
Adaptive Flow Control for TCP on Mobile Phones
Shruti Sanadhya

shruti.sanadhya@cc.gatech.edu
Georgia Institute of Technology

Raghupathy Sivakumar
siva@ece.gatech.edu

Georgia Institute of Technology

Abstract—The focus of this work is to study the efficacy of
TCP’s flow control algorithm on mobile phones. Specifically, we
identify the design limitations of the algorithm when operating in
environments, such as mobile phones, where flow control assumes
greater importance because of device resource limitations. We
then propose anadaptive flow control(AFC) algorithm for TCP
that relies not just on the available buffer space but also on
the application read-rate at the receiver. We show, usingNS2

simulations, that AFC can provide considerable performance
benefits over classical TCP flow control.

I. I NTRODUCTION

The flow control mechanism in classical TCP is simple and
conservative. It operates based on buffer occupancy, and does
not track application read rate directly. For most conventional
network scenarios - both wireline and wireless - this is not
a serious concern as the application read-rate is rarely the
dominant bottleneck. The limitations of a simplistic flow
control strategy do not adversely impact a TCP connection’s
performance if flow control does not kick in very often.
However, with the growing use ofmobile phoneplatforms for
data application access, it is worthwhile studying TCP flow
control in more depth. The constrained processing resources
on such platforms make it more probable that flow control
assumes a more significant role in the throughput enjoyed by
a connection.

Thus, the focus of this work is to study TCP’s flow control
algorithm, identify its limitations for mobile phones1, and
propose a new flow control algorithm for such platforms.
We observe, through experimentation, that the throughput
performance of a flow control bottlenecked TCP connection
can be as low as 20% of the expected throughput. We identify
a variety of reasons for the performance degradation that are
directly attributable to the flow control algorithm employed
in classical TCP. To better ground our observations we also
perform a control theoretic analysis of the TCP flow control
algorithm and show that it reduces to anintegral controller,
which in turn has a non decaying oscillation function with
an amplitude that is proportional to both thepeak application
read-rateand thefluctuation frequencyof the read-rate.

We therein motivate a more sophisticated flow control
algorithm that not only relies on the available buffer space,
but also explicitly accounts for the application read-ratein
its decisions. We propose such an algorithm calledadaptive

This work was supported in part by the National Science Foundation under
grants CNS-1017234 and CCF-1017984.

1While a majority of our observations and proposed solutions would aid
other environments that are flow control dominated as well, we restrict the
focus of this paper to only mobile phones.

flow control (AFC) for TCP. Besides explicitly tracking the
application read-rate, AFC also has a set of key design
elements that are targeted toward optimizing performance for
connections operating in a flow control dominated regime.
We propose AFC as a TCP option so that AFC-enabled
network stacks are still backward compatible to communicate
with non AFC-enabled stacks. We evaluate AFC usingNS2
based simulations, and show that AFC delivers considerable
performance improvements over classical TCP in flow control
dominated regimes, exhibits TCP friendliness, and is robust to
a wide variety of network and application characteristics.

II. BACKGROUND AND MOTIVATION

A. TCP Flow Control Basics

The basic flow control strategy employed in TCP is for the
receiver toadvertiseto the sender, using therwnd field in
the TCP ACK, the available space in the buffer in relation
to the highest in-sequence sequence number received [1].
The sender will transmit new segments only if the highest
unacknowledged sequence number it has transmitted is smaller
than the sum of the lowest unacknowledged sequence number
and themin(rwnd, cwnd), where cwnd is the congestion
window maintained by the sender. If the rate at which data
is consumed by the receiving application is lower than the
network rate, the receive buffer occupancy will increase and
this in turn will result in lowerrwnd values advertised by the
receiver. An extreme scenario is when the receive buffer is
full and the receiver advertises anrwnd of zero. Upon receipt
of a such a zero window advertisement, the sender freezes its
transmission completely and awaits anexplicit open window
advertisementfrom the receiver. Eventually, when oneMSS
worth of space opens up in the receive buffer, the receiver
sends an open window by advertising a non-zerorwnd value.

B. Problems with TCP Flow Control on Mobile Phones

1) Flow control bottlenecks occur more often: Mobile
phones, in spite of the advances made in their hardware capa-
bilities, continue to be resource limited compared to traditional
PCs and laptops. Such limitations span over the processing
capabilities, the sizes of the different tiers of storage, and other
dimensions of computing. There are a wide variety of reasons
for such limitations ranging from the requirement for low
power operations, form factor constrains and cost. Figures1(a)
and 1(b) present comparative CPU allocation results for an
FTP application running on a laptop (Dell Inspiron 1525 with
the Ubuntu 9.10 OS) and a mobile phone (Google G1 with the
Android OS) respectively. In both cases, a large file (∼2GB)

is downloaded from an Internet server down to the client. As
the download progresses, three competing workloads; email,
web browsing and progressive video download - are introduced
at different times. The impact on the CPU allocation for the
FTP process is measured using thetop utility. We observe
that on the laptop the FTP client is relatively unaffected
by the background processes and remains at around 50%
allocation. However, for the FTP client on the mobile phone,
the CPU occupancy fluctuates between 60% and∼0% during
the download.

Investigating the FTP connection further, we observeno
zero window advertisements from the laptop, whereas there are
21 zero window advertisements from the mobile phone. This
clearly shows the increase in the impact of flow control on the
mobile phone, and we study the performance consequence of
this impact next.

