On link rate adaptation in 802.11n WLANs

Sriram Lakshmanan, Shruti Sanadhya Raghupathy Sivakumar

Georgia Institute of Technology

Introduction

- 802.11n
 - Latest very high throughput WLAN standard
 - Improved performance and new features compared to 802.11a/b/g
- Link rate adaptation
 - Important for performance
 - Deployable strategies that do not require fine-grained PHY statistics desirable
- This work: Link rate adaptation for 802.11n links without PHY statistics

Link Rate Adaptation Background

- Goal
 - Modify transmit rate to maintain desired Bit Error Rate across different link conditions
- Traditional solutions (802.11 a/b/g)
 - Adapting modulation coding scheme (MCS)
 - Based on statistics such as SINR , packet loss, delivery ratio, throughput, etc

SINR Range (dB)	Rate	SINR Range (dB)	Rate
≥ 24.56	54	[10.79, 17.04)	18
[24.05, 24.56)	48	[9.03, 10.79)	12
[18.8, 24.05)	36	[7.78, 9.03)	9
[17.04, 18.8)	24	[6.02, 7.78)	6

802.11n Background

- Multiple Input Multiple Output
 - Independent data transmitted on each Tx antenna decoded with Rx processing (on same channel)
 - Each stream has different gain
 - Rate of k-stream MIMO = k *Rate of 1-stream SISO provided channel rank is full (uncorrelated)

Outline

- How well do current 802.11n interfaces perform?
- What are the underlying reasons?
- What are good approaches for MIMO rate adaptation?

Practical 802.11n Performance

- Experimental setup
 - Linksys WRT600N AP and Sparklan (Atheros) client card at 5 locations
 - 5 GHz band (20 MHz channel)
 - Single and two streams
 - Downlink Iperf UDP Traffic
 - Observe:
 - Default auto-rate
 - Best value of manually set fixed-rate

Practical 802.11n Performance

 Large gap between achieved and expected throughput (2.7x)

Georgia

• Trends similar even for Ralink and Intel cards

Underlying Issues

- 802.11n rate adaptation algorithms are typically extensions of 802.11g algorithms
- Issues
 - Linear ordering of MCS is not true for 802.11n
 - For e.g. MCS 1,8
 - Signal powers are not reflective of channel goodness unlike in 802.11a/g
 - Channel matrix H

Single Stream		Two stream	
MCS	Rate (Mbps)	MCS	Rate (Mbps)
0	6.5	8	13
1	13	9	26
2	19.5	10	39
3	26	11	52
4	39	12	78
5	52	13	104
6	58.5	14	117
7	65	15	130

Stream Selection Problem

- A new degree of freedom: Multiple streams
- Stream selection problem
 - Critical and non-trivial
 - Multiple streams not always better
 - Sustainability of spatial streams for given setting
 - Channel quality (H)
 - Interference effect

I. Channel quality

- Best single stream (MCS 0-7) rate and best two stream rate (MCS 8 -15)
- Two streams not always beneficial

Georgia Institute of Technology

• Mux. Gain $G(s, m, c) = \frac{Throughput(s, m, c)}{Throughput(1, m, c)}$

II. Interference effect

- Physical Carrier Sense disabled at the interferer
- Moderate and high power interference

Research Grou

• Impact of interference complex

Stream Selection Metric

- Trivial approach: Try all possible MCS and pick the best
 - For two streams, 16 possibilities (complex!)
- Median Multiplexing Factor (MMF) Metric
 - Leverages throughput probing with just four probes
 - For s streams

<u>Rate(MCS(3+(s-1)8))</u> + <u>Rate(MCS(4+(s-1)8))</u>

 $MMF(s) = Rate(MCS(3)) \qquad Rate(MCS(4))$

2

- Rate is the actual packet delivery rate (bps)
- MMF value is used to determine optimal MCS index
- For two streams
 - 0 < MMF < 1, one stream is best and the best MCS index is MMF *7
 - 1< MMF <2, two streams are best, with MCS index MMF*7+7

Evaluation of MMF

- Good correlation between the Metric and the correct MCS Index
- Throughput benefits across locations and vendors

GeorgiaInstitute

Conclusion and Future Work

- Analyzed the performance of current 802.11n rate adaptation using experiments
- Developed a new metric for stream selection
 - Does not require PHY feedback
 - Reduces search complexity
 - Works across manufacturers
- Future Work
 - Evaluation across multiple scenarios

Thank You Send questions and comments to sriram@ece.gatech.edu

