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Abstract. Smart antennas can improve spatial reuse in a wireless net-
work through interference suppression. However, interference suppression
requires support from clients in the form of channel estimation, which ex-
isting clients do not support. In this work, we explore practical solutions
to obtain spatial reuse with smart antennas without requiring hardware
changes to clients. To this end, we design a novel solution for improv-
ing spatial reuse in indoor WLANs which uses ‘approximate’ channel
estimates and still yields close to ideal performance. Our solution called
Light-weight Multi-Antenna Spatial Reuse (LSR) consists of (i) a multi-
link channel estimation scheme that can be realized with simple Received
Signal Strength (RSSI) measurements that existing WLAN clients pro-
vide readily, (ii) a low-complexity scheduler to decide the subset of beam-
formed links that must be active concurrently. We demonstrate that the
estimates obtained using this scheme when used with a multi-link beam-
forming technique such as Zero Forcing yields significant interference
suppression benefits. We implement the channel estimation scheme on
a testbed of software radio clients to demonstrate its practical feasibil-
ity. Further, we evaluate the performance of LSR using extensive signal
strength traces from 802.11g Access Points equipped with eight element
antenna arrays in an indoor office environment. The results indicate that
LSR achieves close to the performance obtained with an optimal scheme
that uses accurate channel estimates and also improves the median sum
rate of indoor users by up to 2.7x over competing approaches.
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1 Introduction

The growing density of wireless networks and limited spectrum availability are
posing severe challenges to achieving high performance in wireless networks.
Consequently, significant attention is being devoted to improving the number of
successful concurrent transmissions in a given network area (also called spatial
reuse). Due to their ability to control signal transmissions spatially, smart an-
tennas have emerged as promising candidates to achieve high link throughput
and to improve the spatial reuse by interference suppression.
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Although smart antennas have been shown to significantly improve the spa-
tial reuse (by interference suppression) in theory [1], relatively few works have
focused on whether the promised gains are achievable in practice or the design of
practical solutions to realize those gains. Interference suppression algorithms can
be classified into two main groups, namely coordinated and uncoordinated. Co-
ordinated beamforming algorithms [2], typically compute the best set of weight
vectors in a coordinated iterative manner. These algorithms yield the best per-
formance but are also the most complex. On the other hand, with uncoordinated
beamforming algorithms, the beamformers are computed at each AP in isolation.
A popular instantiation of this class is interference nulling through Zero-Forcing
(ZF).

Interference suppression between smart antenna links requires the estima-
tion of the channel both from the desired and interfering transmitters (i.e. APs)
at each of the receivers (i.e. clients). When the estimates are fed back to the
APs, a joint processing helps determine how each individual AP should adapt
its transmissions to maximize the signal to the desired client while minimizing
the interference to other clients. Thus, accurate channel estimation at the clients
is critical to realize interference suppression. However accurate channel estimates
are not readily available in legacy omni-directional clients. Further, even with
multiple antenna clients, they are available only at the physical layer of a sin-
gle link (e.g. 802.11n), but not at the higher layers where the decisions about
joint beamforming or multi-link scheduling must be taken. Additionally, prac-
tical networks must accommodate a variety of client platforms (smart phones,
VOIP phones, laptops, etc) from several different manufacturers and all of them
may not provide the required information for taking medium access decisions.
Given the above challenges, the key questions to be answered are: (i) Can chan-

nel estimation be realized without requiring hardware changes at the clients? and
(ii) Can we enable interference suppression and achieve spatial reuse in practical

networks which comprise such clients?
We establish that the answer to both the above questions is affirmative but

relies on appropriate algorithm design for channel estimation and link schedul-
ing. We showed in our previous work [3] that single-link channel estimation and
beamforming is possible even with conventional clients using just received power
measurements and no hardware/software changes 1. However, in this work we
first show that a straight-forward extension of that approach has poor accuracy
and scalability when applied in a multi-link scenario. We design several mech-
anisms to ensure that the channel estimation using just RSSI measurements
is both accurate and scalable in a multi-link scenario. Given accurate channel
estimates, the next step toward realizing network level gains of interference sup-
pression is link scheduling. While the large potential set of links in a dense AP
deployment makes this problem especially challenging, we propose a simple and
light-weight scheduler that selects the right subset of links to be concurrently
active so that the aggregate network throughput is maximized. We show that the

1 Received Signal Strength Indicator (RSSI) is readily provided by all cards without
additional software requirements
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proposed scheduler is scalable. i.e. it provides benefits close to an optimal solu-
tion involving brute force search over all combination of links without incurring
the exponential complexity with increasing number of links. We call our solution
that integrates the above algorithmic components Light-weight Multi-Antenna
Spatial Reuse (LSR). LSR performs both accurate channel estimation and link
scheduling without requiring changes at the clients and keeps the overheads low
compared to competitive approaches.