2) TCP flow control is inefficient: Even when application
read-rate fluctuations occur, an ideal flow control algorithm
should still deliver throughput equal to the minimum of the
average network rate and the average application read-rate-
min(avg. network rateNW , avg. application read-rateAAR).
To evaluate TCP’s flow control algorithm under fluctuating
application read-rate conditions we conduct simulations in
NS2 with the following setup: sender and receiver connected
over a direct link; RTT of 530ms; network rate of 15 Mbps;
average application read rate of 4 Mbps, with a fluctuation
profile of <0, 6, 6> (period of 1 RTT); and receive buffer size
equal to the perceived BDP (min(NW, AAR)*RTT = 256KB).
While we pick these values as an example (e.g. TCP long-haul
connection over a wi-fi last leg), we generalize the values for
the parameters in the setup to a broader set both later in this
section and in Section V.

The expected throughput for the above setup is equal to
4Mbps (min(15Mbps, 4Mbps)) even after taking into account
the fluctuations.However, the aggregate throughput observed
(see Figure 1(c)) in the simulations is only 1.45Mbps, a
degradation of 63%.Note that given the high network rate
assumed, there are no congestion bottlenecks influencing the
performance, and hence this degradation is directly due to the
flow control behavior of TCP. We attribute this degradation to
TCP flow control’s stop and go behavior that does not allow
the connection to track the application read rate effectively.
We delve into specific design issues next.

C. Design Insights into TCP Flow Control Limitations

We use three different scenarios where TCP flow control
leads to under-performance and therein highlight some of
the design issues. NS2 simulations are used to determine
TCP throughput for the different scenarios2. In the different
scenarios, the round trip time for each connection is 530ms.
The read rate of the receiving application fluctuates in a pattern

2Basic flow control features such as finite-size receive buffer, dynamic
advertised window and zero window management were added to theNS2
TCP implementation as NS2 does not support these currently. A configurable
application read rate parameter was also added to simulate different applica-
tion patterns.

of <AR1,AR2> or <0,AR,AR> with a time period of 1 RTT.
If the pattern is<AR1,AR2>, the application reads at AR1
for one RTT, then at AR2 for another RTT and back to AR1.
If its <0,AR,AR>, it does not read any data for one RTT, then
reads at the rate ofAR for two RTTs and again goes back to
not reading, and so on. The scenarios we consider are:

1) Fluctuating application rate: The variations in applica-
tion read rate affect the advertised window of a TCP connec-
tion. As the window does not converge to a steady value, the
throughput of the receiving application also fluctuates, worse
than expected. Let’s consider the setup: (a) RTT = 1s; (b)
Application profile:<2, 6> Mbps with the fluctuation interval
= 1 RTT; (c) Average Application Rate(AAR) = 4 Mbps;
NW = 4 Mbps, i.e. NW= AAR; (d) B is set as min(NW,
AAR)*RTT=500KB=4Mb (the ideal BDP).

The expected application throughput is min(NW,AAR)=4
Mbps, but the throughput observed in the experiment is only
2.9 Mbps, a25% degradation from the expected value. The
performance degradation occurs because of TCP’s flow control
behavior. In steady state the sender tries to send at 4Mbps. If
the application is reading at 2Mbps, every half RTT 1Mb of
data would be read by the application and 1Mb stored in the
buffer. At the end of the first half RTT, the advertised window
is 3Mb. At the end of 1RTT, the application would have read
another 1Mb and stored 1Mb in the buffer, the advertised
window reduces to 2Mb. In the next half RTT, the application
reads at the rate of 6Mbps, it reads the 2Mb stored data in
the buffer and also the 1Mb received from the sender, which
is (3Mb(advertised window an RTT back)-2Mb(outstanding
data)). The latest advertised window is now 4Mb. In the next
half RTT, the receiver receives another 1Mb, which is 2Mb(the
advertised window an RTT back)-1Mb(traffic outstanding in
the last RTT). The receiving application reads the entire
received 1Mb and advertises a window of 4Mb. The same
sequence repeats from there on.

Thus, if the buffer is sized at the prescribed value of the
BDP (4Mb), the connection rate is throttled down to 2Mbps
when the application read rate is 2Mbps (flow control due
to application read rate limitation), but is capped at 4Mbps
(flow control due to buffer size) even when the application
read rate grows to 6Mbps. The application thus reads 2Mb in
the first RTT and 4Mb in the second RTT, and the observed
throughput at the application is thus (2+4)/2 Mbps = 3Mbps,
while the ideal expected value is 4Mbps.

2) Zero windows: Extreme fluctuations in application read
rate result in zero window advertisements. In TCP’s flow
control, every zero window advertisement carries with it a
deterministic throughput penalty due to the time taken for the
window to be re-opened to pre-zero window levels. At any
zero window occurrence the sender waits for up totwo round
trip times(RTTs) before it can send anysubstantial amount
of new dataeven if the application starts reading immediately
after the zero window was advertised; an RTT to wait before
sending a zero window probe and another RTT to get a window
larger than one to send more data. Hence, a higher frequency

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

C
P

U
 o

cc
up

an
cy

 o
f F

T
P

 c
lie

nt
(%

)

Time(sec)

Throughput degradation: 0%
Zero windows: 0

E-mail Internet YouTube

(a) FTP on laptop

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

C
P

U
 o

cc
up

an
cy

 o
f F

T
P

 c
lie

nt
(%

)

Time(sec)

Throughput degradation: 30%
Zero windows: 21

E-mail Internet YouTube

(b) FTP on Android

 0

 1

 2

 3

 4

 5

A
gg

re
ga

te
 th

ro
ug

hp
ut

(M
bp

s)

Expected Observed

(c) Impact of application read rate fluctuations on
TCP throughput

Fig. 1. Analysis of TCP Flow Control on Mobile Phones

of zero windows results in a larger number of such under-
utilizing periods. We use the following parameters for the
evaluation of this scenario: (a) RTT = 530ms; (b) Application
profile of <0, 6, 6> (AAR = 4Mbps); (c) NW = 15Mbps;
and (d) B is set to 256 KB (perceived BDP).

