Adaptive Flow Control for TCP on Mobile Phones

Shruti Sanadhya Raghupathy Sivakumar
shruti.sanadhya@cc.gatech.edu siva@ece.gatech.edu
Georgia Institute of Technology Georgia Institute of Technology

Abstract—The focus of this work is to study the efficacy of flow control (AFC)for TCP. Besides explicitly tracking the
TCP's flow control algorithm on mobile phones. Specifically, we application read-rate, AFC also has a set of key design

|dent|fy the design I|m|tat|on_s of the algorithm when operating in elements that are targeted toward optimizing performance f
environments, such as mobile phones, where flow control assumes ti fi . fl trol dominated .
greater importance because of device resource limitations. We connections operating In a flow control dominated regime.

then propose anadaptive flow control(AFC) algorithm for TCP ~ We propose AFC as a TCP option so that AFC-enabled
that relies not just on the available buffer space but also on network stacks are still backward compatible to commueicat

the application read-rate at the receiver. We show, usingVS2 with non AFC-enabled stacks. We evaluate AFC usiMi§2
simulations, that AFC can provide considerable performance 5564 simulations, and show that AFC delivers considerable
benefits over classical TCP flow control. . ' . .
performance improvements over classical TCP in flow control
I. INTRODUCTION dominated regimes, exhibits TCP friendliness, and is rotuus

The flow control mechanism in classical TCP is simple arfd wide variety of network and application characteristics.

conservliltive.l_lt operatesdbaseddpn bluffle;r occupancy, aexlsi do Il. BACKGROUND AND MOTIVATION
not track application read rate directly. For most coneral .
network scl?aaarios - both wireline ar):d wireless - this is n@t' TCP Flow Control Basics
a serious concern as the application read-rate is rarely thelhe basic flow control strategy employed in TCP is for the
dominant bottleneck. The limitations of a simplistic floweceiver toadvertiseto the sender, using thewnd field in
control strategy do not adversely impact a TCP connectiodl®e TCP ACK, the available space in the buffer in relation
performance if flow control does not kick in very oftento the highest in-sequence sequence number received [1].
However, with the growing use ahobile phoneplatforms for The sender will transmit new segments only if the highest
data application access, it is worthwhile studying TCP flownacknowledged sequence number it has transmitted isesmall
control in more depth. The constrained processing reseuréan the sum of the lowest unacknowledged sequence number
on such platforms make it more probable that flow contr@nd themin(rwnd, cwnd), where cwnd is the congestion
assumes a more significant role in the throughput enjoyed ¥ndow maintained by the sender. If the rate at which data
a connection. is consumed by the receiving application is lower than the
Thus, the focus of this work is to study TCP’s flow contron€twork rate, the receive buffer occupancy will increase an
algorithm, identify its limitations for mobile phorfesand this in turn will result in lowerrwnd values advertised by the
propose a new flow control a|gorithm for such p|atform§_eceiver. An extreme scenario is when the receive buffer is
We observe, through experimentation, that the throughgitl and the receiver advertises amnd of zera Upon receipt
performance of a flow control bottlenecked TCP Connecti(ﬁf a such a zero window advertisement, the sender freezes its
can be as low as 20% of the expected throughput. We identifgnsmission completely and awaits explicit open window
a variety of reasons for the performance degradation theat @dvertisementrom the receiver. Eventually, when odé S.S
directly attributable to the flow control algorithm emplalye Worth of space opens up in the receive buffer, the receiver
in classical TCP. To better ground our observations we al§gnds an open window by advertising a non-zerad value.

perfo_rm a control theoretl_c analysis of _the TCP flow contrcg_ Problems with TCP Flow Control on Mobile Phones
algorithm and show that it reduces to amegral controller, i

which in turn has a non decaying oscillation function with 1) Flow control bottlenecks occur more often Mobile

an amplitude that is proportional to both theak application phones, in spite of the advances made in their hardware capa-

read-rateand thefluctuation frequencyf the read-rate. bilities, continue to be resource limited compared to tiadal
We therein motivate a more sophisticated flow contr§lCS @nd laptops. Such limitations span over the processing
algorithm that not only relies on the available buffer spac&@Pabilities, the sizes of the different tiers of storagel ather
but also explicitly accounts for the application read-rae dimensions of computing. There are a wide variety of reasons
its decisions. We propose such an algorithm cakedptive for such limitations ranging from the requirement for low
power operations, form factor constrains and cost. Figli(as
This work was supported in part by the National Science Fatiod under and 1(b) present comparative CPU allocation results for an
gr?C\t/iiENais_rig']E)ﬁMofag?Jrcocé)';;’?/;gg::and roposed solutionsilevaid FTP application running on a laptop (Dell Inspiron 1525 with
Jorty prop the Ubuntu 9.10 OS) and a mobile phone (Google G1 with the

other environments that are flow control dominated as well, egtrict the g))
focus of this paper to only mobile phones. Android OS) respectively. In both cases, a large H2GB)

