for daily tasks. During the experiments, each
user was randomly given two applications from the nine ap-
plications, and was asked to perform three tasks (one in
each complexity category) for each application. While using
SmartVNC, the smartphone had been loaded with the pre-
defined 54 macros, and the user was asked to perform the six
tasks with the corresponding macros. Since a user might not
be familiar with the application or the smartphone, we let
the user to practice until they feel comfortable to perform
the tasks so that the learning effect is reduced in the ex-
periments. We perform within-subject evaluation (the user
performs the same tasks on PC, on AndroidVNC, and then
on SmartVNC) so that the users can give us their subjective
feedback with side-by-side comparison. It should be noted
that the experimental results here are only applicable to the
scenarios where an experienced user has created macros for
her routine tasks, and she uses the macros to reduce her time
and effort in doing these routine tasks from a smartphone.
We use the traces from real users to evaluate the achievable
time/effort reduction in accomplishing generic tasks using
remote computing from a smartphone. We do not study the
learning effort of using SmartVNC and defer it as part of
our future work.

Measurement and analysis: During each experiment,
we collect objective performance data with measurement
tools built for both the PC and the Android phone. The
tools measure both the task effort and the time on task for
the user to execute a task. For the VNC and SmartVNC

Table 2: Task list and macros used for evaluation (E=Easy, M=Medium, and H=Hard)

App Tasks
E Open and print a file Change format of a line

Word M Justify the entire text Add border to document
H Insert picture & effects Justify text & add a footer
E Open and print a file Sort data by a column

Excel M Insert a bar chart Insert a formula in a cell
H Import data from a csv file Insert a scatter chart
E Add a picture in a slide Change template for slides

PowerPoint M Print handouts of slides Select an animation scheme
H Add a footer Edit the master slide
E Print the current calendar Print contact list

Outlook M Arrange mail Arrange contacts
H Change email options Change calendar options
E Print a summary report Banking summary

Quicken M Export cash flow report Add a transaction
H Compare spending by year Find spending on clothing
E Print a webpage Go to a specific webpage

IE M View an RSS feed Check weather
H Change email options Change tab options
E Add a new announcement Upload a new document

SharePoint M Add a new event Add a new task
H Edit permissions Check in a document
E Print a file Show a category of shapes

Visio M Change pattern of a shape Add shadow to a shape
H Configure layout Flip a figure
E Print a Gantt chart View network diagram

Project M View a resource sheet Sort event list by criterion
H Create a specified report Print multiple views

apps, the measurement tool is integrated into the menu of
the Android app. For the PC, the measurement tool is a
stand-alone program that can capture raw user input to any
application. The users provide their subjective opinion of
using PC, VNC, or SmartVNC in executing each task. We
use Google Docs to create an online survey form where they
can give their subjective opinion in an anonymous manner.
We use averages to provide overall performance evaluation,
but we don’t provide confidence intervals since the grouped
tasks contain different tasks that may belong to different
applications or complexity.

6.1 Overall Performance Improvement
The performance results in Figures 9(a) show that our pri-

mary design goal of reducing task effort is achieved across
different task categories. As discussed in Equation 1 in Sec-
tion 3, task effort on VNC contains a component of task ef-
fort on the PC and a component of mobile inflation. SmartVNC
reduces both the components as evidenced by a lower task
effort than both the effort on VNC and the effort on PC. Fig-
ure 9(b) shows the task effort categorized in terms of number
of parameters required for the task. We observe that with
more parameters, the effort reduction ratio is higher since
the users can significantly reduce their effort by using default
values. Figure 9(c) shows a significantly lower time on task
for SmartVNC when compared to those of VNC for all three
task categories. Also, we observe that SmartVNC takes al-
most the same average time as working on a PC. While for
some tasks, SmartVNC takes a slightly lesser time than a

PC because of the task effort reduction with operation ag-
gregation. The time on task in the VNC is significantly
higher since the users not only have to perform all opera-
tions, each of them is inflated due to the input constraints
in the smartphone.