The expected application throughput is min(NW,AAR)=4
Mbps, but the throughput observed in NS2 is 1.45 Mbps (a
64% degradation), as shown in Figure 1(c). While some of the
performance degradation is attributed to the reasons outlined
earlier, the higher severity of the degradation is due to thezero
window occurrences. When the application stops reading, the
receive-buffer fills up, resulting in zero windows being sent
and the sender being stalled. As soon as the application starts
reading, an open window is sent to the sender and the sender
sends one segment. The ACK for this packet, which arrives an
RTT later, then allows the sender to send more packets. The
receiver thus ends up reading AAR*RTT bytes in 3 RTTs,
whenever this happens. In this particular example, 328 zero
windows are observed in a connection of 600s, thus 656 out
of 1132 RTTs are spent idle. There are no congestion losses.

Thus, whenever the zero window occurrences in the
lifetime of a TCP connection increases, the performance
degradation (difference between the expected throughput and
the observed throughput) increases.

3) Fluctuating network rate: Apart from the application
read rate, the network rate can also fluctuate. This introduces
new complications. Ideally the TCP throughput can grow
with increase in bandwidth, but the limited buffer or zero
window events may prevent the sender from using higher
congestion windows. The receiver may never learn of this
available bandwidth and be unable to resize its buffer based
on techniques like dynamic right sizing[2], auto-tuning[3],
etc. We use the following parameters for this scenario: (a)
RTT = 530ms; (b) Application profile:<0, 6, 6> Mbps with
the fluctuation interval = 1 RTT, AAR=4 Mbps; (c) Network
profile: <2, 4, 4> Mbps with the fluctuation interval = 1
RTT; and (d) buffer B set to 128KB/213KB (perceived/ideal
Bandwidth Delay Product).

In this scenario, the application is expected to enjoy a
throughput ofmin(average network rate, average application
rate), i.e., min(3.3Mbps, 4Mbps). However, to achieve that

performance, the receiver needs to make sure that the receive
buffer is tuned to the network. Current buffer resizing solutions
[2], [3], [4] depend on data rate observed at the receiver to
calculate the optimal advertised window and buffer size. In
this scenario, zero windows occur while the application is not
reading, the sender stalls and while the sender is stalled, the
fact that the network rate has increased does not influence the
buffer calculation at the receiver. Thus the apparent network
rateNp ∼ 2Mbps is much lesser than the actual network rate
Na = (2+4+4)/3 = 3.3Mbps. The observed throughput with
a buffer size of 2Mbps*530ms=128KB, is 0.67Mbps, which is
20% of the ideal throughput. Even when the buffer is scaled
up to 213KB, i.e. 3.3Mbps*530ms, the observed throughput
is still only 1.45Mbps.

Thus, when both the network rate and the application rate
fluctuate, the lower throughput rates experienced when the
application read rate is low can also impact the achievable
network throughput even when the application read rate even-
tually increases.

D. Study of a Trivial Buffer-based Solution

We now briefly argue for why a buffer provisioning based
solution is not desirable to tackle the problems discussed
thus far. While we consider a set of different scenarios we
present only the worst-case scenario below. Interested readers
are referred to [5] for the other scenarios.

Consider a scenario where both the network rate and appli-
cation read-rate fluctuate. It is possible in this scenario that the
connection does not leverage the crests or highs of the network
ratebecause it is idle due to recovery from zero-windows when
the network rate is high. For example, consider theScenario
where the application rate fluctuates as(0, 18, 18) (period of
oneRTT), and the network rate fluctuates as(3, 15, 15) (same
period). In this scenario, a zero window will be triggered in
the first RTT, and the connection will end up idling for the
subsequent two round-trip times and hence will not realize
that a rate as high as 15Mbps was possible during that period.
In our simulation study of the above scenario, we observe a
throughput of 3Mbps in contrast to the expected throughput
of 11Mbps.

This problem can be averted only if the connection is pre-
vented from idling for all round-trip times. While provisioning

the buffer based on the average achievable network rate would
suffice, note that the connection has no way of determining
the achievable network rate as it will never encounter the
high rate periods. Instead, the only deterministic approach
to averting the problem is to provision the buffer based
on the average application rate. Independent of whether the
average application rate is higher or lower than the average
network rate, this will suffice. Thus, in order to overcome the
idle periods when recovering from zero-windows, the buffer
required when both application read-rate and network rate
fluctuate is as follows:

Breq = 3 ∗ AAR ∗ RTT (1)