is downloaded from an Internet server down to the client. Af <AR1,AR2> or <0,AR,AR> with a time period of 1 RTT.
the download progresses, three competing workloads; eméilthe pattern is<AR1,AR2>, the application reads at AR1
web browsing and progressive video download - are introdlucter one RTT, then at AR2 for another RTT and back to AR1.
at different times. The impact on the CPU allocation for thi its <0,AR,AR>, it does not read any data for one RTT, then
FTP process is measured using thg utility. We observe reads at the rate od R for two RTTs and again goes back to
that on the laptop the FTP client is relatively unaffectedot reading, and so on. The scenarios we consider are:
by the background processes and remains at around 509%) Fluctuating application rate: The variations in applica-
allocation. However, for the FTP client on the mobile phongion read rate affect the advertised window of a TCP connec-
the CPU occupancy fluctuates between 60% &08b6 during tion. As the window does not converge to a steady value, the
the download. throughput of the receiving application also fluctuatesrsso
Investigating the FTP connection further, we obseme than expected. Let's consider the setup: (a) RTT = 1s; (b)
zero window advertisements from the laptop, whereas threre &pplication profile:<2, 6> Mbps with the fluctuation interval
21 zero window advertisements from the mobile phone. This 1 RTT; (c) Average Application Rate(AAR) = 4 Mbps;
clearly shows the increase in the impact of flow control on tHéW = 4 Mbps, i.e. NW= AAR; (d) B is set as min(NW,
mobile phone, and we study the performance consequenceddR)*RTT=500KB=4Mb (the ideal BDP).
this impact next. The expected application throughput is min(NW,AAR)=4
2) TCP flow control is inefficient: Even when application Mbps, but the throughput observed in the experiment is only
read-rate fluctuations occur, an ideal flow control algonith2.9 Mbps, a25% degradation from the expected value. The
should still deliver throughput equal to the minimum of thg@erformance degradation occurs because of TCP’s flow dontro
average network rate and the average application read-ratechavior. In steady state the sender tries to send at 4Mbps. |
min(avg. network rateV W, avg. application read-rat¢ AR). the application is reading at 2Mbps, every half RTT 1Mb of
To evaluate TCP’s flow control algorithm under fluctuatinglata would be read by the application and 1Mb stored in the
application read-rate conditions we conduct simulatioms buffer. At the end of the first half RTT, the advertised window
N S2 with the following setup: sender and receiver connectasl 3Mb. At the end of 1RTT, the application would have read
over a direct link; RTT of 530ms; network rate of 15 Mbpsanother 1Mb and stored 1Mb in the buffer, the advertised
average application read rate of 4 Mbps, with a fluctuatiomindow reduces to 2Mb. In the next half RTT, the application
profile of <0, 6, 6> (period of 1 RTT); and receive buffer sizereads at the rate of 6Mbps, it reads the 2Mb stored data in
equal to the perceived BDPiin(NW, AAR)*RTT = 256KB). the buffer and also the 1Mb received from the sender, which
While we pick these values as an example (e.g. TCP long-hésl(3Mb(advertised window an RTT back)-2Mb(outstanding
connection over a wi-fi last leg), we generalize the values fdata)). The latest advertised window is now 4Mb. In the next
the parameters in the setup to a broader set both later in thigf RTT, the receiver receives another 1Mb, which is 2Mé(th
section and in Section V. advertised window an RTT back)-1Mb(traffic outstanding in
The expected throughput for the above setup is equaltfie last RTT). The receiving application reads the entire
4Mbps (nin(15Mbps, 4Mbps)) even after taking into accountreceived 1Mb and advertises a window of 4Mb. The same
the fluctuationsHowever, the aggregate throughput observesequence repeats from there on.
(see Figure 1(c)) in the simulations is only 1.45Mbps, a Thus, if the buffer is sized at the prescribed value of the
degradation of 63%Note that given the high network rateBDP (4Mb), the connection rate is throttled down to 2Mbps
assumed, there are no congestion bottlenecks influenceng then the application read rate is 2Mbps (flow control due
performance, and hence this degradation is directly dubeto to application read rate limitation), but is capped at 4Mbps
flow control behavior of TCP. We attribute this degradation t(flow control due to buffer size) even when the application
TCP flow control’s stop and go behavior that does not allovead rate grows to 6Mbps. The application thus reads 2Mb in
the connection to track the application read rate effelstivethe first RTT and 4Mb in the second RTT, and the observed
We delve into specific design issues next. throughput at the application is thus (2+4)/2 Mbps = 3Mbps,

while the ideal expected value is 4Mbps.
C. Design Insights into TCP Flow Control Limitations

We use three different scenarios where TCP flow control 2) Zero windows: Extreme fluctuations in application read
leads to under-performance and therein highlight some 'Gfte result in zero window advertisements. In TCP’s flow
the design issues. NS2 simulations are used to determfiggitrol, every zero window advertisement carries with it a
TCP throughput for the different scenafiosn the different deterministic throughput penalty due to the time taken fier t
scenarios, the round trip time for each connection is 530ny¢ndow to be re-opened to pre-zero window levels. At any

The read rate of the receiving application fluctuates in tepat 2€ro window occurrence the sender waits for ugvto round
trip times(RTTs) before it can send asybstantial amount
2Basic flow control features such as finite-size receive buffignamic of new dataeven if the application starts reading immediately
advertised window and zero window management were added tN¥%2 sfter the zero window was advertised: an RTT to wait before
TCP implementation as NS2 does not support these currentlgnfigtirable . . ' .
application read rate parameter was also added to simuldésetiif applica- sending a zero window probe and another RTT to get a window
tion patterns. larger than one to send more data. Hence, a higher frequency

100

100

Throughput degradation: 0% Throughput degradation: 30%
Zero windows: 0 # Zero windows: 21

80 80 4l

60 _E-mail

40

CPU occupancy of FTP client(%)
CPU occupancy of FTP client(%)
Aggregate throughput(Mbps)

20

. 0 . A . . L . A
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 450 0
Time(sec) Time(sec)