To evaluate the practical benefits of LSR, we develop a testbed of six 802.11g
APs equipped with eight element antenna arrays and six software radio clients in
an indoor office environment. We implement the multi-link channel estimation
on the testbed and identify that the beamforming vectors computed with RSSI
measurements are very close to those obtained with ideal channel measurements
(with 95% correlation coefficient for over 90% of the locations profiled). Al-
though the channel estimation itself was successfully implemented, we identified
that realizing the complete ‘interference suppression’ gains involves addressing
new practical challenges such as the inability of the hardware to change patterns
fast and the power leakage from the transmit antennas. Despite these limitations,
We evaluate the real potential of interference suppression, by collecting a large
set of signal strength traces from our testbed. Our evaluation indicates that, LSR
improves the median sum rate by up to 2.7x compared to single user beamform-
ing strategies and by up to 2.3x compared to concurrent interference-unaware
beamforming. Interestingly, we observe that the median number of concurrent

links to be scheduled in indoor WLANs to maximize network throughput with

eight antenna APs is around 4. This observation has significant system design
implications and keeps the run-time complexity of LSR small for a significant
fraction of the topologies.

The rest of this paper is organized as follows. Section 2 provides a brief
background on beamforming with interference suppression and also discusses
related work in this area. Section 3 describes the solution components and also
summarizes the key properties of the solution. Section 4 presents a detailed
performance evaluation using real-world traces. Section 5 discusses issues and
Section 6 concludes the paper.

2 Background and Related Work

2.1 A Beamforming primer

In a scenario with M APs each equipped with k antennas and N clients each
with a single (omni-directional) antenna, the baseband channel model at client
n is given by,

yn =

M
∑

m=1

hmn
Txm + zn (1)

where each column vector hmn = [hmn1, hmn2 . . . hmnk]
T denotes the channel

between AP m and client n, xm is the k × 1 vector of transmitted signals from
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AP m, yn is the received signal and zn is additive White Gaussian noise with
zero mean and variance σ2. The transmitted signal is related to the symbol (sm)
to be transmitted by a weight vector wm as xm = wmsm. By appropriately
modifying wm, different beam patterns can be generated.

In directional beamforming Dir, the weights are set such that the beam pat-
terns point a main lobe in a certain direction. Typically a fixed set of such
beams (independent of the channel) are used to cover the the entire azimuth of
360 degrees. Such beams are known to be less effective indoors than outdoors
due to multipath fading [1]. On the other hand, when the beam is adapted to
leverage the multipath effects and maximize the SNR (Signal to Noise Ratio) at
the receiver, the technique is called adaptive beamforming. When applied to a
single link (which we refer to as Single User Adaptive Beamforming or SUA),
the weights that optimize the received SNR are related to the channel gains h

as w = h∗
|h| .

In a multi-AP setting, two types of beamforming are well known: (1) co-
ordinated beamforming, where the APs share the channel estimates from each
of their clients. (2) Uncoordinated beamforming where each AP only uses the
channel estimates from itself to the other clients. While coordinated beamform-
ing can provide higher gains than uncoordinated beamforming, it incurs more
overheads due to joint computation of weight vectors. Consequently uncoor-
dinated beamforming provides a good balance of performance and overheads
making it desirable in practice.

Zero forcing (ZF) [1], is a popular uncoordinated beamforming method used
for interference suppression. In ZF, the weight vectors are chosen by each AP
such that the received signal power at the intended client is maximized subject
to the constraint that the interference caused to the other clients is reduced to
zero. The solution at each AP is related to the N channel vectors from that AP
to the clients as described in [1]. For a 2 AP, 2 client case, the channel vectors
from AP1 are given as h11,h12 and the vectors from AP2 as h21,h22. In this
case, the weight vectors for AP1 is given as

w1 = h∗
11 −

hT
12h

∗
11

hH
12h12

h∗
12 (2)

where H denotes the Hermitian transpose and ∗ denotes conjugate. The weight
vector for AP2 is computed similarly. Compared to single user beamforming , a
rate improvement up to 2x can be obtained in a two link setting using ZF.

2.2 Related Work

Theory: There has been an abundance of theory and protocol works on smart
antennas [1, 4] in the areas of channel estimation, beamforming and schedul-
ing. Theoretical solutions to channel estimation [5, 6, 7] require accurate mea-
surement of the baseband symbols at the receiver. Further, they also assume
that antennas can be switched to create new beam patterns very fast (within
a burst of symbols) and/or assume complicated receiver designs that require
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prior knowledge of the channel covariance matrix or rely on reciprocity which
is difficult in the presence of interference.Recently in [8], the problem of user
selection and beamforming has been considered, where a single AP beamforms
to multiple clients simultaneously. Later works [2, 9] have also considered the
case where multiple APs cooperate to beamform to multiple clients. All these
solutions assume that perfect channel state information is available at the AP.

Practical solutions in indoor wireless networks: There has been relatively
fewer works on practical solutions to use beamforming in indoor wireless net-
works. In [10], the authors presented a system for downlink MIMO transmission,
whereas the work in [11] proposes a channel estimation algorithm for random
beamforming. Both these works use custom built narrow bandwidth hardware.
DIRC [12] uses a fixed set of steerable ‘directional’ beams (independent of the
channel) to increase spatial reuse whereas we use beams adapted to the chan-
nels that enable more spatial reuse compared to schemes that use directional
beams.Interference alignment and cancellation [13] optimizes the performance
by aligning the transmissions from multiple APs. However, it requires multiple
elements at the clients and accurate channel state information.