The problem with this strategy, though, is that theAAR for
a mobile platform can be arbitrarily high when compared to
the possible network rates. For example, on the Android G1
phone, we were able to observe application read-rates as high
as 100Mbps (under low CPU load conditions). Hence, the
buffer allocation required could be orders of magnitude higher
than what the connection throughput will necessitate (e.g.a
2Mbps network rate scenario will ideally need only 125KB
of buffer allocation, whereas the provisioning based strategy
will necessitate 18.75MB of buffer allocation). Also note that
this allocation is on a per connection basis. While requiring
orders of magnitude more memory allocation is bad in itself,
the demands become onerous when considering the memory
limitations of typical mobile phones. Furthermore, even ifsuch
allocation can be achieved on the mobile phones, the server
(sender) side buffer will have to be of similar proportions
in order to support this strategy. Considering a typical web
server serving tens and thousands of connections, such onerous
buffer allocation quickly becomes untenable. Even assuming
that memory is not an issue, theAAR still has to be accurately
tracked at the receiver in order to achieve the provisioning.
Hence, the question we ask ourselves in the rest of the paper
is that if the application read-rate is already being monitored,
could a better solution be derived to achieve the expected
performance?

III. T HEORETICAL ANALYSIS

A. Control theoretic analysis of TCP flow control

TCP is a closed loop system. The sender sends data to the
receiver, then waits for feedback from the receiver to determine
how much data to send next. We model this control system
in the following analysis. For purposes of this analysis we
assume that the connection is purely flow control restricted,
and the connection rate isTCP , W is the advertised window,
AR is the rate at which the data is read at the receiver,B0 is
the receive buffer size andB is the buffer occupancy at any
given time. From this we can representW as follows:

W =B0 − B (2)

The buffer is filled in at the rate ofTCP and drained by the
application atAR. Thus,

dB/dt = TCP − AR (3)

Differentiating (2) and using (3), we get

W ′ = dW/dt = AR − TCP (4)

Note that0 ≤ B ≤ B0 and0 ≤ W ≤ B0. Thus,

W = min(B0,

∫

W ′dt) (5)

If we considerTCP as a system variable, the target value of
TCP is AR and the errorerr in this variable is the deviation
in throughput:(AR − TCP), which is the rate at whichW
grows:

W ′ =(AR − TCP) = err (6)

As network is not the bottleneck,TCP is proportional to
the receive windowW . Assuming that round trip timeRTT
remains constant for a connection.

TCP =α W , whereα = 1/RTT (7)

using (5),TCP =α min(B0,

∫

W ′ dt) (8)

using (6),TCP =α min(B0,

∫

err dt) (9)

For now, let’s assumeB0 to be unbounded.Then TCP is
entirely dependent on the integral of the deviation fromAR. In
control theory, such systems are termedIntegral(I) systems
[6]. In the following analysis, we look at some characteristics
of this system and its implication on TCP’s performance.
Eliminating TCP from the equations (6) and (7):

W ′ = AR − αW (10)

on reorganizing,W ′ + αW = AR (11)

This is a linear first-order differential equation, whereW
and AR are functions of time. Solving it by the method of
integrating factor, we have:

Integrating factor: eαt

multiplying (11) with integrating factor

eαtW ′ + αeαtW = eαtAR (12)

on simplifying,
d

dt
(eαtW) = eαtAR (13)

on integrating,
∫ t

t=0

d

dt
(eαtW) =

∫ t

t=0

(eαtAR)dt (14)

Now let us assume that the application fluctuates from 0 to
2 A0 as a sinusoid function of time with a time-period ofT .3

AR = A0(1 + sinωt), whereω = 2π/T (15)

using (15) in (14) and simplifying ,

eαtW − B0 = A0

∫ t

t=0

eαtdt + A0

∫ t

t=0

eαt sin ωtdt

(16)

on solving,W = e−αt

[

B0 −
A0

α
+

A0 sin θ
√

α2 + ω2

]

+
A0

α
+

3Note that any other periodic application profile can be represented as a
sum of sine/cosine functions[7].

A0

sin(ωt − θ)
√

α2 + ω2
,whereθ = tan−1

(ω

α

)

(17)

The errorerr in TCP can thus be computed from (6) as:

err = W ′ (18)

differentiating (17) and using in (18)

err = −αe−αt

[

B0 −
A0

α
+

A0 sin θ
√

α2 + ω2

]

+

A0ω√
α2 + ω2

cos(ωt − θ) (19)

In steady state:e−αt → 0, thus (19) becomes

err =
A0ω√

α2 + ω2
(cos(ωt − θ)) (20)

further, err = A0 sin θ(cos(ωt − θ)) (21)

Thus,for fluctuating applications, the difference between TCP
rate and application read rate exhibits non-decaying oscilla-
tions. The amplitude of these oscillations increases with the
peak application read rate and cycles with the fluctuation time-
period.

From (7) and (17),TCP is:

TCP = αe−αt

[

B0 −
A0

α
+

A0 sin θ
√

α2 + ω2

]

+A0

[

1 +
α sin(ωt − θ)
√

α2 + ω2

]

(22)

which in steady state becomes:

TCP = A0

[

1 +
α

√
α2 + ω2

sin(ωt − θ)

]

(23)

This has a marked deviation fromAR, both in frequency
pattern and in the amplitude. As the frequency of oscillations
increases, the phase difference inTCP andAR also increases.
This lag translates into increased settling time, i.e., time
taken to converge toAR, for TCP . Equation (23) presents
a control system model for TCP’s flow control. In practice,
the receive bufferB0 imposes an upper bound on TCP data
rate. Following from (9), the actual TCP data rate is given by:

TCP =min

(

αB0, A0

[

1 +
α

√
α2 + ω2

sin(ωt − θ)

])

(24)

Depending on the relation between the two terms in (24), TCP
throughput can saturate at the rate ofαB0, i.e., B0/RTT or
grow as much as the application demands. Saturations cause
TCP to under-perform. Thus, we conclude that TCP through-
put is dependent on the receive buffer size, the application
fluctuation frequency and the amplitude of fluctuations in the
application read rate.