(a) FTP on laptop (b) FTP on Android (c) Impact of application read rate fluctuations on
TCP throughput

Fig. 1. Analysis of TCP Flow Control on Mobile Phones

of zero windows results in a larger number of such undgoerformance, the receiver needs to make sure that the eeceiv
utilizing periods. We use the following parameters for thbuffer is tuned to the network. Current buffer resizing tols
evaluation of this scenario: () RTT = 530ms; (b) Applicatio[2], [3], [4] depend on data rate observed at the receiver to
profile of <0, 6, 6> (AAR = 4Mbps); (c) NW = 15Mbps; calculate the optimal advertised window and buffer size. In
and (d) B is set to 256 KB (perceived BDP). this scenario, zero windows occur while the applicationds n

The expected application throughput is min(NW,AAR)=4eading, the sender stalls and while the sender is staled, t
Mbps, but the throughput observed in NS2 is 1.45 Mbps {act that the network rate has increased does not influerce th
64% degradation), as shown in Figure 1(c). While some of tHauffer calculation at the receiver. Thus the apparent netwo
performance degradation is attributed to the reasonsnedtli rate N, ~ 2Mbps is much lesser than the actual network rate
earlier, the higher severity of the degradation is due taréte N, = (2+4+4)/3 = 3.3Mbps. The observed throughput with
window occurrences. When the application stops reading, théuffer size of 2Mbps*530ms=128KB, is 0.67Mbps, which is
receive-buffer fills up, resulting in zero windows being tser20% of the ideal throughput. Even when the buffer is scaled
and the sender being stalled. As soon as the applicatiots stap to 213KB, i.e. 3.3Mbps*530ms, the observed throughput
reading, an open window is sent to the sender and the senidestill only 1.45Mbps.
sends one segment. The ACK for this packet, which arrives anThus, when both the network rate and the application rate
RTT later, then allows the sender to send more packets. Thectuate, the lower throughput rates experienced when the
receiver thus ends up reading AAR*RTT bytes in 3 RTTgpplication read rate is low can also impact the achievable
whenever this happens. In this particular example, 328 zaretwork throughput even when the application read rate-even
windows are observed in a connection of 600s, thus 656 duglly increases.
of 1132 RTTs are spent idle. There are no congestion losses. o)

Thus, whenever the zero window occurrences in e Study of a Trivial Buffer-based Solution
lifetime of a TCP connection increases, the performanceWe now briefly argue for why a buffer provisioning based
degradation (difference between the expected throughmit &olution is not desirable to tackle the problems discussed
the observed throughput) increases. thus far. While we consider a set of different scenarios we

present only the worst-case scenario below. Interestatersa

3) Fluctuating network rate: Apart from the application are referred to [5] for the other scenarios.
read rate, the network rate can also fluctuate. This intregluc Consider a scenario where both the network rate and appli-
new complications. Ideally the TCP throughput can growation read-rate fluctuate. It is possible in this scenduéo the
with increase in bandwidth, but the limited buffer or zer@onnection does not leverage the crests or highs of the netwo
window events may prevent the sender from using higheatebecause it is idle due to recovery from zero-windows when
congestion windows. The receiver may never learn of thike network rate is highFor example, consider th&cenario
available bandwidth and be unable to resize its buffer basetiere the application rate fluctuates (@s18, 18) (period of
on techniques like dynamic right sizing[2], auto-tuning[3 one RT'T), and the network rate fluctuates@s15, 15) (same
etc. We use the following parameters for this scenario: (pgriod). In this scenario, a zero window will be triggered in
RTT = 530ms; (b) Application profilex0, 6, 6> Mbps with the first RTT, and the connection will end up idling for the
the fluctuation interval = 1 RTT, AAR=4 Mbps; (c) Networksubsequent two round-trip times and hence will not realize
profile: <2, 4, 4> Mbps with the fluctuation interval = 1 that a rate as high as 15Mbps was possible during that period.
RTT; and (d) buffer B set to 128KB/213KB (perceived/idealn our simulation study of the above scenario, we observe a
Bandwidth Delay Product). throughput of 3Mbps in contrast to the expected throughput

In this scenario, the application is expected to enjoy @t 11Mbps.
throughput ofmin(average network rate, average application This problem can be averted only if the connection is pre-
rate), i.e., min(3.3Mbps, 4Mbps). However, to achieve thaented from idling for all round-trip times. While provisiomg

the buffer based on the average achievable network ratedwobDiifferentiating (2) and using (3), we get
suffice, note that the connection has no way of determining

the achievable network rate as it will never encounter the W'=dW/dt = AR—TCP)
high rate periods. Instead, the only deterministic apgroaplote that0 < B < B, and0 < W < B,. Thus,

to averting the problem is to provision the buffer based

on the average application rate. Independent of whether the W= min(Bo,/W’dt))
average application rate is higher or lower than the average .)

network rate, this will suffice. Thus, in order to overcome thlf We consider’C'P as a system variable, the target value of
idle periods when recovering from zero-windows, the buffefr CP is AR and the erroerr in this variable is the deviation
required when both application read-rate and network rdfe throughputt AR — TCP), which is the rate at whichV/
fluctuate is as follows: grows:

Breg =3+ AAR + RTT 1) W'=(AR-TCP) =err (6)

The problem with this strategy, though, is that thelR for AS network is not the bottleneck’'C'P is proportional to
a mobile platform can be arbitrarily high when compared € receive window/V. Assuming that round trip timé&7T"
the possible network rates. For example, on the Android ¢@mains constant for a connection.

phone, we were able to observe application read-rates &s hig TCP =a W, wherea = 1/RTT @)
as 100Mbps (under low CPU load conditions). Hence, the .

buffer allocation required could be orders of magnitudénarg using (5),T7CP =« min(Bo,/ W' dt) (8)
than what the connection throughput will necessitate (a.g.

