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Abstract—In this paper we present a new approach called
cue-based networking that uses hints or cues about the physical
environment to optimize networked application behavior. We
define the notion of cues and describe how cues can be obtained
using a wireless sensor network as the underlying platform.
We identify both the research and system challenges that need
to be addressed to realize benefits of the approach under a
target application of video delivery over IP networks. In the
process, we identify a key challenge of wireless sensor networks,
namely the timeliness-robustness tradeoff. We design an adaptive
algorithm that balances this tradeoff satisfying both timeliness
and robustness requirements. Through an implementation of the
video delivery application using the proposed algorithm in a
real home environment, we highlight the practical benefits of
the proposed approach.

I. INTRODUCTION

Optimizing the behavior of application and network proto-

cols has been a continuing endeavor since the origins of the

Internet. In this paper we present a new approach for net-

worked application optimization called cue-based networking
(CBN). CBN involves the use of cues about the characteristics

of the target environment for the application to optimize the

network-based delivery of the application.

While we define cues in more specificity later in the

paper, briefly cues are signals about target environmental

characteristics and examples can range from whether a certain

wireless channel is currently utilized to whether or not the

application user is present in the target environment. The goal

of CBN is to use such cues toward more effectively delivering

the application over the network. Examples of such use can

include from initiating channel switching based on current

channel usage to de-prioritizing content when the target user

is not currently actively utilizing the content.

Assuming CBNs can deliver enhanced performance, an

important question arises: how can the cues be generated
and converted into an application usable form? In this paper,

we present an approach that uses wireless sensor networks
(WSNs) as the underlying platform for generating cues and

converting them into an application usable form. The basis for

using WSNs as the underlying platform stems from the fact
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that the basic functionality of WSNs is to sense environmental

phenomena which is critical for generating cues. Perhaps,

equally importantly, the fact that general purpose WSNs sense

low level phenomena makes them a prime target for use with

a variety of applications that require different types of cues,

albeit complex ones. Thus, while general purpose WSNs can

serve multiple applications simultaneously, explicit effort has

to be given to translating the low level cues to the complex

cues usable by applications.
Since the notion of cues, and how the cues can be leveraged

by applications are highly application specific, we present

CBN in the context of a specific application: video delivery

over IP. Video traffic over IP data networks, including the

Internet, is rapidly gaining attention because of the impressive

loads it can impose on the network. While there are several

dimensions along which the application can be optimized,

our goal is to show how CBN can considerably improve

the performance of video delivery over IP. Specifically, we

tackle two well known problems in the application: poor video

quality vis-a-vis throughput performance, and high channel

zapping delay. We show how cues can be generated using

WSNs to appropriately address both the aforementioned prob-

lems. Using a prototype implementation in a real-life aware
home instrumented with a WSN, we demonstrate both the

motivation for the proposed approaches and the performance

enhancements achieved in using them.
Thus, the contributions of this work are three-fold:

• We present a new approach called CBN that utilizes

cues about the target environment to enhance networked

application performance. More importantly, we show how

WSNs can be used as the underlying platform to facilitate

CBNs.

• We develop the CBN solutions in the specific application

context of video delivery over IP and show what capa-

bilities the WSNs need to support in order to be able

to interface with a real-time application such as video

delivery, and how the simple cues generated by WSNs

can be translated into more sophisticated cues usable by

the application.

• Finally, we demonstrate CBN and how it helps video

delivery over IP using a prototype implementation of both

the video delivery application and the WSN in a real

aware home.



The rest of the paper is organized as follows. Section II

introduces the concept of CBN and highlights the challenges

in a typical networked application. Section III describes overall

system architecture and operations. Section IV describes the

research challenges and proposes algorithms to solve those

challenges. Section V describes the performance evaluation of

the implemented system. Section VI presents related work and

Section VII concludes the paper.

II. BACKGROUND

A. CBN

In this paper we introduce the notion of cues. Cues are

hints about application behavior or useful information relevant

to the application, which is not available in a conventional

communication model. Specifically, such cues are important

information from external sources which affect application

performance but are not perceptible to the core communication

network infrastructure. We describe the concept using the

following illustrative scenarios.