B. Basis for an Adaptive Flow Control Algorithm

We observe in the previous section that:
1) Current TCP flow control is anIntegral(I) − only

control system.As is well known in control theory,
Integral systems are used as corrective components in

Proportional(P) control systems. AnI − only system
can increase settling time(θ in equation (23)), making it
respond slower to disturbances/fluctuations.

2) If B0 is not large enough to accommodate the appli-
cation read rate and its fluctuations, TCP send rate is
capped byB0/RTT (as shown in equation(24)).

A corrective term needs to be added in equation (7) to
compensate for the impact of integral action and bound of
B0. We propose that this term beAR, i.e. the application
read rate. Equation (7) thus takes the form of:

TCP =αW + AR (25)

working out equation (6)

W ′ =AR − TCP (26)

using (25),W ′ =AR − αW − AR (27)

i.e., W ′ = − αW (28)

on solving,W =B0e
−αt (29)

differentiating (29) and using in (18),

err = − αB0e
−αt (30)

Note that (30) presents a decaying error in TCP send rate.
From equations (25) and (29),TCP takes the form:

TCP =αB0e
−αt + AR (31)

which converges toAR at steady state, shows no lag and is
not bound by theB0/RTT limit. Thus, if TCP starts reacting
to the application rate, it would be able to scale up to its
target value, even in the face of fluctuations. In the next
section, we discuss how to translate this theory into a practical
implementation.

IV. D ESIGN ELEMENTS AND ALGORITHM

In this section we present anadaptive flow control (AFC)
algorithm for TCP that will help achieve expected throughput
performance even in a flow control dominated regime. A key
goal of the proposed solution is to deliver such performance
without requiring a large buffer allocation. We first present an
overview of the key design elements in AFC, and then describe
the algorithm. Interested readers may refer to [5] for detailed
pseudocode.

A. Key Design Elements

1) Using Application Read Rate:The first design element
in AFC follows directly from the theoretical analysis presented
in Section III. While classical TCP flow control uses the
advertised buffer space from the receiver as the flow control
window, AFC relies on both the advertised available buffer
space in the receive bufferand the application read-ratein
determining the flow control window:

Wfc = B + AR ∗ RTT (32)

Just like the advertised buffer space, the application readrate
AR is also fed back to the sender from the receiver. We defer
details on how the application read rate is monitored and
tracked till later in the section. Once the flow control window

Wfc is determined, AFC uses the window in exactly the
same fashion as in classical TCP. In other words, the number
of outstanding packets is controlled to be the minimum of
the congestion control window and the flow control window.
The use of the application read rate in determining the
flow control window thus allows AFC to better react to
application read rate changes instead of relying only on buffer
over-provisioning.

2) Handling Overflows: Classical TCP flow control is
conservativeto an extent where the flow control algorithm
will never result in buffer overflows at the receiver. The TCP
sender will at no point send more data than what the receiver
buffer can accommodate. Hence, all losses experienced by the
connection are directly attributable to congestion.

However, in AFC the flow control window is computed
to be a sum of two factors: the available buffer space and
the application read rate per RTT. If the application read
rate is over estimated or suddenly decreases, overflows at
the receive buffer will occur. Such losses however should
not be attributed to congestion as the flow control algorithm
causes them. Thus, AFC is specifically designed to keep such
flow control induced losses from impacting the congestion
control algorithm. In classical TCP, when a zero window is
received by the sender with an ACK sequence number ofSzw,
the sender explicitly freezes all congestion control decisions
and ignores loss indicators (both triple duplicate ACKs and
timeouts) for any sequence numbers greater thanSzw till an
explicit open window is received from the receiver. In AFC,
duplicate ACKs or timeouts may still be triggered by packet
drops at the receiver for packets with sequence numberSoe,
whereSoe > Szw + Receive buffer. These duplicate ACKs
can arrive even after the open window event. AFC hides this
by recording the timets recover of the arrival of the open
window and further suppressing all congestion indicators till
an ACK is received for data sent afterts recover. Further-
more, in order to fast track the successful transmission of such
overflow data, the next sequence number to transmit(snd nxt)
at the sender side is reset toSzw

4 upon the receipt of an open
window. Such fast-tracking of the transmissions beyondSzw

prevents those packets from being handled by the (slower)
retransmission mechanism in TCP.

The combination of the ignoring of losses after a zero win-
dow and the resetting of thesnd nxt averts both congestion
control and reliability problems due to the overflow.

3) Proactive feedback:The receiver in classical TCP sends
an ACK only on the receipt of a segment. Thus, any feedback
from the receiver to the sender is dependent on the arrival
of new data. When recovering from a zero window state,
this property is clearly undesirable. Even if the application
read rate climbs rapidly, the receiver will send the first open
window to the sender as soon as one MSS worth of space
opens up in the buffer. Thus, for an entire round-trip time after

4Note that the TCP ACK sequence number reflects the next expected
sequence number.

that open window transmission, the receiver cannot send any
further feedback to the sender even if the buffer is completely
drained. Consequently, the sender will send only one segment
for that round-trip time, and wait for the next ACK to arrive
before it will expand its flow control window fully. In AFC,
this limitation is averted by requiring the receiver to send
feedback not just upon receipt of data butalso when there
is a drastic change in the buffer state and application read-
rate. Thus, when recovering from a zero window state, the
receiver will send not merely the first open window when one
MSS worth of buffer is available, but also follow it up with
more reports about theAR andB if the application drains the
buffer quickly. This allows the sender to take more accurate
flow control decisions.