2Mbps network rate scenario will ideally need only 125KB using (6),TCP =« mm(Bm/em« dt) 9)

of buffer allocation, whereas the provisioning based st

will necessitate 18.75MB of buffer allocation). Also noteat For now, let's assume3, to be unboundedThenT'CP is
this allocation is on a per connection basis. While requirinentirely dependent on the integral of the deviation frdi. In
orders of magnitude more memory allocation is bad in itselfpntrol theory, such systems are termledegral(I) systems
the demands become onerous when considering the mem(@ly In the following analysis, we look at some charactéesst
limitations of typical mobile phones. Furthermore, evesiith of this system and its implication on TCP’s performance.
allocation can be achieved on the mobile phones, the sertdiminating 7’C' P from the equations (6) and (7):

_(sender) side buffer WI|| have to be of S|r_n|Iar proportlons W — AR — oWV (10)
in order to support this strategy. Considering a typical web
server serving tens and thousands of connections, suchumer on reorganizing/V’ + aW = AR 11)

buffer allocation quickly becomes untenable. Even assgmiknis is a linear first-order differential equation, whefg

that memory is not an issue, theA R still has to be accurately 544 AR are functions of time. Solving it by the method of
tracked at the receiver in order to achieve the provisioning‘tegraﬂng factor we have:

Hence, the question we ask ourselves in the rest of the paper

is that if the application read-rate is already being masitp Integrating factor e
could a better solution be derived to achieve the expected multiplying (11) with integrating factor
performance? e W' + ae™W = e AR (12)

Ill. THEORETICAL ANALYSIS
A. Control theoretic analysis of TCP flow control , .

TCP is a closed loop system. The sender sends data to theon integrating, ﬂ(eatw) — / (e®*AR)dt (14)
receiver, then waits for feedback from the receiver to deires t=0 dt t=0

how much data to send next. We model this control systelow let us assume that the application fluctuates from 0 to
in the following analysis. For purposes of this analysis we A, as a sinusoid function of time with a time-period B
assume that the connection is purely flow control restricted)
and the connection rate &C' P, I/IE is tr)(e advertised window, AR = Ao(1 +sinwt), wherew = 27/T (15)
AR is the rate at which the data is read at the receii8gris using (15) in (14) and simplifying ,

the receive buffer size an® is the buffer occupancy at any ¢ t

at _ at at _:
given time. From this we can represdiit as follows: e™W — By = 4o [ZO edt + Ao o e sinwtdt

W =By — B @) (16)

. —at AO AO sin @ Ao
The buffer is filled in at the rate of C P and drained by the on solving, W = e By ——+ —+
application atAR. Thus,

on simplifying, %(eatW) =e™AR (13)

a Va2 +w?

o SNote that any other periodic application profile can be regmnéed as a
dB/dt =TCP— AR ®) sum of sine/cosine functions([7].

«

sin(wt —)

g——=———— ,wheref = tan"! (ﬁ)
VaZ+w? a

7

Proportional(P) control systems. Ad — only system
can increase settling timg{n equation (23)), making it
respond slower to disturbances/fluctuations.

2) If By is not large enough to accommodate the appli-

The error in TCP can thus be computed from (6) as:) . : .
e P ©6) cation read rate and its fluctuations, TCP send rate is

err =W’ (18) capped byB,/RTT (as shown in equatio24)).
differentiating (17) and using in (18) A corrective term needs to be added in equation (7) to
. Ao Ag sin compensate for the impact of integral action and bound of
err = —ae” " |Bp— — + } + By. We pro that this term bdR, i.e. th licati
s 0- propose that this term , i.e. the application
Aow “ artw read rate. Equation (7) thus takes the form of:
——— cos(wt — 0 19
Nzeme cos(wt —6) (19) TCP =aW + AR (25)
In steady statec™** — 0, thus (19) becomes working out equation (6)
err = /210w =(cos(wt —0)) (20) W' =AR-TCP (26)
ot w using (25),W’' =AR — oW — AR (27)
further, err = Ag sin 6(cos(wt — 0)) (21) e W' =— aW (28)
Thus,for fluctuating applications, the difference between TCP on solving, W =Bye (29)
rate and application read rate exhibits non-decaying daeil differentiating (29) and using in (18)
tions The amplitude of these oscillations increases with the o ’
peak application read rate and cycles with the fluctuatiometi err = — abye (30)

period.

) Note that (30) presents a decaying error in TCP send rate.
From (7) and (17)I'CP is:

From equations (25) and (29),C P takes the form:

A Agsinf]
_ —at 40 0 _ —at
TCP = ae {BO 5 +7\/m_ TCP =aBpe™™ + AR (31)

asin(wt —)] which converges tAR at steady state, shows no lag and is

+4o {1 + VR (22) ' not bound by theB,/RTT limit. Thus, if TCP starts reacting
S s to the application rate, it would be able to scale up to its

which in steady state becomes: . :
B target value, even in the face of fluctuatiorla the next
TCP = A {1 + sin(wt —) (23) section, we discuss how to translate this theory into a jwict
a?+w J implementation.