In our prior work [14], we studied single user adaptive beamforming using
software radios. Recently in [3], we considered the benefits of single-user beam-
forming using commercial Wifi devices. Both these works are intended to im-
prove single link performance, do not consider interference and cannot be used
to improve spatial reuse in a multi-link scenario. In contrast, in this work we
design new estimation and scheduling algorithms to enable multiple concurrent
AP-client links by interference suppression.

3 Light-Weight Multi-antenna Spatial Reuse

3.1 Network Model

We consider indoor WLANs where the APs posses multiple antennas arrays using
which they can manipulate their beams. The APs are connected by a high-
bandwidth ethernet connection. The clients posses a single (omni-directional)
antenna and follow the Wifi association model wherein a single AP can only
communicate to a single client at a time on a fixed channel. The objective is to
maximize the weighted sum rate of all clients, where the weights are adjusted
based on some fairness model.

3.2 Solution Overview

In this section we present our solution for improving spatial reuse in high den-
sity wireless networks which leverages the interference suppression capabilities
of APs equipped with multiple antennas. The overarching goal is to design a
solution which does not have sophisticated and unrealistic requirements and can
be deployed in a WLAN without significant changes at the clients. We call our
solution Light-weight Multi-antenna Spatial Reuse solution (LSR).
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LSR consists of two main components, namely a light-weight channel esti-
mation scheme and a low-complexity beamforming and scheduling scheme. The
first component of LSR is a technique to perform channel estimation in a multi-
ple AP multiple client Wifi network using just RSSI measurements at the client
devices. i.e. LSR does not require any phase or baseband symbol measurement at
the receiver. Conventionally channel estimation involves using special training
symbols at the transmitter and enhanced receivers that provide both the mag-
nitude and phase of received symbols [1]. While this has been accomplished in
the open-loop context in 802.11n receivers, it is still non-trivial to feed it to the
APs and perform closed-loop beamforming. Additionally, legacy clients do not
have sophisticated hardware to provide channel estimates. Combined with the
large variety of Wifi clients (e.g. PDAs, laptops, smartphones, etc), current tech-
niques leave a significant fraction of Wifi clients unable to leverage beamforming.
In contrast to conventional estimation procedures, LSR uses an intelligent an-
tenna excitation scheme that relates the RSSI to the channel gain magnitudes
and the differential phases. While we introduced the idea of estimating beam-
forming coefficients for single AP beamforming in [3], it is unclear whether they
can be applied to multi-link beamforming. We first show that a straight-forward
extension of the single AP procedure would suffer from poor accuracy and scal-
ability when applied to a multi-AP setting. Then, we introduce optimizations
to accommodate multi-link channel estimation. The second component of LSR
involves selecting the right set of links to perform joint beamforming. Here LSR
incorporates a Zero Forcing beamformer and a novel scheduler that identifies the
best subset of links to operate on, while keeping the overall complexity low.

3.3 LSR Channel estimation

We first revisit the basic procedure for single link estimation [3] and describe its
enhancement for multiple links.

Fig. 1: LSR channel estimation.
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Single-Link channel estimation: We briefly summarize the idea of received
power based channel estimation for single link beamforming that we presented in
[3]. The key idea is to estimate ‘differential’ channel phases (instead of absolute
channel phases) by employing tandem activation of more than one antenna and
using received power estimates. Assuming a channel model given by 1, when a
single antenna is activated at a time, the received power is dependent only on
the channel magnitude and is given by Pi = |hi|2 (assuming that the transmit
power is unity). Hence the information about the channel phase arg(hi) is lost
when the power is computed. In contrast, by the tandem activation of more
than one antenna element, the effects of the channel phases are also reflected in
the received power in a manner that depends on the relative channel phases. i.e.
when two elements i and j are activated simultaneously with equal weights (such
that the transmitted power still adds up to unity), the received signal power can
be computed as Pij = |hi+hj |2. Thus, for tandem activation, the received power
Pij is given as

Pij = Pi + Pj + 2
√

Pi.Pj .cos(θij) (3)

where θij is the channel phase difference between hi and hj . The resulting power
at the client depends on the relative channel phase θij . When θij = 0, the signals
combine constructively causing the powers of the individual elements to add up.
However, when θij = 180 the signals combine destructively causing the received
power to be the difference of the powers transmitted from the individual anten-
nas. Hence, the change in the received power across a strategic set of activations
can be used to identify the relative channel phase between the channel gains by
rewriting Equation 3 as

θij = cos−1 Pij − Pi − Pj

2
√

Pi.Pj

(4)

By repeating this idea for pairs of antenna elements, the relative phases and the
channel magnitudes can be obtained as described in [3].

