

Cue-based Networking using Wireless Sensor Networks: A Video-over-IP Application

Yeonsik Jeong, **Sriram Lakshmanan** Sandeep Kakumanu, and Raghupathy Sivakumar

GNAN Research Group Georgia Institute of Technology

Outline

- Introduction and Background
- System Overview, Operations and Design
- Algorithms and Implementation
- Performance Evaluation
- Conclusion

Introduction

- Wireless Sensor Networks (WSNs) conventionally focussed on sensing a phenomenon and communicating to some node in a wireless manner with specific application scenarios such as temperature monitoring, soil humidity monitoring and so on.
- As an orthogonal development, optimizing the behaviour of application and network protocols has been a continuing endeavour.
- This class of networked applications has a great potential to benefit from sensor networks.
- How can WSNs be used to optimize networked application performance, what benefits can WSNs give to networked applications and how do the two relate?

Background

- Cue based Networking (CBN)
 - Cues
 - Hints or signals about target environmental characteristics (especially those that are not otherwise available to the application)
 - Examples of cues
 - Whether a certain wireless channel is currently utilized
 - Whether the application user is present in the environment or not
 - CBN
 - Involves the use of *cues* about the environment/phenomenon of interest to *optimize* the performance of the networked application

Background

- Wireless Sensor Networks (WSNs)
 - Underlying platform for cue generation
 - Active sensors sense various physical phenomena
 - Smart techniques must be designed to obtain accurate cues from dumb sensors
- Networked Application: Video Delivery over IP
 - Bandwidth Management
 - A sustained bandwidth of at least 18 Mbps (6 Mbps encoded HDTV and 3 TVs) per home is needed
 - Average throughput of the popular IEEE 802.11g WLAN (in an urban environment) is under 18 Mbps
 - Channel Zapping Delay
 - The time taken for the current video channel stream to end and a new channel to be displayed
 - Acceptable threshold value is around 1 second

System Overview and Operations

System Architecture

- Video delivery application
 - Video is served from video head end to clients at home through the wired core network, the access link, and home networks (WLAN)
- Ecosystem of sensors forming WSN
- Unique characteristics of Video over IP:
 - Unlike analog cable TV, cannot broadcast all channels at a time due to bandwidth limits
 - Channel change takes time since all channels are not on the wire

System Overview and Operations

Specific Operations

- Video delivery application
 - Detecting inactive streams: When the absence of user is detected, the streaming should stop (or de-prioritized) to utilize the *bandwidth* efficiently
 - Intelligent Pre-fetching: When user intend to switch the channel, prefetching should be performed to reduce the *channel zapping delay*
- WSNs
 - When a person sits on a sofa, the light intensity or accelerometer orientation change
 - When a person pick up a remote, the accelerometer orientation changes
- Cues
 - User watching the TV
 - Remote control position

Solution Design

- Basic Data Collection Strategies
 - Continuous reporting
 - The sink has a complete picture of the network at all times
 - It incurs the cost of all nodes sending messages continuously
 - Event-driven reporting
 - Information is sent only when required
 - A clear static threshold must be known a priori
 - Limited idea about the network
 - Higher probability of missing events on losses

Solution Design

- Timeliness/Robustness Trade-off
 - Timeliness
 - The property of detecting an event and conveying it to the sink with the minimum delay
 - Robustness
 - The property of detecting an event of interest reliably even in the presence of other sources that affect detection
 - Trade-off
 - Continuous reporting model unnecessarily increases detection time although allowing higher robustness
 - Event-driven model achieves significantly reduced detection delay at the cost of unreliable detection

Solution Design - Trade-offs

- Experimental Results illustrating the trade-offs
 - Setup
 - Surge application using 20 MICAz motes

Algorithms and Implementation

- Adaptive Probabilistic Reporting
 - Goal:
 - Performing an intelligent reporting
 - that provides energy and delay benefits close to that of the eventdriven model
 - but also provides significant reliability using multiple sensor views
 - Main idea
 - Adapting transmission decisions based not just on each sensor's perception but also on the information *overheard* from transmission of other sensors
 - Implementation:
 - Generate a random number for each change in sensor value to decide on transmission based on a suitable probability