This has a 'marked deylatlon fro R, both in frequgncy IV. DESIGN ELEMENTS AND ALGORITHM
pattern and in the amplitude. As the frequency of oscilfetio] i .

increases, the phase differencdli@’P and AR also increases. !N this section we present adaptive flow control (AFC)
This lag translates into increased settling time, i.e.,etinflgorithm for TCP t_hat will help achieve _expected t_hroughpu
taken to converge tolR, for TC'P. Equation (23) presents Pérformance even in a fIOV_/ co_ntrol dommated regime. A key
a control system model for TCP's flow control. In practice§o@l Of the proposed solution is to deliver such performance
the receive buffetB, imposes an upper bound on TCP dat¥ithout requiring a large buffer allocation. We first presan

rate. Following from (9), the actual TCP data rate is given bpverview of the key design elements in AFC, and then describe
the algorithm. Interested readers may refer to [5] for dedai

TCP =min (aBO, Ap |:1 + > sin(wt — 9):| pseudocode.

a?+w .
(24) A. Key Design Elements

Depending on the relation between the two terms in (24), TCP1) Using Application Read RateThe first design element

throughput can saturate at the ratecdBy, i.e., Bo/RTT or N AFC follows directly from the theoretical analysis prassd

grow as much as the application demands. Saturations calise>ection Ill. While classical TCP flow control uses the

TCP to under-perform. Thus, we conclude that TCP througBdvertised buffer space from the receiver as the flow control

put is dependent on the receive buffer size, the applicati$findow, AFC relies on both the advertised available buffer

fluctuation frequency and the amplitude of fluctuations ia tSPace in the receive buffemd the application read-ratén
application read rate. determining the flow control window:

B. Basis for an Adaptive Flow Control Algorithm Wie=B+ AR+ RTT (32)

We observe in the previous section that: Just like the advertised buffer space, the application regs

1) Current TCP flow control is anintegral(I) — only AR is also fed back to the sender from the receiver. We defer
control system.As is well known in control theory, details on how the application read rate is monitored and
Integral systems are used as corrective componentstriacked till later in the section. Once the flow control windo

W;. is determined, AFC uses the window in exactly théhat open window transmission, the receiver cannot send any
same fashion as in classical TCP. In other words, the numlferther feedback to the sender even if the buffer is comlylete
of outstanding packets is controlled to be the minimum afrained. Consequently, the sender will send only one segmen
the congestion control window and the flow control windowfor that round-trip time, and wait for the next ACK to arrive
The use of the application read rate in determining thmefore it will expand its flow control window fully. In AFC,
flow control window thus allows AFC to better react tahis limitation is averted by requiring the receiver to send
application read rate changes instead of relying only ofebuffeedback not just upon receipt of data talso when there
over-provisioning. is a drastic change in the buffer state and application read-
rate. Thus, when recovering from a zero window state, the
2) Handling Overflows: Classical TCP flow control is receiver will send not merely the first open window when one
conservativeto an extent where the flow control algorithmMSS worth of buffer is available, but also follow it up with
will never result in buffer overflows at the receiv@ihe TCP more reports about thd R and B if the application drains the
sender will at no point send more data than what the receiaiffer quickly. This allows the sender to take more accurate
buffer can accommodate. Hence, all losses experiencedeby flow control decisions.
connection are directly attributable to congestion. Note that such a design element can also be modulated by
However, in AFC the flow control window is computeda mechanism similar to the delayed ACK timer. Essentially,
to be a sum of two factors: the available buffer space améhenever groactive ACK has to be sent by the receiver, the
the application read rate per RTT. If the application rea®CK is delayed for a constant amount of time. Ifreactive
rate is over estimated or suddenly decreases, overflowsA&K (an ACK in response to data arrival) is triggered within
the receive buffer will occur. Such losses however shouttle aforementioned constant amount of time, the proactive
not be attributed to congestion as the flow control algorithd\CK can be discarded. This allows for curtailing the number
causes them. Thus, AFC is specifically designed to keep swfhsuch proactive ACKs sent when there are reactive ACKs
flow control induced losses from impacting the congestiggent naturally.
control algorithm. In classical TCP, when a zero window is
received by the sender with an ACK sequence numbér, of 4) Burst control: Classical TCP is self-clocked. Hence,
the sender explicitly freezes all congestion control denos whether or not new segments are transmitted and how many
and ignores loss indicators (both triple duplicate ACKs angew segments are transmitted are both determined by the
timeouts) for any sequence numbers greater than till an receipt of ACKs at the sender and the consequent adjustment
explicit open window is received from the receiver. In AFCto the windows. In a congestion control dominated regime,
duplicate ACKs or timeouts may still be triggered by packejuch self-clocking works very well. However, in a flow con-
drops at the receiver for packets with sequence number trol dominated regime, large transmission bursts can occur
whereS,. > S.., + Receive buf fer. These duplicate ACKs Consider a scenario where the application read rate is lalv an
can arrive even after the open window event. AFC hides thignce the buffer begins to fill up. Let the connection reach a
by recording the timets_recover of the arrival of the open state where the sender has only one outstanding segment left
window and further suppressing all congestion indicatdlts tin the network because its flow control window is reduced,
an ACK is received for data sent aftés_recover. Further- but its congestion control window is much larger. Now, if the
more, in order to fast track the successful transmissiomicl s application read rate rapidly increases and drains thevece
overflow data, the next sequence number to transmit(nxt) buffer before the outstanding segment reaches the recetiver
at the sender side is reset$g,,* upon the receipt of an openACK sent on receipt of the new segment will advertise a full
window. Such fast-tracking of the transmissions beyshd buffer. When the sender receives this ACK it is no longer flow
prevents those packets from being handled by the (slowetntrol limited, andwill transmit an entire congestion control
retransmission mechanism in TCP. window of segmentsinstantaneously as a single burst. Such
The combination of the ignoring of losses after a zero wirbursty behavior is not desirable as the bursts will increase
dow and the resetting of thend_nat averts both congestion the likelihood of overflows of buffers along the path of the
control and reliability problems due to the overflow. connection. The overflows will be interpreted as congestion
3) Proactive feedbackThe receiver in classical TCP senddosses and hence impact the throughput performance of the
an ACK only on the receipt of a segmeifthus, any feedback connection adversely.
from the receiver to the sender is dependent on the arrivalThus, one of the design elements in AFC is to explicitly
of new data. When recovering from a zero window statepntrol any bursts in transmissions at the sender. The occur
this property is clearly undesirable. Even if the appliwati rence of a burst is detected by the difference in the allowed
read rate climbs rapidly, the receiver will send the firstropaange of outstanding packets, which is oldest unacknoweledg
window to the sender as soon as one MSS worth of spgsacketsnd_una plus min(cwnd, rwnd), and the next packet
opens up in the buffer. Thus, for an entire round-trip timeraf
5Assuming the congestion control window is smaller than theivedbuffer