Multi-link vs multiple single link estimation: In a M-AP N-client net-
work, a straight-forward application of this procedure would be to perform the
basic algorithm for each AP-client pair (All Pairs Estimation-APE). APE has
the following issues. (1) The channel estimation for each AP-client pair would
be separated significantly in time. Since interference suppression requires the
channels to the different clients to be estimated as close in time as possible,
the accuracy of the estimates could be affected. (2) The excitation overhead for
APE increases proportional to MN . In contrast, by interleaving the estimation
process across clients intelligently, the overhead in LSR is reduced significantly
to be proportional to M . (3) In APE, the feedback overhead from each client
(in packets) scales linearly with M . But in LSR, by using aggregated feedback
the overhead is restricted to a few packets for practical AP densities. Thus LSR
carefully considers these issues which are not addressed by APE.

Multi-Link Estimation and beamforming: A straight-forward extension of
the above procedure to a multi-link scenario affects the accuracy of the estimates.
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Further it increases the time required for estimation and the feedback overheads.
Hence, we develop additional mechanisms that must be designed into each step
of the single-link solution [3] for efficient multi-link estimation.
i. Simultaneous multi-client measurement:

As with single-link estimation, each one of the k elements at each AP is activated
in isolation first. Following this, one antenna is designated as the reference and
is activated with each of the remaining k − 1 antennas in tandem pairs. This
step is performed by each AP one after another by transmitting beacon packets.
All clients estimate the channels simultaneously from each AP, enabling the
measurements to be consistent across links. This also reduces the overheads
compared to exciting each AP-client pair at a time.
ii. Aggregated Feedback from clients to APs:

Single link estimation involves feedback of 2k − 1 received power values for the
activations of step i. described previously. Instead of transmitting the feedback
for each AP-client pair separately, the estimates from different APs are aggre-
gated at each client into one or more packets and transmitted to the AP to which
it is associated. An AP which receives the packet successfully broadcasts it on
the ethernet backbone to the other APs so that they can extract the channel
estimates required.
iii. Multi-link Ambiguity resolution:

For the channel estimates between each AP-client pair, the magnitudes of the
channel gains are obtained correctly. But the channel phases φij (in radians) have
an ambiguity due to the use of the cos−1 function in Equation 4. i.e. the correct
θij can be either of φij ,−φij , π − φij ,−(π − φij). The ambiguity is resolved by
tandem activations with the estimates of Steps i and ii as described in [3] across
each AP-client pair. As an additional optimization, the ambiguity resolution can
also be performed by applying the interference suppression weights (instead of
single link beamforming weights) across pairs of antennas so that the overhead
of ambiguity resolution is reduced compared to that in [3].

Properties: The previously described channel estimation approaches uses as-
sumptions about the channel coefficients and channel noise. While we experimen-
tally showed that using power measurements provides single link beamforming
benefits [3], here we provide the analytical reasoning for the effectiveness of the
proposed solution for both single and multi-link beamforming. We briefly state
the following properties and refer the interested reader to [15] for the details.
P1. Channel magnitudes and ‘Differential phases’ computed by LSR

achieve the same beamforming benefits as using magnitudes and ‘ab-

solute’ channel phases.

Conventionally beamforming requires accurate estimation of the channel vec-
tor h both in magnitude and phase. However, LSR uses differential phases mea-
sured using RSSI. We show analytically that the interference suppression bene-
fits of LSR are close-to-ideal interference suppression benefits. We show how the
weight vectors using absolute and differential phases differ only by a complex
number whose magnitude is unity. Thus both the signal and interference powers
are the same in both cases.
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P2: For practical operating SNRs, thermal noise has minimal impact

on the accuracy of LSR.

We explore how thermal noise affects RSSI based channel estimation. We
show that for any AP-client pair, the differential phase estimate between two
elements i and j when using RSSI measurements is related to the accurate
differential phase and noise variance σ2 as

θ̃ij = cos−1 cos θij .|hi|.|hj |
√

(|hi|2 + σ2))(|hj |2 + σ2)
(5)

For practical Signal to Noise ratios (SNRs), the noise term is negligible com-
pared to the signal term. Hence, we obtain θ̃ij=̃θij .

The magnitude of the channel gains can also be obtained from the RSSI as
|h̃i| =

√
Pi or |h̃i| =

√

|hi|2 + σ2. Again for practical SNRs, this can be simplified

to yield |h̃i|=̃|hi|. Thus, the effect of thermal noise on the accuracy of LSR is
minimal as elaborated in [15].

3.4 Link Scheduling

Given a set of links, the above procedure estimates the channels using RSSI
measurements at the desired and interfered clients that in turn helps achieve in-
terference suppression. To achieve low complexity, we chose the ZF based beam-
forming solution, where each AP forces the interference power it causes to other
clients to be reduced to zero2. Thus, given the channel vectors hmn from AP
m to client n, ZF solution maximizes |hT

mmw|2 to the desired client m while
minimizing the interference to client n, namely |hT

mnw|2 = 0, ∀n 6= m.
However, the design of a MAC solution would also require the determina-

tion of the set of links (scheduling) that must operate concurrently using ZF to
maximize a desired system objective. To incorporate both throughput and fair-
ness, we consider the popular weighted sum rate as the system objective to be
maximized. For simplicity of discussions, consider a network with N co-channel
APs and one client associated with each AP. The proposed solution will also
apply to the case with multiple clients per AP. To determine which subset of
links must operate concurrently a brute force search could be employed. How-
ever, it would need to evaluate the system objective for all combinations of n
links, where n ∈ [1, N ]. This results in a total of