A CBN is one where networked applications utilize cues to

enhance application performance. Cues can be derived actively

from the network or passively without significant involvement

of the network. Cues can either be used to enhance an existing

application or to enable new services. As an instance, consider

the problem of channel management in wireless local area

networks (WLAN). If additional information about external

interference sources like a microwave is present, it can be used

to take better channel management decisions than just using

the information obtained from the WLAN itself. A CBN can

also enable new application services such as targeted delivery

of content for different users.

Although the CBN model appears to be related to ap-

proaches in the fields of ubiquitous or pervasive computing, it

is conceptually and architecturally different. First, the central

focus of the CBN model is to improve network performance

rather than the design of ubiquitous applications. Thus the

focus here is on the network. Further, techniques for enabling

a ubiquitous computing experience are aimed at seamless ex-

perience for the user and not focused on the optimizations that

are needed from a communication network standpoint. Thus,

new applications in the context of ubiquitous or pervasive

computing can also obtain network level benefits by using the

CBN model.

B. Use of WSNs for CBN

WSNs consist of a distributed network of sensors which

sense various physical phenomena such as light, temperature,

humidity, etc. Since they are used to collect information

about different events, they can form a natural platform by

which one can obtain cues. While one can consider different

sensors for sensing different events, a sensible approach here

is to design a generic WSN that collects information about

various physical phenomena. Also, a single infrastructure can

be shared by multiple applications thereby enabling better

utilization of information and minimal resource consumption.

On the other hand, using a generic sensor network to sense

a variety of events introduces the problem of reliable event

detection. So smart techniques must be designed to obtain

accurate information from dumb sensors.
Apart from these considerations, the ecosystem of a WSN

can consist of two types of sensors, namely active and passive.

Active sensors are independent entities with communication

and computing power and spend energy for these operations.

On the other hand, passive sensors (such as RFID tags) do

not spend energy and do not initiate communication and

computing tasks by themselves. In this paper, we consider the

use of active sensors only.

C. Video Delivery over IP & Associated Problems
Video delivery over IP networks is becoming an increasingly

popular application space, primarily due to the ease with

which content can be generated and distributed by anyone

without sophisticated help from content providers. Popular

instances of such ventures in the industry are YouTube [1] and

Joost [2]. With this technology, the choice of the video content

is on a per-user device basis rather than an en-masse delivery.

While the technology and architecture appear promising, there

are several challenges that must be tackled before the vision

of Video delivery over IP can be realized. The two main

challenges are bandwidth management and channel zapping
delay.

1) Bandwidth Management: The path traversed by video

content consists of different networks with different underlying

technologies and loads. Hence any one or more of these

components can cause a bandwidth bottleneck that limits

the successful delivery of video. By its nature, video is

different from other applications such as the web or email

as it consumes significant bandwidth and also demands some

level of quality of service support (in the form of data rate,

loss rate, and delay jitter). For instance, High Definition TV

(HDTV) is envisioned to require around 6 Mbps of sustained

bandwidth per stream. Coupled with this, the number of video

connections is known to be very high. Statistics in the U.S

reveal there are 266 million TVs as of 2005 [3] and the number

is growing at the rate of 3.5 Million a year with 3 TVs per

house on the average. This means a sustained bandwidth of at

least 18 Mbps per home in addition to other applications such

as data and voice which share the same links.
2) Channel Zapping Delay: It is the time taken for the

current video channel stream to end and a new channel

to be displayed. This directly impacts user experience. The

components that make up the channel zapping delay depend

on whether a unicast or multicast video session is used, but

consist of mainly I-frame delay and MPEG buffering, and

partially stream setup and join time, etc. Threshold values

for acceptable channel zapping delay have been identified as

around 1 second [4].

III. SYSTEM OVERVIEW AND OPERATIONS

In this section, we discuss the generic system architecture

for the target video delivery application that we consider.

Further, we also discuss the high-level operations that enable

the CBN of the system.



A. System Architecture and Connectivity

Fig. 1 shows a generic architectural topology of video

delivery over IP networks and the various components of

the associated cue generation network that aids the video

delivery network. The various components of the architecture

are described below.