“Note that the TCP ACK sequence number reflects the next expectize. Otherwise, the sender will transmit an entire flow adnwindow of
sequence number. segments.

to be sent{nd_nxt). If this difference is above a threshold, 3) AFC Sender (ACK) Processingo enable AFC ata TCP
every packet is delayed bRTT/sender’s window. sender, new logic is introduced in processing the acknayded
B. AEC Solution Details ment. The TCP sender determines the adaptive flow window

_ . from the advertised windowwin and application reading
1) Protocol headers:AFC introduces new feedback fromyate -, |t further distinguishes buffer losses from congestion

the data receiver to sender. At the same time, an AFC enab,lggses’ by tracking zero window event through a flag flag.
network stack must be able to communicate with a defayjhile zero windows are being received at the sender, all
stack. Thus, we propose AFC specific information 10 bgngestion indicators are suppressed and zero window grobe
exchanged using a new TCP header option. At the time gfs sent with increasing time-periods. Once an open window
connection set-up, an AFC enabled receiver will advertisgy ertisement is received the time is recordedsin-ecover

an AFC-permitted flag in a 2 byte option fi€ldif both ¢, ignore congestion indications for out-of-window packet
ends of the connection agree to use AFC as the flow contfpl; were dropped. Moreover, to recover from the losses afte
mechanism, another variable length option field is used g, open window is received for sequence numben,_seq,
convey the application read rate to the sender.. The first typ, snd_naxt is set toopen_seq. The retransmit timéout is
octets convey the type and length of the option, the latgfsq reset. If permitted by the sending window and AFC burst
octets carry the application read rate in Kbps. control, the sender can now send more data to the receiver.

2) AFC Receiver (Data) ProcessingA data packet de- V. PERFORMANCE
livered by the network at the receiver can encounter thr@e gyajuation methodology
actions; enqueued in the receive buffer for the application

dropped by the receiver, or delivered instantly to a waitin
PP y y S2 TCP implementation, with classic flow control, as the

application. For a newly arrived data packet with sequen . . .
. I o default TCP in all experiments. Further, we added the design
e th hecks if it fall thin the "~ ™" ;) ; . . .
number seqno, the receiver checks if it falls within the nciples described in section IV in NS2 TCP implementatio

window of admissible sequence numbers beyond the Old%ﬁis Adaptive Flow Control(AFC) enabled TCP is referred

buffered packetead_nxt. If not, it is dropped. For a packet .
lying within the window, the receiver checks if it is the nexﬁ ZI‘T’ Q:Feialrri]o;uu':'rr?é \r/l\ilgt(iss?a:?:?orsﬁ)cr:sz[st])nt(e)ngzl ?:g\tl)ifd
expected in-order packetv_nzt and advancescv_nxt if it average in AFC .'s taken as 0y5 o, equal g. ht is accorle dgt
's. In case the sequence numberiscy_nzt, themaz_scen tr:/e higtolry and tlhe current s-ar’nlblé ﬂnuth:l ch?Ioinng sedjon
count is manipulated, depending on whe lies. If an X '

P b 9 egno y e evaluate AFC with respect to default TCP. We compare

of this data is being waited upon by the application, it i . .
passed on to the application, aneud_naxt is advanced. The ﬁ:e throughput gams.of each; fa|rn.e:\s.s of both appr oaches
in concurrent connections and sensitivity of our solutibms

remaining data, both in-order and out-of-order, is quededea diff n all X he th h .
receive buffer. As this is an interface between the TCP vecei 0'crent parameters. In all: experiments, the throughput |
and the application, AFC takes a sample of the applicati(gﬂeasured at the application level.
read rate by invoking ther_update module. Thear_update B. Throughput Gain

module computes the instantaneous application read m@te fr

: o .) For throughput analysis, we consider the scenarios men-
the bytes read in this instance and time elapsed since Iﬁ\g ed in table 3(a), for RTT = 530ms. Present auto-tuning

sample. It then computes an exponential moving average hniques [3] configure the receive buffer based on the per-

samples seen so far. ; . A o
The TCP receiver is also responsible for sending ACKs fc?relved bandwidth-delay product, which is minimum(average