(

N

1

)

+
(

N

2

)

...+
(

N

N

)

= 2N com-
binations, making it exponential in N . To keep the scheduling solution scalable,
we propose a greedy algorithm to identify the set of concurrent links that runs
in O(N2) time, while yielding a performance comparable to that of the exhaus-
tive approach. Note that, one could also optimize the greedy algorithms further
to improve system performance. Our goal here is to provide a low complexity
greedy scheduler that will help us evaluate the performance of our RSSI based
interference suppression scheme (LSR) in a network-wide setting.

2 We note here that other closed loop MU-MIMO strategies can also be used at this
stage given that the channel estimates computed in LSR with RSSI are close to the
actual channel estimates as we show later.
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Algorithm 1 Link Scheduler for LSR

1: Run LSR to obtain the channel estimates for desired and interference links using
RSSI measurements.

2: L ← Set of active links; C = ∅
3: while C 6= L do

4: ℓ∗ = argmaxℓ∈L\C∑
k∈C′:C∪ℓ

T (ρk,C′)−
∑

m∈C
T (ρm,C)

5: Ŝ =
∑

k∈C′ T (ρk,C′)

6: if Ŝ > S then

7: C ← C ∪ {ℓ∗}
8: S = Ŝ

9: else

10: Exit
11: end if

12: end while

13: Run ZF(C) to obtain weight vectors wℓ, ∀ℓ ∈ C

14: Execute wℓ, ∀ℓ ∈ C

The algorithm (Algorithm 1) works as follows: First the channel estimates
are obtained using RSSI measurements for all the desired and interfering links
(step 1). The scheduler initializes the set of selected links C to an empty set
initially (step 2). At each iteration, it grows the selected set C by adding the
link from the remaining set L\C that provides the highest increase in the system
utility using the rate table T (ρ, C) for a given set of SINRs ρ for links in C (steps
4-8). The iterations stop when the system utility cannot be increased any more
by the addition of a link (steps 9-11). The scheduler then runs the zero-forcing
based beamforming solution on the selected set of links C to obtain the weight
vectors and executes them (steps 13-14). The while loop and step 4 contribute

to the time complexity and is bounded by N(N+1)
2 in the worst case, which is

O(N2).
Note that, the above algorithm does not require the division of the network

topology into multiple contention domains to determine the set of concurrent
links in each contention domain. Instead, by virtue of being greedy, it automat-
ically leverages the natural spatial reuse available in the network, to determine
links both within and across contention domains that can operate concurrently.

4 Performance Evaluation

4.1 Measurement setup

We perform experiments in a testbed that consists of six APs and six clients
deployed in an indoor office environment whose layout is shown in Figure 2.
Each of the APs is a commercial 802.11 b/g AP (Phocus Array [16]), which has
an eight element circular antenna array. Each client is a software radio which
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Fig. 2: Experimental Testbed.

employs the Universal Software Radio Peripheral (USRP [17]) for the hardware
and the GNURadio software [18] package along with the 802.11b code from
[19]. The AP provides a command line interface to set specific beam patterns
by writing weight vectors. We use this to implement the channel estimation
component of LSR. The excitation steps of LSR are implemented as user level
code on the Phocus Array.For every experiment, we also implement the complete
channel estimation proposed in our previous work [14], which we refer to as
‘perfect’ channel estimates. In both LSR and our previous work, the first stage
of channel estimation is performed concurrently. The ambiguity resolution is
performed with the perfect channel measurement procedure first, immediately
followed by LSR. We collect the channel estimate traces for both the schemes
across every pair of AP and client, across physical locations and across time
(multiple runs over several days).

We use the weight vectors for the 16 directional beams provided by the man-
ufacturer [16]. For the competitive strategies ZF and SUA, we use the estimated
channels to compute weight vectors. We compute the resulting Signal to Inter-
ference plus Noise ratio (SINR) for each of these strategies and the data rate
table for 802.11g systems for each link. This table maps an input SINR to a data
rate from 6 Mbps to 54 Mbps and is well known in the rate control literature
[20]. We compute the sum rate of the concurrent links as the final metric (i.e.
we use equal weights in our weighted sum rate objective function).

We organize the evaluation into three classes, namely channel estimation in
isolation, joint channel estimation and beamforming, integrated operation (which
includes channel estimation, beamforming and the scheduling components).

4.2 LSR Channel Estimation in Isolation

RSSI being a quantized estimate of the received power, results in a quantization
error that may affect LSR. To quantify the performance difference between using
full precision power estimates and RSSI values, we run the channel estimation
algorithm on a two AP-two client scenario using full (16 bit) resolution for power
and then with RSSI expressed as an integer in dB. Since we are interested in the
similarity in the direction between two vectors, we define the similarity Index
(SI) between two vectors as
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SI(a, b) =
|aHb|
|a||b| (6)

SI is the cosine of the angle between the vectors a and b. An SI value of 1
indicates that the two vectors are similar (highly correlated) whereas a value
close to zero indicates that they are not similar.
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Fig. 3: Two Link Similarity Index.
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Fig. 4: Three Link Similarity Index.