Algorithms and Implementation

Algorithm

• When a node detects a change in sensed value, it calculates the probability according to a probability function given by:

$$P_i = \begin{cases} \min(1, \frac{\Delta S_i}{\mathrm{TH} - \sum_{k=1, k \neq i}^n \Delta S_k}) & \text{if } \sum_{k=1, k \neq i}^n \Delta S_k < \mathrm{TH}_i \\ 0 & \text{else}, \end{cases}$$

- Where $\triangle Si$ is the change in the sensed value for sensor i
- △Si is estimated as the change between the average of the previous value and the current value
- TH represents a static threshold
- If the change is sufficient to cross the threshold, it transmits
- Nodes overhear other node transmissions to identify the ∆Sj in the denominator of the equation of other nodes that have transmitted
- In this way, nodes that have sensed an event partially, transmit while balancing the number of nodes that transmit.

System Overview and Operations

System Architecture

- Cue interfaces
 - The sink is connected to a base station (BS) that aggregates all the data from the sink and generates the necessary *cues* about user behavior from the raw sensor information
 - BS/Sink (cue interfaces) can be viewed as a middleware solution for the various problems of the target application that the CBN serves

13/20

 Additionally, generic interfaces can be used across multiple applications

- Prototyping Testbed Setup
 - Systems
 - 3 TV/STBs (Linux)
 - 1 Video streaming server (Linux)
 - I BS/Sink (Windows)
 - Networks
 - 1 WAN emulator (Network Nightmare)
 - IEEE 802.11g WLANs
 - Sensor networks
 - MICAz motes with light and accelerometer sensors (Crossbow)
 - Video codec/streaming- VideoLAN Server/Client
 - MPEG-2 encoding
 - MPEG-4 streaming

- Prototyping Testbed Setup
 - Aware Home Research Initiative (AHRI) at Georgia Tech

- Macroscopic Results
 - Bandwidth Management

When the number of active TVs is less than three, the video rate drops are eliminated with the *CBN* solution

16/20

- Macroscopic Results
 - Channel Zapping Delay

When the remote is picked up, the other channel is pre-fetched and the zapping delay is reduced considerably with *CBN* solution

- Microscopic Results
 - Timeliness
 - The time taken in the proposed algorithm is very similar to the case of simple event-driven approach
 - Robustness
 - The proposed algorithm has the reliability of the continuous reporting approach

18/20

Conclusion

Summary

- We present a new approach called *cue-based networking (CBN)*
- We develop the CBN solutions in the specific application context of video delivery over IP using wireless sensor networks
- We demonstrate and evaluate the developed solution using a prototype implementation in a real home environment
- Ongoing Work
 - Extending the WSN platform to include both passive sensors (such as RFID) as well as active sensors (such as MICAz motes)
 - Handling additional video delivery challenges such as targeted content delivery using the proposed architecture

For more details visit: www.ece.gatech.edu/research/GNAN

Backup – differences from ubiquitous

- User experience vs network performance
- Mostly single-hop vs multi-hop
- Application specific vs general primitives
- Experimental details

Experiments

- How is the video rate measured in the experiments? Does VLC provide the instantaneous video rate ?
- How are the delays measured?
- How does the WSN data get fed into the VLC? Using Inter Process communication.. provide details
 - i.e WSN has a socket program or receive program (Xserve or xlisten?
 - Using surge as the routing protocol or Xmesh?)
 - Socket program on Sink laptop opens sockets to the VLC server and issues start/stop/pause commands
- How many runs? 10 runs
- Why 3.5 seconds delay? Application setup times, leave, join commands, network delays

Algorithm illustration

- Light sensor amplitude as a function of distance from the sensor is approximated well as an additive function
- When the sum of the changes cross a threshold, it can be used to detect the event although each of the sensors value themselves have not crossed a threshold
- Leverage this property in determining the probability of transmission
- For another sensor the sensor law might not be linear, but can be estimated from the sensing function during manufacture of the sensor.
- The total change in sensor value must cross a threshold for detecting partially sensed events

Why these sensors and not others?

- Using accelerometer and light is an example of how one can detect humans with dumb sensors
- Sophisticated sensors such as cameras cost more and are probably overkill for user detection
- In cases where cost is not a concern Video or IR cameras can be used.
- Our solution uses simple sensors but guarantees a high success rate with low false alarm
- Depending on cost, accuracy required the exact sensors can be chosen
- Irrespective of the type of sensors used, the tradeoffs described hold

802.11n

- Data, othertraffic on wlan
- Better video standards
- Channel zapping delays still remainBottleneck not on wireless link