1) Video Delivery Application: Video is served from several

video servers (video head end) to clients at a home through the

wired distribution network and the last mile access connection.

The last mile connection, which is depicted as an access link

in Fig. 1, uses xDSL or cable modem as the technology and

possibly Fiber to the Home (FTTH). Inside the home, the

distribution to the different TVs can be either through a wired

or a WLAN. Each TV has an associated set-top box (STB)

that receives the IP packets and converts them into a video

stream for the TV. Nowadays more intelligent STBs are being

designed to accommodate sophisticated actions such as user

preference based content delivery, a popular example of which

is Video-on Demand (VoD).

2) WSNs: A WSN consists of an ecosystem of active

sensors (such as MICA motes [5]) that generate raw sensor

information. We assume that the sensors are general purpose

sensors and are a part of generic home sensor networks.

Different kinds of sensors such as light or accelerometer are

mounted on various objects in the home like a remote control,

sofas, chairs, and beds to detect light or orientation of an

object. All the sensors communicate to a centrally located sink

on a wireless channel. The link between an individual sensor

and the sink can be either a one hop wireless connection or a

multi-hop link through other sensors. The sink sends queries to

the different sensors and also collects the information provided

by the individual sensors.

3) Cue Interfaces: The sink is connected to a base station

(BS) that aggregates all the data from the sink. The BS also

generates the necessary cues about the user behavior from

the raw sensor information. Once the cues are generated they

are sent to the STBs associated with the different TVs in

different rooms. The STBs make the necessary decisions using

the cues to optimize the video delivery network. The STBs

also send commands such as play, pause, stop, etc to the

video delivery network. Fig. 2 shows how the WSN interfaces

with the video delivery network through the BS and sink
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(cue interfaces). Essentially, the interface can be viewed as

a middleware solution for the various problems of the target

application that the CBN serves.

B. System Operations

The different components in the system perform different

functions. The individual operation performed by each of the

components is described below:

1) WSNs: The different sensors (light, accelerometer, or

temperature) are used to collect raw information about the

physical environment. Examples of information that lead to

cues are changes in intensity of light, changes in orientation of

an accelerometer sensor, and temperature changes. Essentially,

this step is used to detect the various physical phenomena that

lead to cues. In the current example of video delivery, the

different sensors in the room detect the information about the

user activities. For example, when a person sits on a sofa,

the light intensity at one or more sensors mounted on the

sofa changes. Further, the orientation of accelerometer sensors

on the sofa also change. The information detected by these

sensors is used to generate meaningful cues that can be used

by the video delivery application.

2) Cue Interfaces: Once the physical phenomena are de-

tected by the sensor devices, the next step is to generate

meaningful cues from the information detected. The challenge

here is to use a limited number of sensors that provide

physical information and take informed decisions about the

required application cues. Specifically, we have to represent or

obtain information depending on the cue from a combination

of multiple sensor values intelligently. This combination is

required because a single sensor may not give the complete

information required by a cue. This is because the actions that

lead to cues are captured through indirect means, using simple

(and dumb) sensor devices. The various cues that are used in

the video delivery example are: (i) User watching the TV; (ii)

Remote control position.

We first discuss the cue about the user watching the TV. For

simplicity, let us assume that a user is watching the TV only

if he/she is sitting on a sofa. Two different kinds of sensors

mounted on the sofa, namely light and accelerometer sensors,

provide the information for this cue. Since a single sensor

would not reliably capture the event, it is necessary to use

more than one sensor. If we suppose that light is used to detect

human presence, the ambient lighting conditions will affect

the sensor reading. Hence an accelerometer sensor is used to



augment the information provided by the light sensor. Thus

for varying ambient conditions, the sensors must be able to

provide a fairly accurate detection of user presence. For the

cue about the remote control position, an accelerometer sensor

mounted on the remote is used to detect if a user is using the

remote or not.
While it is true that any generic WSN can be used for

generating the cues, there are several key challenges that have

to be addressed before the WSN can be integrated into the

system. These challenges and their solutions are described in

Section IV.
3) Video Delivery Application: Once the sensor values are

processed to obtain cues, the application must be designed

to utilize them properly so that actual benefits can be seen.