6.2 Performance Improvement by Application
While we show average results in the previous subsection,

Table 3 shows the reduction of time on task when using
SmartVNC when compared to VNC for individual applica-
tions. We observe that the time on task for all applications
by using SmartVNC. The applications have different types
of GUI menus ranging from the traditional menus with a
deeper structure for Quicken to the newest Ribbon interface
for MS Office 2007 products. We observe that irrespective of
the GUI menu type, VNC requires a lot of time for users to
navigate the menu for performing tasks. The time reduction
varies from 14 % for IE to 81 % for MS Outlook.

6.3 Subjective Opinion
After performing all experiments, we asked the users to

provide their subjective opinion on using different platforms
to accomplish tasks. Each user answered the question: “How
would you rate your user experience in performing the task
using certain platform?” using a likert scale value [13] rang-
ing from 1 being the poorest to 5 being the best. Figure
10(a) shows first a significant decrease in the subjective eval-
uation for VNC when compared to PC, and our solution
provides a significant increase back to the PC-level. Every-

0

10

20

30

40

50

60

Easy Medium Hard

A
v

e
ra

g
e

 t
a

sk
 e

ff
o

rt

Task complexity

PC

Mobile VNC

SmartVNC

(a) Task effort by complexity

0

10

20

30

40

50

None Single Multiple

A
v

e
ra

g
e

 t
a

sk
 e

ff
o

rt

Number of parameters

PC

Mobile VNC

SmartVNC

(b) Task effort parameter type

0

20

40

60

80

100

Easy Medium Hard

A
v

e
ra

g
e

 t
im

e
 o

n
 t

a
sk

 (
se

cs
)

Task complexity

PC

Mobile VNC

SmartVNC

(c) Time on task

Figure 9: Overall performance enhancement with SmartVNC

Table 3: Time on task (secs) and reduction percent-
age

Application VNC SmartVNC Reduction
Word 77.22 16.07 79%
Excel 59.10 25.63 57%

PowerPoint 50.53 21.04 58%
Outlook 41.75 8.04 81%
Quicken 105.43 24.81 76%

Internet Explorer 24.66 21.30 14%
Visio 38.96 13.33 66%

Project 41.93 10.19 76%
SharePoint 53.86 31.56 41%

one in the focus group rated SmartVNC greater or at least
equal to VNC for every task performed. In fact, some users
rated SmartVNC higher than a PC because our solution re-
duces the effort of performing operations on the smartphone
to less than even that of performing on a PC. Figure 10(b)
shows the main reasons of users’ frustration on using VNC
from the smartphone, and most of them are related to the
interface constraints and increased task effort.

0%

20%

40%

60%

80%

100%

PC VNC SmartVNC

P
e

rc
e

n
ta

g
e

 o
f

u
se

rs

1

2

3

4

5

(a) Likert scale

0% 20% 40% 60% 80% 100%
Percentage of VNC

Limited view

Cumbersome mouse control

Cumbersome typing

Slow response

(b) Frustration on VNC

Figure 10: Evaluation of subjective opinion

6.4 Overhead Analysis
We now present a CPU and memory usage profiling of

our solution. We collect the CPU and memory statistics
while executing a hard task of MS Word on both the PC
and the smartphone. The statistics for PC are collected
using perfmon, a system monitor utility tool provided by
Microsoft along with Windows. The statistics for the An-
droid smartphone are collected using SystemPanel, one of

the best-rated system monitor apps in the Android Mar-
ket. Figure 11(a) shows the average CPU usage of VNC
and SmartVNC on both the server side and the client side.
The results of SmartVNC on the PC include the unmodified
VNC server running on the PC. The SmartVNC server takes
7.19% atop the unmodified VNC server3. The integrated
client takes less CPU than the unmodified VNC client, and
it can be attributed to the reduced load on the smartphone
side due to less user interaction with the app.