We first focus on a single pair of links in our testbed. We compute the weight
vectors for zero forcing and determine the similarity index between the weight
vectors computed using the ideal and RSSI measurements. The CDF of the
similarity index for several runs of two link scenarios in our testbed is plotted in
Figure 3. The figure reveals that the SI is very close to 1 for a majority of the
cases and at most goes down to 75% still indicating a good correlation between
the weight vectors using power and with RSSI.

We then explore if the weight vectors are also similar or more different for
three link zero forcing. We select subsets of three links (with fixed AP-client
association), and compute the three AP zero forcing vectors using both the per-
fect estimates and the estimates from LSR. For each link, we plot the similarity
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index (SI) in Figure 4. We observe from the figure that for all the 10 topolo-
gies, the similarity between the weight vectors is very high approaching 1. Thus
both perfect estimates and using RSSI measurements yield zero forcing vectors
which are highly correlated. Thus, LSR which requires RSSI measurements only,
enables close to ideal weight computation for practical operating conditions.
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Fig. 5: CDF of sumrates.

4.3 Joint LSR Channel Estimation and Beamforming

While our implementation of channel estimation operated successfully as de-
scribed in Section 4.2, we encountered two practical challenges when implement-
ing zero-forcing, (i) the inability of the hardware to update patterns quickly
and (ii) power leakage from the transmit antennas at the APs. We believe that
these can be overcome by better hardware and software designs in the future.
Nevertheless, we evaluate the practical benefits of the interference suppression
with LSR using realistic signal strength traces from our testbed. We consider the
aggregate rate of concurrent links employing LSR, and compare it with other
competing strategies.

Aggregate rate We are interested in studying how the aggregate rate varies
across different two link and three link topologies. For each of the two link runs,
we choose two out of six APs and two out of six clients (yielding

(

6
2

)

∗
(

6
2

)

= 225
topologies). We plot the CDF of the sum rates in Figure 6. The CDFs indicate
that the distribution of rates is similar when both perfect and LSR estimates are
used. Specifically, while more than 70% of the link configurations can sustain a
data rate of 108 Mbps with perfect estimates, with LSR almost 60 % can sustain
the same rate. The median rate is 108 Mbps, which is double the single link rate.
Similarly, for the case of three links we study the performance over 400 topologies
and plot the result in Figure 5. The resulting median rates are 162Mbps and 120
Mbps when using perfect estimates and LSR estimates. These results suggest
that LSR yields significant benefits for a majority of indoor locations and is also
close to the performance of zero forcing with ideal estimates.
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Fig. 6: Joint LSR channel estimation and beamforming: Two Link rates.

Comparison of strategies We are interested in analyzing the competitive ad-
vantage of LSR over other approaches. We consider the 225 link pairs (i.e two
link topologies) for this evaluation. We compare with directional beamforming
(Dir) [12] and adaptive beamforming (SUA) from an AP to its clients. Each
of these strategies can be employed either in (1) a time division manner or (2)
simultaneously across links. Activating multiple single user beamformed links
simultaneously can yield a high sum rate if the channels of the users are well
separated in vector space. Hence, for comparison, we consider the following four
strategies Dir-TDMA, Dir-concurrent, SUA-TDMA, SUA-concurrent. We im-
plement a search over all combination of beams with Dir to compare with an
ideal implementation of [12].
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Fig. 7: Joint LSR channel estimation and beamforming: Strategies - TDMA.

The histogram of the sum rates obtained with time division versions of these
strategies is presented in Figure 7 and for the concurrent versions in Figure 8.
From the figure, the following inferences can be made. (1) LSR outperforms both
the TDMA approaches by a factor of 2 in the median sum rate. (2) For more than
80 % of the link pairs, LSR outperforms Dir-concurrent and SUA-concurrent.
(3) The relative benefits of LSR are higher over SUA-concurrent than over Dir-



Practical Multi-antenna Spatial Reuse in WLANs 15

0 24 48 72 96 120
0

10

20

30

40

50

60

70

Sum Rate (Mbps)
Pe

rc
en

tag
e o

f o
cc

ur
en

ce
 

 

SUA−concurrent
Dir−concurrent
LSR

Fig. 8: Joint LSR channel estimation and beamforming: Strategies - Concurrent.

concurrent since SUA-concurrent has lesser configuration flexibility than Dir-
concurrent which can choose out of 16 ∗ 16 = 256 beam combinations.

4.4 LSR Integrated Operation

We consider an integrated operation of all components of LSR, namely the chan-
nel estimation, beamforming and scheduling.
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Fig. 9: LSR Integrated operations: Scalability of LSR.

Scalability with number of concurrent links We investigate how the per-
formance benefits provided by LSR scale with the number of concurrent links
as compared to ZF with perfect channel estimates. We feed in topologies with 2
link, 3 links, 4 links and so on upto 6 links.