For instance, consider the user watching the TV. When the

presence of user is detected, the TV content should start

streaming to the TV. When the absence of user is detected,

the streaming should stop (or de-prioritized). This process

will allow an efficient management of the network bandwidth,

because content is delivered only when actually required. The

problem of channel zapping delay was identified earlier. A

solution to this problem is to pre-fetch content of adjacent

channels before the user actually changes the channel1. This

pre-fetching should be performed only when the user actually

wants to switch the channel. We assume that a channel will

be changed only when a user picks up the remote. Thus

the cue about the remote control position, provided by the

accelerometer sensor, can be used to infer the user intent to

change channel.

IV. ALGORITHMS AND IMPLEMENTATION

A. Timeliness and Robustness Tradeoff
1) Basic Strategies: In this section we highlight the impor-

tant challenges that occur when a WSN is used for realizing

the benefits of CBNs. We discuss two commonly used data

collection strategies in WSNs namely, continuous reporting
and event-driven reporting, and describe why each of these in

isolation is not useful for the CBNs.
In continuous reporting, each sensor transmits the sensed

values periodically to the sink. This model has the advantage

that the sink has a complete picture of the network at all times.

This advantage incurs the cost of all nodes sending messages

continuously. In event-driven reporting, sensors transmit in-

formation only if they perceive a change in the sensed value.

Usually a threshold is set and when the sensed information

changes beyond the threshold, the sensor reports the change

to sink. The advantage is that information is sent only when re-

quired. A hidden requirement of this model is that a clear static

threshold must be known a priori. Consequently, if either the

threshold varies with different factors or the event of interest is

not known a priori, this model cannot be directly applied. Also,

from an energy perspective, event-driven reporting consumes

lesser energy when compared to continuous reporting, due to

the reduced number of transmissions.

1Designing an intelligent pre-fetching algorithm is beyond the scope of this
work. We refer the interested reader to [6] for one such algorithm.

2) Timeliness: Timeliness is defined as the property of de-

tecting an event and conveying it to the sink with the minimum

delay. The total delay is composed of sensing, processing,

and transmission delay. Of these, sensing and processing delay

are functions of the sensor hardware. From a communication

standpoint, the relevant component is transmission delay. The

transmission delay depends on the packet size used, the

operating data rate of the node, and especially congestion

in the network. For continuous reporting, the event detection

time depends on both the reporting period and the time taken

for packets to reach the sink. When the reporting rate is low,

the dominating factor is reporting period, and when the rate

gets high, contention in the network lead to increased packet

transmission times. Thus in either case, continuous reporting

has problems. On the other hand, event-driven reporting incurs

minimum delay owing to the fact that packets are sent if and

only if an event occurs. This reduces the contention delays in

the network as there are fewer packets.

3) Robustness: Robustness is defined as the property of

detecting an event of interest reliably even in the presence of

other sources that affect detection. Robustness is a significant

challenge when at least one of the following conditions

exist: (i) The ambient conditions vary, thus affecting the

phenomenon of interest; (ii) Other undesired sources such

as unintended interferences corrupt the measurement; (iii)

Sensors do not have sensitivity for all regions of interest. All

of these have enormous practical significance and a practical

solution must address challenges arising out of the above

factors. Continuous reporting achieves high robustness because

all data sensed by the sensors is reported to the sink. The sink

can use all the information and process them jointly to elimi-

nate/reduce the effects of the above mentioned factors. Event-

driven reporting does not have a high robustness. Specifically,

each sensor performs a local decision and reports only when

a threshold is crossed, whereby the ability to perform a global

decision is lost.

4) Tradeoff Issues: It can be observed that continuous re-

porting model unnecessarily increases detection time although

it allows achieving of higher robustness. On the other hand,

event-driven model achieves significantly reduced detection

delay at the cost of unreliable detection. Hence neither of

these approaches by themselves are sufficient for solving the

problem at hand.

5) Experimental Results: To validate the above arguments,

we perform measurements in a real-life setting. MICAz motes

from Crossbow Technology [5] are used as the sensor nodes.

All sensors are directly connected to the sink and the Surge
application [7] is used for the application. For the continuous

reporting, we use the default code by just changing the initial
timer rate variable. For event-driven reporting, we add the

thresholding logic to the code. MICAz datasheets specify a

possible minimum reporting interval of 300 ms.