. ; e hetwork rate, average application rate)*RTT. We use this
every segmendeliveredto it, even if it is dropped. It computes __. . o . . .
; . X estimate in configuring the receive buffer size. The ideaPTC
the receiver window, i.e., the number of octets beyond nxt

that the receive buffer can accept. This value of the recei%hrouthm in all scenarios is min(average network rater-av
window t, SACK[8] inforrgétion and the smoothedase application rate). Each simulation runs for 600 seconds
) PEUTULE, S . Figure 2(a) shows the ideal, default and optimized through-
average of the application read rat@ooth_rz is fed back to ; . .
the sender throuah the ACK packet put in all scenarios. We observe that AFC shows an improve-
9 P) ment ranging from 50%, irbcenario 5, to 100% and more

Furthermore, a sample of the application read rate is a||shothe remaining scenarios. In addition to this, it scalesap

taken whenever the application t'ries to independe'ntly. regg% of the ideal throughput, while the default flow control
data from the buffer. Theead_nxt is updated as application can only achieve up to 60% of the ideal performance.

reads bytes from théuf fer. Once it is done reading, the
window size is updated and-_update is invoked to compute C. Fairness Properties

a new value ofsmooth_rxz. A proactive acknowledgement is 1, o4 ate fairess between concurrent optimized and un-
t_rlggered if the newsmooth_rx is greater/lesser than a factoroptimized connections we use a dumbbell topology with 10
times the last valuéast_rz. TCP connections. Sendef....S;, are connected to router
Rt; through individual links of 10Mbps rate and 5ms delay.
50ne byte for the type of option and one for the length. RouterRt; is connected to another rout&t, with a network

We evaluate our solution in NS2 (version 2.34). We use the

0.8

Default —— N ‘ Ind\‘wdua\‘ﬂowlﬁmughbut "
M AFC - 4 Average throughput -------

251

Ideal I
Default seesaie
ARC

0.7 1

0.6 -

05

04t | 15+

Throughput(Mbps)
Throughput(Mbps)

/ e
03} S

rrrrrrrrrrrr

Average Throughput(Mbps)

02t}

i 05| T 1
01 1 P,

0
0 0.2 04 0.6 038 1 o 1 2 3 4 5 6 7 8 9 10
Scenarios Fraction of total flows that are AFC enabled Number of AFC flows

(a) Throughput (b) Fairness between AFC and Default TCP (c) Fairness amongst AFC flows

Fig. 2. Throughput gains and Fairness analysis of AFC

link of delay 255ms. The bandwidth of this link fluctuates irtself.
the pattern ok 2Mbps, 4Mbps, 4Mbps > with a time-period
of 1 RTT, i.e. 530ms. All the receiver®;R,, are connected D. Sensitivity Analysis

to routerRt, through individual links of 10Mbps rate and 5ms |, this section we discuss how Adaptive Flow Control reacts

delay. Each receiver has an application running on it Whogg ariations in the time period of fluctuation and the appli-

read rate fluctuates as 0,6,6 > Mbps with a time period of ¢atjon fluctuation profile. We also present the performarfce o
1RTT. Considering fair distribution of link bandwidth, éac yefault TCP flow control.

connection gets an average network rate of 0.33Mbps. The)y gensitivity to Fluctuation PeriodNote that in all the

receive buffers are thus set to 0.33Mbps*530ms = 22KB. Eagfanarios discussed above we have considered that theappli
connection in the simulation runs for 600 seconds. tion and the network always fluctuate with a period of 1 RTT.
1) Fairness between AFC and Default Flowdle evaluate However, the adverse affect of flow control is not tied to this
fairess of AFC towards classic flow control by increasingnique case. We run further simulations where the fluctnatio
the number of optimized connections from 0 to 10, i.eperiod is increased from 1 RTT to 40 RTTs f®tenario 4. As
all connections using default flow control to all connectionthis scenario is application rate dominated we also conside
using AFC. In each case, we calculate the average throughedified version ofScenario 4 with peak application reading
put achieved by connections running default TCP and thaite of 8Mbps to simulate a network limited scenario. The
achieved by connections using AFC. The results are showntiitoughput of default flow control and adaptive flow control
Figure 2(b). We observe that the average throughput of ttefagre compared in Figure 3(b).
TCP connections stays unchanged in the presence of Adaptivehe throughput achieved by default flow control increases
Flow Control. The average throughput of the AFC enablegith fluctuation time-period as TCP gets more time to settle
flows shows a peak when there is one optimized connectigfier every disturbance, making the connection more steady
and converges to the expected 0.33Mbps as the flows incregsee throughput observed by AFC shows an immediate dip
This happens because an optimized flow tries to scale upwifien fluctuation time period increases from 1 RTT to 2 RTTs.
the available bandwidth, left unused by the default TCP flowshis is because, while in former case AFC can avoid the sender
In the case of one optimized flow, all this bandwidth getgom stalling completely, in the later cases, sender stais
utilized by a single connection and is fairly shared, later oinevitable. Even then, AFC constantly performs better than
by the increasing number of optimized connections. TABE, default flow control.
remains fair with classical flow control. AFC provides a gain of 100% over default flow control in
2) Fairness amongst AFC Flowsto demonstrate fairnesshighly fluctuating network and application environmentsian
amongst AFC flows we use the same dumbbell topology 28% in steady environmentblobile phone environments, as
above. However, this time we present results for increasimg have observed in previous sections, belong to the former
number of TCP connections. All the TCP connections uset.
AFC as the flow control mechanism. The receive buffer size 2) Sensitivity to Fluctuation-patterniWe now evaluate the
is adjusted down based on the number of connections (frggarformance of default flow control and AFC for other fluc-
213KB for one connection to 22KB for ten connections)uation patterns of application read rate. We consideratege
The average throughput enjoyed by connections is shownfimctuations throughout the connection. Each period of 1RTT
Figure 2(c). For each data point we also show the individuil considered as a slot and we vary the number of consecutive
connection throughputs. It can be observed that the ind@lid slots for which the application is reading atR and 0.
throughputs are heavily clustered around the average-est@be network rate is constant and greater than the average
lishing the fairness amongst AFC flow$wus, AFC is fair with application read rate, for simplicity.

