On Effectively Exploiting Multiple Wireless Interfaces in Mobile Hosts

Cheng-Lin Tsao and Raghupathy Sivakumar Georgia Institute of Technology

> ACM CoNEXT '09 Dec 4, 2009 Rome, Italy

Introduction

- Multi-homed wireless devices
 - Laptops equipped with Wi-Fi, WWAN, Bluetooth, WiMAX
 - Smartphones equipped with Wi-Fi and 2.5G/3G
 - BlackBerry, iPhone, Google Android
 - Only one interface used at a time
 - Priority-based switching
- What is the best approach to leverage the multiple interfaces available at a mobile device in terms of user performance?

Experimental Testbed

- Real-life heterogeneous wireless testbed
 - Laptop
 - Atheros 802.11a/b/g PCMCIA
 - Verizon USB727 EVDO
 - Google Android G1
 - Embedded 802.11g
 - T-Mobile HSDPA
 - Desktop server
 - WAN emulator on Wi-Fi to mimic Internet

Motivation

- Simple aggregation
 - Ex. pTCP [ICNP`02]
 - Sum of available BW
 - Marginal benefits
- Achieving performance better than the sum of the parts?
- Leveraging heterogeneity
 - Wi-Fi: high bandwidth
 - 3G: high availability, allocated resources

Super-Aggregation

- Concept: transferring data over multiple cooperating interfaces w/ high-layer knowledge
- Design
 - Three generic principles
 - TCP-specific throughput enhancement in Wi-Fi + 3G
 - Extension to other protocols/wireless interfaces
- Realization
 - Client software changes that work w/ legacy servers
 - Layer-3.5 TCP acceleration in Wi-Fi + 3G networks
 - Prototyped and evaluated on laptop and smartphone

Principle 1: Selective Offloading

- Concept
 - Selectively offload certain portions of the transferred data to the low-bandwidth interface
- Relation to TCP: self-contention
 - Between uplink ACK and downlink DATA
 - PHY/MAC overheads
 - Degrading throughput by 30%~70%
 - Verified with bidir. UDP
 - 1464B data and 32B ack

Solution 1: Offloading-ACK

- Idea
 - Diverting uplink ACKs from Wi-Fi to 3G
- Challenges
 - Insufficient bandwidth on 3G
 - Long RTT on 3G degrades overall TCP throughput
- Solution
 - Fractional offloading
 - Opportunistic operation

Offloading-ACK Details

- Fractional offloading
 - Offloading sustainable fractions on 3G
 - Discarding ACKs carrying no additional information
- Opportunistic operation
 - Offloading when RTT inflation has little impacts, like cwnd more than a threshold
 - Heuristic: ssthresh value of TCP
 - Default value: 20 mss

Principle 2: Proxying

- Concept
 - Use the low-bandwidth interface for critical control when the high-bandwidth one is temporarily down
- Relation to TCP: blackouts
 - Blackout: fading or handoff
 - Vehicle net: up to 75 sec¹
 - Impacts
 - RTO timeout
 - Unnecessary idle
 - Slow slow-start

Impact from blackout

¹V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden, "A measurement study of vehicular internet access using in situ wi-fi networks," Mobicom `06.

Solution 2: Proxying-blackout-freeze

- Idea
 - Use the 3G link to notify the TCP sender about blackouts on Wi-Fi
- Challenges
 - Real-time blackout detection with low overhead
 - Freezing a TCP connection during blackout
- Solution
 - Hybrid blackout detection
 - Freezing TCP with flow control

Proxying-blackout-freeze Details

- Freezing TCP with flow control
 - Sending a zero-window advertisement on 3G to make TCP enter persist mode
 - Resuming the TCP connection w/ the original flow window via 3G
- Hybrid blackout detection
 - Passive monitoring of received packets/beacons
 - Active probing when no activity for a certain period
 - ICMP probing if no packet for more than 200 ms

Principle 3: Mirroring

- Concept
 - Intelligently mirror the certain portion of the transferred data on the low-bandwidth interface
- Relation to TCP: random losses
 - Caused by interference, fading, or long distance
 - Interpreted by TCP as congestion
 - 0.1% packet loss rate reduces TCP throughput by 49%

Solution 3: Mirroring-loss-fetching

- Idea
 - Hide random losses in the original connection and fetch the lost packets in the mirror connection
- Challenges
 - Decoupling TCP congestion control and reliability
 - Mirroring the TCP connection on 3G
 - Efficiently fetching lost packets on 3G
- Solution
 - Loss distinction
 - Connection mirroring
 - Fast fetching

Mirroring-loss-fetching Details

- Loss distinction
 - Receiving corrupted frames indicates random losses
- TCP connection mirroring
 - Replay messages exchanged in the original connection
 - Offset TCP sequence numbers
 - Verify identical data received in the mirror connection
- Selected and fast fetching
 - Proactively acknowledge unneeded packets
 - Place a guard time before fetching the desired packets
 - 256 ms in prototype

Super-Aggregation Architecture

- Software Architecture
 - Client-only changes
 - Layer-3.5 middleware
 - Transparency to TCP & link layers
- Integrated operations
 - Offloading-ACK
 - Proxying-blackoutfreeze
 - Mirroring-loss-fetching

Performance Evaluation

- Performance metric
 - Overall throughput of bulk data transfer
 - Improvement over simple aggregation
- Improvement on Android
 - Offloading: 26%
 - Proxying: 35%
 - Blackouts (2 sec every 20 sec)
 - Mirroring: 52%
 - Random packet loss 0.3%

Offloading-ACK Analysis

- Avoiding TCP selfcontention in Wi-Fi
 - Packets captured with tcpdump
 - Self-contention observed in default TCP
 - Offloading-ACK utilizes the Wi-Fi downlink

Proxying-blackout-freeze Analysis

- Minimizing the impact from blackouts
 - Same blackout period introduced
 - Avoiding slow start
 - Quick resumption after link recovery
 - Maintaining cwnd and ssthresh

Mirroring-loss-fetching Analysis

- Recovering lost packets efficiently
 - Recovering 393 packets
 out of 100k packets (0.3%
 loss on Wi-Fi)
 - Fast fetching recovers lost segments 36x faster
 - Guard time makes sure packet delivery on 3G

Integrated Operation Performance

- Integrated operations
 - Evaluated with a scenario with blackouts and random losses
 - Enter 3G when t=5
 - 2-sec blackouts when t=50 & t=62.5
 - 1% packet loss at AP3
 - Improving throughput by 169% in the scenario

Related Works

- Simple aggregation
 - pTCP [ICNP`02], WAMP [Globecom`99], RMTP [ICNP`01], MC²
 [ToMC`07], MAR [MobiSys`04]
 - Wireless specific: R²CP [MobiCom`05] and PRISM [ToMC`07]
 - Requiring two-point deployment
- TCP enhancement over a single wireless network
 - Random losses: Snoop [MobiCom`95], WTCP [MobiCom`99]
 - Blackout: Freeze-TCP [Infocom`00]
- Multi-interface mechanisms for energy efficiency
 - CoolSpots [MobiSys`06], Cell2Notify [MobiSys`07], Context-for-Wireless [MobiCom`06]

Concluding Remarks

- Study super-aggregation of heterogeneous wireless interfaces
- Propose super-aggregation principles
 - Offloading-ACK
 - Proxying-blackout-freeze
 - Mirroring-loss-fetching
 - Generalization to rate-adaptive video streaming and more other wireless technologies
- Design and prototype the integrated architecture
- Evaluate on laptop/smartphone in testbed

Thank you!