Note that such a design element can also be modulated by
a mechanism similar to the delayed ACK timer. Essentially,
whenever aproactiveACK has to be sent by the receiver, the
ACK is delayed for a constant amount of time. If areactive
ACK (an ACK in response to data arrival) is triggered within
the aforementioned constant amount of time, the proactive
ACK can be discarded. This allows for curtailing the number
of such proactive ACKs sent when there are reactive ACKs
sent naturally.

4) Burst control: Classical TCP is self-clocked. Hence,
whether or not new segments are transmitted and how many
new segments are transmitted are both determined by the
receipt of ACKs at the sender and the consequent adjustment
to the windows. In a congestion control dominated regime,
such self-clocking works very well. However, in a flow con-
trol dominated regime, large transmission bursts can occur.
Consider a scenario where the application read rate is low and
hence the buffer begins to fill up. Let the connection reach a
state where the sender has only one outstanding segment left
in the network because its flow control window is reduced,
but its congestion control window is much larger. Now, if the
application read rate rapidly increases and drains the receive
buffer before the outstanding segment reaches the receiver, the
ACK sent on receipt of the new segment will advertise a full
buffer. When the sender receives this ACK it is no longer flow
control limited, andwill transmit an entire congestion control
window of segments5 instantaneously as a single burst. Such
bursty behavior is not desirable as the bursts will increase
the likelihood of overflows of buffers along the path of the
connection. The overflows will be interpreted as congestion
losses and hence impact the throughput performance of the
connection adversely.

Thus, one of the design elements in AFC is to explicitly
control any bursts in transmissions at the sender. The occur-
rence of a burst is detected by the difference in the allowed
range of outstanding packets, which is oldest unacknowledged
packetsnd una plusmin(cwnd, rwnd), and the next packet

5Assuming the congestion control window is smaller than the receive buffer
size. Otherwise, the sender will transmit an entire flow control window of
segments.

to be sent(snd nxt). If this difference is above a threshold,
every packet is delayed byRTT/sender′s window.

B. AFC Solution Details

1) Protocol headers:AFC introduces new feedback from
the data receiver to sender. At the same time, an AFC enabled
network stack must be able to communicate with a default
stack. Thus, we propose AFC specific information to be
exchanged using a new TCP header option. At the time of
connection set-up, an AFC enabled receiver will advertise
an AFC-permitted flag in a 2 byte option field6. If both
ends of the connection agree to use AFC as the flow control
mechanism, another variable length option field is used to
convey the application read rate to the sender. The first two
octets convey the type and length of the option, the later
octets carry the application read rate in Kbps.

2) AFC Receiver (Data) Processing:A data packet de-
livered by the network at the receiver can encounter three
actions; enqueued in the receive buffer for the application,
dropped by the receiver, or delivered instantly to a waiting
application. For a newly arrived data packet with sequence
number seqno, the receiver checks if it falls within the
window of admissible sequence numbers beyond the oldest
buffered packetread nxt. If not, it is dropped. For a packet
lying within the window, the receiver checks if it is the next
expected in-order packetrcv nxt and advancesrcv nxt if it
is. In case the sequence number is> rcv nxt, themax seen
count is manipulated, depending on whereseqno lies. If any
of this data is being waited upon by the application, it is
passed on to the application, andread nxt is advanced. The
remaining data, both in-order and out-of-order, is queued at the
receive buffer. As this is an interface between the TCP receiver
and the application, AFC takes a sample of the application
read rate by invoking thear update module. Thear update
module computes the instantaneous application read rate from
the bytes read in this instance and time elapsed since last
sample. It then computes an exponential moving average of
samples seen so far.

The TCP receiver is also responsible for sending ACKs for
every segmentdeliveredto it, even if it is dropped. It computes
the receiver window, i.e., the number of octets beyondrcv nxt
that the receive buffer can accept. This value of the receive
window, rcv nxt, SACK[8] information and the smoothed
average of the application read ratesmooth rx is fed back to
the sender through the ACK packet.

Furthermore, a sample of the application read rate is also
taken whenever the application tries to independently read
data from the buffer. Theread nxt is updated as application
reads bytes from thebuffer. Once it is done reading, the
window size is updated andar update is invoked to compute
a new value ofsmooth rx. A proactive acknowledgement is
triggered if the newsmooth rx is greater/lesser than a factor
times the last valuelast rx.

6One byte for the type of option and one for the length.

3) AFC Sender (ACK) Processing:To enable AFC at a TCP
sender, new logic is introduced in processing the acknowledge-
ment. The TCP sender determines the adaptive flow window
from the advertised windowwin and application reading
raterx. It further distinguishes buffer losses from congestion
losses, by tracking zero window event through a flagzw flag.
While zero windows are being received at the sender, all
congestion indicators are suppressed and zero window probes
are sent with increasing time-periods. Once an open window
advertisement is received the time is recorded ints recover
to ignore congestion indications for out-of-window packets
that were dropped. Moreover, to recover from the losses after
an open window is received for sequence numberopen seq,
the snd nxt is set toopen seq. The retransmit timeout is
also reset. If permitted by the sending window and AFC burst
control, the sender can now send more data to the receiver.