45 g

Idle time= 1 RTT: Default ——

5 Idle time= 1 RTT: AFC ---»---
Idle time= 2 RTT: Default - X
47 1 Idle time= 2 RTT: AFC & -~
e 4 * .
| Application] Network | Receive g B 5
profile profile | buffer ERN e !
(Mbps) | (Mbps) | (KB)
11 (0,6,6) 2 128 £ osf £
2 (07 6> 6) 15 256 2 AR:G_I\/Ibps:DgfauIt —— 1 [
31(0,6,6) | (2,4,4) | 213 ARLEMDpS Dt d
41(0,6.6) [(3,6.6) | 256 - T S B
5 (07 18a 18) (35 15a 15 704 Fluctuation time period(sec) #slots when application is reading
(a) Network and application scenarios (b) Fluctuation period (c) Application fluctuation pattern

Fig. 3. Scenario description and sensitivity analysis ofCAF

From the application profile ok 0,6,6 > Mbps that over-provisioning the buffer, by re-defining the very copice
we have considered so far, we create two sets of scenarioflow control window.
application idle for 1 slot per fluctuation and applicatiathei VI, CONCLUSIONS
for 2 slots per fluctuation. In each of these sets, we further '
vary the number of reading slots of application from 1 to 4. In this paper we show that classical TCP flow control
All in all, there are 8 scenarios. The network rate is 15Mbgaerforms poorly for flow control bottlenecked connections
and the RTT is 530ms. The results are shown in figure 3(cyuch as those terminating on mobile phones. We identify

The aggregate throughput intuitively decreases with msee the reasons for the poor performance and propose an al-
in idle slots and increases with increase in reading slots. {@rative flow control strategy called adaptive flow control
pathological scenario arises when the application reads f&FC). We have established through simulations that AFC
exactly one slot before becoming idle. This is because TERN considerably improve throughput performance. We plan
has an inherent delay of half RTT. Even with AFC, the sendi® explore several extensions to AFC as part of future work
learns about the increased receiving rate half an RTT late. iicluding the curtailment of unnecessary retransmissizmsn
the time new data reaches the receiver, it has gone idle., THiggovering from zero window advertisements and handling
in every 2 slots, the receiver can successfully accommodé#ierplay between congestion control and flow control for
exactly one buffer size of data. The throughput is thus puffeonnections that are bottlenecked intermittently by both.
limited and same for both default and optimized cases. laroth
scenarios, AFC is able to improve throughput by at least 63% _) . _ _—
in all scenarios up to a maximum of 150%. We also obser r'mpﬁr'fc.SL”nssti':gfgidrfC,ﬁcF%3.hzr?]f’ 1981 [Online]. Available:
that with increase in number of reading slots per fluctuatiofz] E. Weigle and W. chun Feng, “Dynamic right-sizing: A simtida study,”
the difference in the throughput of classic flow control and in IEEE International Conference on Computer, Communicatéom
AFC starts to reduce. This is expected behavior, as inegasj; “ﬂﬁ?ﬁf r:ll.lr:g tzuor?ii.g.” [Online]. Available: http:/wwvkernel.org/
number of reading slots indicate a steadier network/agiitin [4] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffening,”

environment.Thus, for a variety of application fluctuation | gorsnputgL Comﬁugicsa_ﬁoﬂ REViE\lfgCS-T il 1@qOnine]
. P . 0 . Sanadhya and R. Sivakumar, “ : Technical reportl nline].
patterns, AFC provides significant gain(more than 60%) ovét Available: http://www.ece.gatech.edu/research/GNAbHe/tr-afc.pdf

REFERENCES

classic flow control. [6] G.F. Franklin, D. J. Powell, and A. Emami-Naeiffieedback Control of
Dynamic Systems Prentice Hall PTR, 2001.
VI. RELATED WORK [7] A.V.Oppenheim and R. W. Schafdjgital Signal Processing Prentice—
’ Hall, 1975.

; [Bl M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “RFC 201¥996.
Several variants of TCP flow control have been proposed f [Online]. Available: hitp://www fags.org/rfcs/ric201aml

related work. Automatic Buffer Tuning [4] presents an algqe] J. Heffner, “High bandwidth TCP queuing” [Online]. Avable:
rithm to dynamically configure TCP sender buffer. Dynamic http : //www.psc.edu/ jhef fner/papers/senior_thesis.pdf
Right Sizing [2] and Auto-tuning in Linux [3] implement

receiver side solutions to grow the window sizes to match the

available bandwidth. The Wed100 [9] project has presented

approaches to decouple the re-assembly queue and theereceiv

buffer, to hide out-of-order delays from the sender. Allshe

approaches advocate a buffer-based approach to resolve flow

control incompetencies. But they all rely qrerceivedBDP

for their estimation, which, as we demonstrate, can be taftec

by flow control problems. AFC addresses these issues, withou