0%

20%

40%

60%

80%

100%

Server Client

C
P

U
 u

sa
g

e
VNC

SmartVNC

(a) CPU usage

0

10

20

30

40

50

Server Client

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

VNC

SmartVNC

(b) Memory usage

Figure 11: Overhead analysis of SmartVNC

Figure 11(b) shows the average memory usage of VNC
and SmartVNC on both the server side and the client side.
The memory usage measurement is based on the unique set
size in Android SystemPanel and the private bytes in Win-
dows perfmon, since both indicate the memory size exclu-
sively allocated to the process. The SmartVNC server takes
about 26MB atop the unmodified VNC, and the overhead
is acceptable since current PCs typically have a large mem-
ory. The SmartVNC client takes only 100KB more memory
than the unmodified VNC client. Since we have designed
the SmartVNC solution to have most of the processing on
the server, the client is very lightweight and efficient.

6.5 Results of Offline Macro Suggestion
Table 4 shows the statistics from running the offline macro

suggestion tool on the user activity dumps of the ten users
we collected for Section 3.2. The table shows the number
of tasks identified for aggregation on a per user basis. The
table also shows the average number of operations for the
tasks identified and the average frequency of repetition of the
tasks. We observe that for most users, the tool is able to
identify more than one hundred repetitive tasks. Further,
we observe that these tasks are typically executed by the

3The CPU usage of the unmodified VNC server is also in-
creased by 3.71% when running with SmartVNC since op-
erations are executed at a faster rate.

user at least once or twice per day. The average length of
the tasks is at least two for most users with User 10 having
an average task length of 17.58.

Table 4: Statistics from offline macro suggestion

User ID Number of Average Average daily
tasks length frequency

1 143 2.34 2.96
2 652 2.77 0.47
3 1125 2.87 1.11
4 471 7.28 2.20
5 156 14.18 3.61
6 59 5.24 1.78
7 100 1.96 1.32
8 53 1.72 0.84
9 493 2.68 1.24
10 282 17.58 5.57

6.6 Trace-Based Evaluation of Task Effort Re-
duction

While we have shown task effort reduction for the specific
pre-defined tasks, we now show the potential task effort re-
duction for realistic user activity. In a realistic scenario, it
may not be feasible to optimize every operation that the
user intends to perform from a smartphone. Thus, we base
our analysis on the traces of user activity we collected from
real users for evaluating the effort reduction achievable by
SmartVNC 4. We use the following equation to estimate the
effort of executing a task with SmartVNC:

TaskEffortSmartVNC = max(TaskEffortPC
× Reduction, 1)

where Reduction is the effort reduction from PC that we
observe in the experiments, and the value of which is 0.61.
Note that the task effort of executing a macro is at least one.
In the user activity history, we only match with operation
sequences that have at least two operations. This fits with
the minimum macro length in the task list and makes the
analysis more realistic. Figure 12(a) shows the effort reduc-
tion achieved with SmartVNC for each of the users. The
reduction ranges from 14.85% to 70.30%, and the average of
37.71% shows that SmartVNC can provide significant effort
reduction in real user activity. Similarly, SmartVNC reduces
task effort in each of the top applications used by the users,
as shown in Figure 12(b).

7. RELATED WORK
In this section we discuss work in literature and commer-

cial products related to our solution.
Remote computing from the smartphone: As dis-

cussed in Section 2, there are several apps available for
smartphones that allow remote computing to a PC using
protocols such as RDP, VNC, or other proprietary proto-
cols. In related literature, MobiDesk [14] proposes a thin

4Note that the trace-based analysis is performed by assum-
ing that the typical user activity on a smartphone will be the
same as that on a PC. In reality, this might not be the case
and the users might actually want to perform only a sub-
set of tasks performed on a PC. SmartVNC will reduce task
effort to much greater extent than our pessimistic estimate.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Users

(a) Effort reduction by user

W
o
rd

E
xc
e
l

P
o
w
e
rP
o
in
t

O
u
tl
o
o
k

IE

E
cl
ip
se

A
cr
o
b
a
t

V
im

V
is
io

W
in
d
o
w
s

0%

20%

40%

60%

80%

100%

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Applications

(b) Effort reduction by appli-
cation

Figure 12: Trace-based evaluation of effort reduc-
tion

client solution for mobile devices by optimizing the WAN
traffic involved in performing remote computing. The solu-
tion is primarily meant for mobile laptops and is similar in
principle to other remote computing approaches. PCoIP [15]
is another product that optimizes remote computing traffic,
especially video over IP networks. All these solutions do
not address the problem of small real estate of the screen on
smartphones.