The average sum rate for each case is plotted for optimal scheduling, greedy
scheduling with perfect estimates and LSR in Figure 9. From the figure it is
clear that the average rate for all three strategies is same for a small number of
links. However, as the number of links increases, there is a degradation in rate
due to the greedy nature of the algorithm employed in LSR. Further, when the
number of links is large, the weight vector computation involves more channel
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vectors and the errors in the estimation could also affect the sum rate. How-
ever, the evaluation reveals the following surprising observation. The maximum
degradation between optimal solution and LSR solution occurs around 5 links
where the throughput is reduced from 195 Mbps to 146 Mbps. Although there
is a degradation, we note that the performance of optimal Zero Forcing also
begins to saturate around 4 links and the degradation does not increase further.
Hence, LSR suffers minimal degradation while incurring much lesser complexity
compared to optimal zero forcing.
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Fig. 10: LSR Integrated operations:# of links chosen.

Comparison with optimal search and complexity We investigate the run-
time complexity of LSR under practical conditions by studying the impact of
number of concurrent links and the sum rates achievable. The run-time complex-
ity depends on the number of links at which the greedy algorithm terminates.
If the optimal number of concurrent links is N , then the worst-case time com-
plexity of O(N2) is always incurred by LSR. However, if the sum-rate optimal
number of links is smaller than N , LSR incurs lesser complexity in practice. To
study this, we generate 6! = 720 topologies with 6 APs 6 clients from our traces
by varying the AP-client association.
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For each topology, we determine the best sum-rate obtained by an exhaustive
search of 2 links, 3 links and so on upto N links and the number of links that
yields the best sum-rate. We then allow LSR to operate and determine the sum
rate and the number of operating links identified by LSR. The results are plotted
as histograms in Figure 10 and 11 for the optimal number of links and the sum
rate. The main observations are as follows: (1) With eight antennas at each AP,

for more than 45 % of topologies, 4 concurrent links is the best and for more than
35 % of the topologies activating 3 links yield the best rate. Thus the optimal
number of links is much less than the number of antennas at each AP. (2) In

practical indoor deployments, the run-time complexity of LSR is likely to be lower

than that expected in theory and brute force scheduling incurs a large complexity
that is not justified. (3) Around 55 % of topologies yield a sum rate around 150
Mbps. A very small number of topologies yields close to 250 Mbps and a smaller
set yields close to 50 Mbps. Thus, the association in multi-AP smart antenna
deployments is more important than their single antenna counterparts and a
range of benefits can be obtained based on the topology.
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4.5 Impact of channel time variation

We study the channel variation over time to understand how frequently beam
patterns must be adapted. To study this effect, we first estimate the channel and
compute weight vectors using the estimates. We then estimate the channel at a
subsequent time duration to see whether the previously computed weights can
be retainedin a two link scenario. We plot the Similarity Index between weight
vectors computed at consecutive two minute intervals in Figure 12. It can be
observed that the correlation is quite high for most of the time instants. The
corresponding sum rates are plotted in Figure 13. It can be observed that as long
as the correlation between vectors is greater than 95 %, the sum rate is retained
at the maximum value of 108 Mbps. When transient fluctuations exist, the rate
is reduced momentarily to 96 Mbps but is still quite close to the rate achieved
with current estimates. We also note that we are constrained by the hardware
in terms of how fast we can measure channels and write new patterns. With a
kernel space implementation of LSR on the Phocus Array, we believe that the
channel adaptation would be faster and the rate achieved would be closer to the
rate obtained using accurate and timely channel estimates.

5 Discussion

– Other beamforming and scheduling strategies: While the proposed solution
uses Zero Forcing and a greedy scheduling algorithm to obtain a good balance
between complexity and performance, other alternatives to these could also
be explored using the channel estimation component of LSR as is.

– MIMO clients: With the growing popularity of 802.11n, clients are likely to
have more antenna elements. We believe that LSR can be extended to such
clients and also combined with open-loop MIMO techniques for performance
improvement.

– Mobility: We have considered primarily static clients in an indoor environment.
While we believe that estimation and weight adaptation can be performed fast
enough to account for indoor mobility, the design of the adaptation algorithm
and its implementation are interesting directions to be explored.

6 Conclusions

In this work, we have developed LSR, a light-weight solution to obtain spatial
reuse benefits in indoor wireless LANs equipped with smart antennas. The core
components of LSR are: a scheme for multi-AP channel estimation which uses
simple RSSI measurements, a Zero forcing beamformer which uses these esti-
mates and a greedy link scheduler. We evaluate the solution using extensive
traces collected from an indoor office environment. Our evaluation reveals that
significant spatial reuse benefits can be obtained using LSR, and the median ag-
gregate rate of the network improves up to 2.7x compared to related approaches.



Practical Multi-antenna Spatial Reuse in WLANs 19

References

1. A. Paulraj, R. Nabar, and D. Gore, “Introduction to space-time wireless commu-
nications,” Cambridge University Press, May 2003.

2. Hilde Skjevling, David Gesbert, and Are Hjorungnes, “Low-complexity distributed
multibase transmission and scheduling,” Eurasip Journal on Advances in Signal
Processing, 2008.