V. PERFORMANCE

A. Evaluation methodology

We evaluate our solution in NS2 (version 2.34). We use the
NS2 TCP implementation, with classic flow control, as the
default TCP in all experiments. Further, we added the design
principles described in section IV in NS2 TCP implementation.
This Adaptive Flow Control(AFC) enabled TCP is referred
to as AFC in future. We assume SACK [8] to be enabled
in all scenarios. The history factor for exponential moving
average in AFC is taken as 0.5, i.e. equal weight is accorded to
the history and the current sample. In the following sections,
we evaluate AFC with respect to default TCP. We compare
the throughput gains of each; fairness of both approaches
in concurrent connections and sensitivity of our solutionsto
different parameters. In all experiments, the throughput is
measured at the application level.

B. Throughput Gain

For throughput analysis, we consider the scenarios men-
tioned in table 3(a), for RTT = 530ms. Present auto-tuning
techniques [3] configure the receive buffer based on the per-
ceived bandwidth-delay product, which is minimum(average
network rate, average application rate)*RTT. We use this
estimate in configuring the receive buffer size. The ideal TCP
throughput in all scenarios is min(average network rate, aver-
age application rate). Each simulation runs for 600 seconds.

Figure 2(a) shows the ideal, default and optimized through-
put in all scenarios. We observe that AFC shows an improve-
ment ranging from 50%, inScenario 5, to 100% and more
in the remaining scenarios. In addition to this, it scales upto
85% of the ideal throughput, while the default flow control
can only achieve up to 60% of the ideal performance.

C. Fairness Properties

To evaluate fairness between concurrent optimized and un-
optimized connections we use a dumbbell topology with 10
TCP connections. SendersS1....S10 are connected to router
Rt1 through individual links of 10Mbps rate and 5ms delay.
RouterRt1 is connected to another routerRt2 with a network

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5

T
h

r
o

u
g

h
p

u
t(

M
b

p
s
)

Scenarios

Ideal
Default

AFC

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t(

M
b

p
s
)

Fraction of total flows that are AFC enabled

Default
AFC

(b) Fairness between AFC and Default TCP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

Number of AFC flows

Individual flow throughput
Average throughput

(c) Fairness amongst AFC flows

Fig. 2. Throughput gains and Fairness analysis of AFC

link of delay 255ms. The bandwidth of this link fluctuates in
the pattern of< 2Mbps, 4Mbps, 4Mbps > with a time-period
of 1 RTT, i.e. 530ms. All the receiversR1....R10 are connected
to routerRt2 through individual links of 10Mbps rate and 5ms
delay. Each receiver has an application running on it whose
read rate fluctuates as< 0, 6, 6 > Mbps with a time period of
1RTT. Considering fair distribution of link bandwidth, each
connection gets an average network rate of 0.33Mbps. The
receive buffers are thus set to 0.33Mbps*530ms = 22KB. Each
connection in the simulation runs for 600 seconds.

1) Fairness between AFC and Default Flows:We evaluate
fairness of AFC towards classic flow control by increasing
the number of optimized connections from 0 to 10, i.e.,
all connections using default flow control to all connections
using AFC. In each case, we calculate the average through-
put achieved by connections running default TCP and that
achieved by connections using AFC. The results are shown in
Figure 2(b). We observe that the average throughput of default
TCP connections stays unchanged in the presence of Adaptive
Flow Control. The average throughput of the AFC enabled
flows shows a peak when there is one optimized connection
and converges to the expected 0.33Mbps as the flows increase.
This happens because an optimized flow tries to scale up to
the available bandwidth, left unused by the default TCP flows.
In the case of one optimized flow, all this bandwidth gets
utilized by a single connection and is fairly shared, later on,
by the increasing number of optimized connections. Thus,AFC
remains fair with classical flow control.

2) Fairness amongst AFC Flows:To demonstrate fairness
amongst AFC flows we use the same dumbbell topology as
above. However, this time we present results for increasing
number of TCP connections. All the TCP connections use
AFC as the flow control mechanism. The receive buffer size
is adjusted down based on the number of connections (from
213KB for one connection to 22KB for ten connections).
The average throughput enjoyed by connections is shown in
Figure 2(c). For each data point we also show the individual
connection throughputs. It can be observed that the individual
throughputs are heavily clustered around the average estab-
lishing the fairness amongst AFC flows.Thus, AFC is fair with

itself.

D. Sensitivity Analysis

In this section we discuss how Adaptive Flow Control reacts
to variations in the time period of fluctuation and the appli-
cation fluctuation profile. We also present the performance of
default TCP flow control.

1) Sensitivity to Fluctuation Period:Note that in all the
scenarios discussed above we have considered that the applica-
tion and the network always fluctuate with a period of 1 RTT.
However, the adverse affect of flow control is not tied to this
unique case. We run further simulations where the fluctuation
period is increased from 1 RTT to 40 RTTs forScenario 4. As
this scenario is application rate dominated we also consider a
modified version ofScenario 4 with peak application reading
rate of 8Mbps to simulate a network limited scenario. The
throughput of default flow control and adaptive flow control
are compared in Figure 3(b).

