
Adaptive Flow Control for TCP
on Mobile Phones

Shruti Sanadhya
Raghupathy Sivakumar

Georgia Institute of Technology

1

Introduction

• TCP employs flow control to prevent the sender
from overwhelming the receiver

• Traditionally, flow control is not perceived to be a
dominant function in transport layer operations

• Flow control assumes greater significance on
resource constrained devices such as mobile
phones

Focus of this work is to revisit the design of TCP flow
control for mobile phones

2

• Simple: Receiver advertises available buffer space
(receive window) to sender

• Conservative: Sender never sends more than the
advertised window

• Zero windows occur when receiver has no available
buffer

• Sender cannot send data until it receives an
explicit open window from the receiver

TCP Flow Control

3

Next byte to be read
by the application

Max in-sequence
byte delivered

Receiver buffer

Advertised buffer

• FTP connection, on laptop and mobile phone, in
the absence/presence of background workload

Flow Control on Mobile Phones

4

Dell Inspiron – Ubuntu 9.10 OS HTC G1 – Google Android OS

Zero windows: None Zero windows: 21

Impact of flow control is greater on resource constrained mobile phones

• NS2 simulation of TCP on mobile with fluctuating
application rate

– Sender-receiver on 15Mbps(NW) link

– Application periodically reads at <0,6,6> Mbps
Average AR(AAR): 4Mbps

– Round trip time: 530ms

– Expected throughput = 4Mbps

– Observed throughput = 1.45Mbps
(63% degradation!)

Flow Control on Mobile Phones

TCP flow control does not track the application read rate effectively

5

• Fluctuating application read rate:

– NS2 simulation
– RTT = 1s

– Network rate(NW) = 4Mbps

– Receive buffer = 512KB

– Application profile = <2,6> Mbps

– Avg. application rate (AAR) = 4 Mbps

– Expected throughput: 4Mbps

– Observed throughput: 3Mbps

Limitation 1: Buffer Dependency

6

Connection rate is capped at Buffer/RTT even when the application
reads at a higher rate

Limitation 2: Zero Windows

7

• Zero window events

– NS2 simulation
– Network (NW)= 15Mbps

– RTT = 530ms

– Application: <0,6,6>Mbps

– Receive buffer = 256KB

– Expected throughput: 4Mbps

– Observed throughput: 1.45Mbps
– 328 zero windows

– 656 idle RTTs of 1132 RTTs

Application
is reading

1
 R

T
T

1
 R

T
T

Application
not reading

1
 R

T
T

1
 R

T
T

At every zero window, sender waits for up to 2 RTTs before it can send
any substantial amount of new data

Sender Receiver

• Buffer auto tuning with fluctuating network rate

– NS2 simulation
– RTT = 530ms

– Application profile = <0,6,6> Mbps (AAR = 4 Mbps)

– Network profile = <2,4,4>Mbps, (Avg NW=3.3Mbps)

– Receive buffer = min(perceived NW,AAR)*RTT (auto-tuning)
= min(2, 4) Mbps*RTT = 128KB

– Expected throughput: 3.3 Mbps

– Observed throughput: 0.67 Mbps

Limitation 3: Buffer Auto Tuning

8

Lower throughput rates observed when application read rate is low also
hinder the growth of auto-tuning buffers

• TCP flow control is a closed loop system

• The equation for the advertised window is:
– W = min (B0 , ∫W' dt) (1)

• The target value of TCP is AR, thus
– error = AR – TCP = W’ (2)

• If network is not the bottleneck, classical flow control has:
– TCP = ⍺ W, where ⍺ = 1/RTT …. (3)

• Using (1) in (3) and considering the time dependent part:
– TCP = ⍺ ∫W’ dt …. (4)

Theoretical Model of TCP

TCP : Connection rate
B0 : Receive buffer size
B : Filled buffer
W : Advertised window

(B0 –B)
AR : Application rate
RTT : Round Trip Time

TCP is an integral controller
9

error

Theoretical Analysis of TCP Model

10

Θ/ω

• Assuming AR = A0 (1 + sin ωt)
– error = A0 sin θ(cos(ωt − θ)), where θ = tan-1(ω/⍺) (5)

For fluctuating applications:
- the error in TCP is non-decaying
- the amplitude of oscillation of error

increases with the peak application
read rate

• Using (5) to derive TCP,
– TCP = min (⍺B0, A0[1 + cos θ sin(ωt − θ)]) …. (6)

Thus, with current flow control, TCP :
- cannot converge to the application read rate
- is limited by B0 /RTT, if B0 is not large enough

#1 Adapt to application rate:

– Add a corrective term AR in “ TCP = ⍺ W ”
• TCP = ⍺ W + AR

• error = - ⍺B0e - ⍺ t , which decays over time

• TCP = ⍺B0e - ⍺ t + AR , converges to AR over time

– Flow window = Advertised window + AR*RTT
• Advertised Window: Classical flow control window

• AR: Exponential weighted moving average of rate at which the
buffer is drained

• RTT: Round trip time

Adaptive Flow Control

11

#2 Handle buffer overflows
– Hide buffer losses from congestion

control

– Ignore congestion indicators after
zero window till fresh data is
acknowledged

#3 Proactive feedback
– Receiver sends feedback to the

sender whenever application rate
changes drastically

#4 Burst control
– Delay packet transmission to avoid

bursty traffic

Adaptive Flow Control

12

Sender Receiver

1
2
3
4 X

App not
reading

App is
reading

Ignore
Dup ACKs
and
timeout

2

• Evaluation methodology

– NS2 with classic TCP flow control considered as
default

– AFC is Adaptive flow control implementation in
NS2

– SACK is enabled in all cases

Performance Evaluation

13

• Throughput analysis
• Topology: Sender and receiver on a direct link

• Link bandwidth (2-15Mbps) and delay (200-300ms)

• Receive buffer = min(Avg AR, Avg NW)*RTT

• Application fluctuates in all scenarios

Performance Evaluation (Contd.)

#1: AAR < NW
#2: AAR > NW
#3: Network fluctuate,

AAR < Avg NW
#4: Network fluctuate,

AAR > Avg NW
#5: Network fluctuates,

Max NW > 3* Min NW,
AAR > Avg NW

14

90%

130 % 100% 120%

50%

• TCP under-performs in flow control constrained
connections, e.g. those on mobile phones

• Presented theoretical analysis of TCP flow
control

• AFC shows considerable improvement in
throughput across multiple scenarios

• Future work

– Avoid unnecessary re-transmissions

– Interplay of congestion control and flow control

Conclusion and Future Work

15

Thank you!

Send questions and comments to
shruti.sanadhya@cc.gatech.edu

16