3. Sriram Lakshmanan, Karthik Sundaresan, Sampath Rangarajan, and Raghupa-
thy Sivakumar, “Practical beamforming using rssi measurements on off the shelf
wireless clients,” in ACM Internet Measurement Conference, Nov. 2009.

4. R. Ramanathan, “On the Performance of Ad Hoc Networks with Beamforming
Antennas,” in ACM MOBIHOC, 2001.

5. “Ieee 802.11n working group draft. http://www.ieee802.org/11,” .
6. Y. (G.) Li, J. H. Winters, and N. R. Sollenberger, “MIMO-OFDM for Wireless

Communications: Signal Detection with Enhanced Channel Estimation,” IEEE
Transactions on Communication, vol. 50, no. 9, pp. 1471–1477, Sep 2002.

7. Hlaing Minn and Naofal Al-dhahir, “Optimal training signals for mimo ofdm
channel estimation in the presence of frequency offset and phase noise,” IEEE
Transactions on Communications, vol. 54, no. 10, Oct. 2006.

8. T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna broadcast channels with
limited feedback and user selection,” IEEE JSAC, vol. 25, no. 7, Sep 2007.

9. Chan-Byoung Chae, Takao Inoue, David Mazzarese, and Robert W. Heath, “Non-
iterative multiuser mimo coordinated beamforming with limited feedforward,” in
IEEE ICASSP, Apr 2008.

10. Dragan Samardzija, Howard Huang, Reinaldo A. Valenzuela, Theodore Sizer, “An
experimental downlink multiuser mimo system with distributed and coherently-
coordinated transmit antennas,” in IEEE ICC, 2007.

11. Balkan Kecicioglu, Ozgur Ozdemir, and Murat Torlak, “Opportunistic multiple
antenna systems: Channel estimation and experimental results,” in IEEE ICC,
2006.

12. Xi Liu, Anmol Sheth, Michael Kaminsky, Konstantina Papagiannaki, Srinivasan
Seshan, Peter Steenkiste, “Dirc: Increasing indoor wireless capacity using direc-
tional antennas,” in ACM SIGCOMM, Aug 2009.

13. Shyamnath Gollakota, Samuel D. Perli, and Dina katabi, “Interference alignment
and cancellation,” in ACM SIGCOMM, Aug 2009.

14. Sriram Lakshmanan, Karthik Sundaresan, Mohammad Khojastepour and Sampath
Rangarajan, “Towards adaptive beamforming in indoor wireless networks: An
experimental approach,” in IEEE Infocom (Miniconference), Apr 2009.

15. Sriram Lakshmanan, Karthik Sundaresan, Mohammad Khojastepour and Sam-
path Rangarajan, “Spatial reuse with smart antennas in indoor wlans,” in
http://www.nec-labs.com/∼karthiks/papers/tr-lsr.pdf, July 2009.

16. “Fidelity-comtech inc, http://www.fidelity-comtech.com,” .
17. “Ettus inc. http://www.ettus.com,” .
18. “Gnuradio project, http://www.gnuradio.org/trac,” .
19. “Adroit project, https://acert.ir.bbn.com/projects/adroitgrdevel,” .
20. Kishore Ramachandran, Ravi Kokku, Honghai Zhang and Marco Gruteser, “Sym-

phony: Synchronous two-phase rate and power control in 802.11 wlans,” in ACM
MOBISYS, 2008.



20 Sriram Lakshmanan et al.

A Complexity and overheads

In this section, we quantify the overheads incurred in LSR in terms of the number
of excitations at the transmitter and the number of feedback bits. For an M
AP-N client network, beamforming with interference suppression requires the
estimates of MN channel vectors. The first stage involves 2k − 1 excitations
since this is completed in parallel at all the clients together. The ambiguity
resolution step involves 4k − 4 excitations per Ap-client pair. Hence, the total
number of excitations can be shown to be 6k − 2 per AP-client pair. The the
number of receive observations that must be fed back is 3k − 2. With B bits to
represent each symbol 3, the total number of bits to be fed back from each client
to each AP is Os = (3k− 2) ∗B. Since the observations are aggregated, a single
client sends Os = (3k − 2) ∗B ∗M bits.

In practice, with 8 antenna elements and 16 bit precision, the total number
of excitations at each AP for each client is 43. Even with 20 bytes per excitation
(the size of a control packet in 802.11), the number of bytes to be transmitted
from the AP is 860 bytes. Since the excitation is in two stages, each AP would
need about two packets per client for excitation. In a 6 AP 6 client environment,
12 packets per AP leads to 72 packets for the entire estimation procedure. The
process for the entire network can be completed within one or two seconds. The
total feedback overhead from a client to each AP is limited to 44 bytes (i.e 22∗16
bits). Since multiple feedback packets can be aggregated, even with 6 APs, the
feedback overhead per client is just 264 bytes, which is less than a normal 802.11
data packet. Thus, the overhead of LSR channel estimation is very small and
can be easily accommodated in any deployment.

3 For instance, the number of bits used to represent each baseband sample magnitude
in the USRP is 16.