Macros: As discussed in Section 3, the concept of macros
is not new and is known in the context of application specific
macros or raw macros. In [16], the authors present a raw
macro-based solution for thin client computing. Mugshot
[17], CoScriptor [18], SmartBookmarks [19], and Chicken-
foot [20] are application macro solutions for web applica-
tions. WikiDo [21] and KarDo [22] are crowd sourcing based
solutions for allowing non-technical users to help each other
in setting up IT applications and executing computing tasks.
The solutions record operations of one user on one computer
and replays the recorded operations on another computer.
While the concept of application agnostic macros proposed
in WikiDo and KarDo is similar to our solution with respect
to the accessibility framework used, our solution is specifi-
cally designed for accessing macros from a smartphone, and
it provides features for macro extensibility, exception han-
dling, and a macro suggestion tool. Apple automator [23]
is an application for MAC OS that allows users to define
workflows to access a user recorded set of functions auto-
matically. The user is allowed to chose from a limited set
of functions from each application to be used for the work-
flow. Tasker [24] is a similar automation application for the
Android OS for automating a pre-defined set of operations
on different apps running on the Android phone. ConfAid
[25] is a task automation tool specifically designed for trou-
bleshooting system misconfigurations.

UI customization for the smartphone: While we pre-
sented macros as a way to reduce task effort, there are other
types of solutions possible. In particular, Merlion [26] is a
solution for creating application mashups that allow users to
define a smaller subset of GUI elements to be visible when
using the application remotely from a smartphone. The so-
lution works at a raw pixel level and cannot record the state
of the elements. In [27], the authors propose a more reli-
able GUI mashup solution by performing image recognition
of the GUI elements accessed. Again, the users can man-
ually select a modified simple interface for mobile GUI for
the application they want to access. However, this approach
requires a complex image recognition component to identify
the user intent and does not use the available information
about the GUI elements. PageTailor [28] introduces reusable

customization for mobile users, but the solution is specific
to web pages instead of general applications.

8. CONCLUDING REMARKS
In this paper, we identify the practical issues of using

state-of-the-art remote computing apps for smartphones. We
introduce the notion of smart-macros that aggregate user
actions required for a task. Using smart-macros as the key
building block, we develop a remote computing solution for
smartphones known as SmartVNC. Using our implementa-
tion of SmartVNC as a two ended solution, we show that the
user experience can be brought back up to PC levels both in
terms of objective and subjective metrics in accomplishing
remote tasks from the smartphone. We also show that the
overheads incurred by SmartVNC are minimal. Evaluating
the SmartVNC system based on real usage is part of our fu-
ture goals. We would like to deploy the system for real users
to create smart-macros and access them from smartphones.
In the real-world experiments, we will also study how our so-
lution supports GUI applications written using third-party
UI frameworks such as Qt, GTK+, and wxWidgets.

9. REFERENCES
[1] “Comparison of remote desktop software,” http://en.

wikipedia.org/wiki/Comparison of remote desktop
software.

[2] “Remote Desktop Protocol,” http://msdn.microsoft.
com/en-us/library/aa383015(VS.85).aspx.

[3] RealVNC Ltd, “The RFB Protocol.” [Online].
Available: http://www.realvnc.com/docs/rfbproto.pdf

[4] “android-vnc-viewer,” http://code.google.com/p/
android-vnc-viewer/.

[5] “Microsoft Office,” http://office.microsoft.com/.

[6] “iMacros,” http://www.iopus.com/imacros/.

[7] “AutoHotkey,” http://www.autohotkey.com/.

[8] “HyperSQL,” http://hsqldb.org/.

[9] E. Ukkonen, “On-line construction of suffix trees,”
Algorithmica, vol. 14, no. 3, pp. 249–260, Sep. 1995.