The throughput achieved by default flow control increases
with fluctuation time-period as TCP gets more time to settle
after every disturbance, making the connection more steady.
The throughput observed by AFC shows an immediate dip
when fluctuation time period increases from 1 RTT to 2 RTTs.
This is because, while in former case AFC can avoid the sender
from stalling completely, in the later cases, sender stallsare
inevitable. Even then, AFC constantly performs better than
default flow control.

AFC provides a gain of 100% over default flow control in
highly fluctuating network and application environments and
20% in steady environments.Mobile phone environments, as
we have observed in previous sections, belong to the former
set.

2) Sensitivity to Fluctuation-pattern:We now evaluate the
performance of default flow control and AFC for other fluc-
tuation patterns of application read rate. We consider repeated
fluctuations throughout the connection. Each period of 1RTT
is considered as a slot and we vary the number of consecutive
slots for which the application is reading atAR and 0.
The network rate is constant and greater than the average
application read rate, for simplicity.

Application
profile
(Mbps)

Network
profile
(Mbps)

Receive
buffer
(KB)

1 (0, 6, 6) 2 128
2 (0, 6, 6) 15 256
3 (0, 6, 6) (2, 4, 4) 213
4 (0, 6, 6) (3, 6, 6) 256
5 (0, 18, 18) (3, 15, 15) 704

(a) Network and application scenarios

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

Fluctuation time period(sec)

AR=6 Mbps:Default
AR=6 Mbps:AFC

AR=8Mbps:Default
AR=8Mbps:AFC

(b) Fluctuation period

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

#slots when application is reading

Idle time= 1 RTT: Default
Idle time= 1 RTT: AFC

Idle time= 2 RTT: Default
Idle time= 2 RTT: AFC

(c) Application fluctuation pattern

Fig. 3. Scenario description and sensitivity analysis of AFC

From the application profile of< 0, 6, 6 > Mbps that
we have considered so far, we create two sets of scenarios:
application idle for 1 slot per fluctuation and application idle
for 2 slots per fluctuation. In each of these sets, we further
vary the number of reading slots of application from 1 to 4.
All in all, there are 8 scenarios. The network rate is 15Mbps
and the RTT is 530ms. The results are shown in figure 3(c).

The aggregate throughput intuitively decreases with increase
in idle slots and increases with increase in reading slots. A
pathological scenario arises when the application reads for
exactly one slot before becoming idle. This is because TCP
has an inherent delay of half RTT. Even with AFC, the sender
learns about the increased receiving rate half an RTT late. By
the time new data reaches the receiver, it has gone idle. Thus,
in every 2 slots, the receiver can successfully accommodate
exactly one buffer size of data. The throughput is thus buffer
limited and same for both default and optimized cases. In other
scenarios, AFC is able to improve throughput by at least 63%
in all scenarios up to a maximum of 150%. We also observe
that with increase in number of reading slots per fluctuation,
the difference in the throughput of classic flow control and
AFC starts to reduce. This is expected behavior, as increasing
number of reading slots indicate a steadier network/application
environment.Thus, for a variety of application fluctuation
patterns, AFC provides significant gain(more than 60%) over
classic flow control.

VI. RELATED WORK

Several variants of TCP flow control have been proposed in
related work. Automatic Buffer Tuning [4] presents an algo-
rithm to dynamically configure TCP sender buffer. Dynamic
Right Sizing [2] and Auto-tuning in Linux [3] implement
receiver side solutions to grow the window sizes to match the
available bandwidth. The Wed100 [9] project has presented
approaches to decouple the re-assembly queue and the receive
buffer, to hide out-of-order delays from the sender. All these
approaches advocate a buffer-based approach to resolve flow
control incompetencies. But they all rely onperceivedBDP
for their estimation, which, as we demonstrate, can be affected
by flow control problems. AFC addresses these issues, without

over-provisioning the buffer, by re-defining the very concept
of flow control window.

VII. C ONCLUSIONS

In this paper we show that classical TCP flow control
performs poorly for flow control bottlenecked connections
such as those terminating on mobile phones. We identify
the reasons for the poor performance and propose an al-
ternative flow control strategy called adaptive flow control
(AFC). We have established through simulations that AFC
can considerably improve throughput performance. We plan
to explore several extensions to AFC as part of future work
including the curtailment of unnecessary retransmissionswhen
recovering from zero window advertisements and handling
interplay between congestion control and flow control for
connections that are bottlenecked intermittently by both.

REFERENCES

[1] I. S. Institute, “RFC 793,” 1981. [Online]. Available:
http://rfc.sunsite.dk/rfc/rfc793.html

[2] E. Weigle and W. chun Feng, “Dynamic right-sizing: A simulation study,”
in IEEE International Conference on Computer, Communicationand
Networking, 2001.

[3] “Linux auto tuning.” [Online]. Available: http://www.kernel.org/
[4] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,”

Computer Communication Review, 1998.
[5] S. Sanadhya and R. Sivakumar, “AFC: Technical report,” 2010. [Online].

Available: http://www.ece.gatech.edu/research/GNAN/archive/tr-afc.pdf
[6] G. F. Franklin, D. J. Powell, and A. Emami-Naeini,Feedback Control of

Dynamic Systems. Prentice Hall PTR, 2001.
[7] A. V. Oppenheim and R. W. Schafer,Digital Signal Processing. Prentice–

Hall, 1975.
[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC 2018,” 1996.

[Online]. Available: http://www.faqs.org/rfcs/rfc2018.html
[9] J. Heffner, “High bandwidth TCP queuing.” [Online]. Available:

http : //www.psc.edu/ jheffner/papers/senior thesis.pdf