[10] “Mac OS X Accessibility Protocol,” http://developer.
apple.com/library/mac/documentation/Accessibility/
Conceptual/AccessibilityMacOSX/OSXAXModel/
OSXAXmodel.html.

[11] “KDE Accessibility Project,” http://accessibility.kde.
org/.

[12] P. Holleis, F. Otto, H. Hussmann, and A. Schmidt,
“Keystroke-level model for advanced mobile phone
interaction,” in CHI, 2007.

[13] R. Likert, “A technique for the measurement of
attitudes.”Archives of Psychology, vol. 22, no. 140,
pp. 1–55, 1932.

[14] R. A. Baratto, S. Potter, G. Su, and J. Nieh,
“MobiDesk : Mobile Virtual Desktop Computing
Categories and Subject Descriptors,” in MobiCom,
2004.

[15] “PC-over-IP,” http://www.teradici.com/.

[16] T.-Y. Chang, A. Velayutham, and R. Sivakumar,
“Mimic: raw activity shipping for file synchronization
in mobile file systems,” in MobiSys, 2004.

[17] J. Mickens, J. Elson, and J. Howell, “Mugshot :
Deterministic Capture and Replay for JavaScript
Applications,” in NSDI, 2010.

[18] G. Leshed, E. M. Haber, T. Matthews, T. Lau,
C. Ave, H. Rd, and S. Jose, “CoScripter : Automating
& Sharing How-To Knowledge in the Enterprise,” in
CHI, 2008.

[19] D. Hupp and R. C. Miller, “Smart Bookmarks :
Automatic Retroactive Macro Recording on the Web,”
in UIST, 2007.

[20] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller, “Automation and customization of rendered
web pages,” in UIST, 2005.

[21] N. Kushman, M. Brodsky, S. R. K. B. Dina,
K. Regina, and M. Rinard, “WikiDo,” in HotNets,
2009.

[22] N. Kushman and D. Katabi, “Enabling
configuration-independent automation by non-expert
users,” in OSDI, 2010.

[23] “Automator in Mac OS X,” http://developer.apple.
com/macosx/automator.html.

[24] “Tasker for Android,” http://tasker.dinglisch.net/.

[25] M. Attariyan and J. Flinn, “Automating configuration
troubleshooting with dynamic information flow
analysis,” in OSDI, 2010.

[26] I. Mohomed, “Enabling mobile application mashups
with Merlion,” in HotMobile, 2010.

[27] F. Lamberti and A. Sanna, “Extensible GUIs for
remote application control on mobile devices.” IEEE
computer graphics and applications, vol. 28, no. 4, pp.
50–7, 2008.

[28] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. D. Lara, “PageTailor : Reusable End-User
Customization for the Mobile Web,” in MobiSys, 2007.

http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software
http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software
http://en.wikipedia.org/wiki/Comparison_of_remote_desktop_software
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa383015(VS.85).aspx
http://www.realvnc.com/docs/rfbproto.pdf
http://code.google.com/p/android-vnc-viewer/
http://code.google.com/p/android-vnc-viewer/
http://office.microsoft.com/
http://www.iopus.com/imacros/
http://www.autohotkey.com/
http://hsqldb.org/
http://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://developer.apple.com/library/mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://accessibility.kde.org/
http://accessibility.kde.org/
http://www.teradici.com/
http://developer.apple.com/macosx/automator.html
http://developer.apple.com/macosx/automator.html

	Introduction
	Background
	Motivation
	Inflated Effort in Remote Computing from Smartphones
	Measurement of Redundancy in User Activity
	Macros and Limitations

	Design Principles
	Overview
	Application-Agnostic Smart-Macros
	Task Effort Reducing Front-end
	Parameterization and Preemptability
	Offline Macro Recommender

	Solution
	SmartVNC Server on Desktop
	SmartVNC Client on Smartphone
	Future Implementation Considerations

	Performance Evaluation
	Overall Performance Improvement
	Performance Improvement by Application
	Subjective Opinion
	Overhead Analysis
	Results of Offline Macro Suggestion
	Trace-Based Evaluation of Task Effort Reduction

	Related Work
	Concluding Remarks
	References