Fig. 3 describes the event detection time as a function of

the reporting rate. For this experiment twenty sensor nodes

are used. It can be observed that as the reporting rate is

increased, the event detection time is reduced. However, as
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we increase the reporting rate to the maximum (i.e. reporting

interval of 300 ms), an event detection latency of about 580

ms is observed (which is slightly greater than that of reporting

rate of 1). In the worst case, up to 3 second of latency is

observed, which is unacceptable for the real-time application.

Thus, when the number of nodes is high, packet delivery

takes much longer for each node on the average. Further,

energy drain is higher with the maximum reporting rate. The

event detection time for event-driven is also shown. It can be

observed that it has a constant and low detection delay.

Fig. 4 depicts the robustness results. Three MICAz sensors

are placed on a sofa at uniform distances. Five positions of

person sitting are identified on the sofa. (See Fig. 5.) This

experiment is performed on each position for each reporting

scheme, and for each trial twenty events are repeated. As

indicated, the positions where the sensor location and event

location are exactly aligned, the detection is good for all

schemes. The difference between the schemes becomes clear

from the intermediate positions (for example, location 2 and 4)

where using event-driven with two kinds of thresholds causes

a very low success rate because each sensor value has not

crossed the threshold. On the other hand, with continuous

reporting, the sink uses the sensor values of both sensors

and uses the topology information to reliably detect that the

person is sitting on the sofa. Fig. 4 clearly demonstrates the

robustness problem of event-driven schemes and the improved

performance of continuous reporting schemes.

With a joint observation of the two graphs, one can observe

that the trends for continuous and event-driven schemes are

different for the two metrics. This clearly highlights the

timeliness-robustness tradeoff. Consequently if each of these

techniques is used in isolation, it is ineffective to achieve

the goal of cue generation. Hence to simultaneously achieve

the best benefits of both techniques, an intelligent scheme

is needed, which ensures robust detection while keeping the

delay to a minimum. Such an intelligent scheme should use

multiple sensor observations when and only when needed.

Also the reporting should be only in response to events

detected by the sensor.
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Fig. 5. Illustration of event and sensor location.

B. Adaptive Probabilistic Reporting

1) Overview: We now propose and discuss an adaptive
probabilistic reporting scheme to solve the challenges. The

main idea is to adapt transmission decisions based not just on

each sensor’s perception but also on the information overheard

from transmission of other sensors. Depending on the value

overheard, each sensor can choose whether to transmit or not.

In this way, the sink will receive multiple messages when

needed so that robustness is enhanced. Overhearing is used to

facilitate more intelligent reporting than separate reporting by

each sensor. The probabilistic nature ensures that a distributed

mechanism can be designed.

To clarify the idea further, consider the Fig. 5 again. When

a person occupies an intermediate position where neither of

these sensors can determine user presence individually, the

transmission of both sensors would be needed (assuming a

certain light threshold to determine if a person is sitting on

a sofa or not). We need both the sensors adjoining the event

to report. Thus, for cases when the event is clearly detected

by one sensor, it is sufficient for that sensor alone to transmit.

However, for events that are only partially detected, we need

multiple sensors to transmit with increasing probabilities. The

increasing probability is because when a single sensor reports

a partial detection, it is likely that the other sensor values are

necessary to determine if it is truly an actual event (such as

user sitting) or a stray incident (such as a book thrown on the

sofa). In this way, false positives are minimized. Similarly,

the improved reliability provided by multiple sensor readings

helps to minimize false negatives.

2) Algorithm Description: The reporting condition can be

formally described as follows. Each sensor transmits a mes-

sage with a probability proportional to the intensity of the

event to be detected. Also, this probability is updated when



Constants/Variables:
1 MAX DELTA: maximum difference between sensor values
2 MAX RAND: maximum random number
3 sensorStatus: current sensor status, S Init or S Pending
4 curMaxDelta: current maximum delta for probabilistic transmission
5 curVal , prevVal : current and previous sensor value in sensor
6 deltaVal : difference between the current and previous sensor values
7 overheardDeltaVal : delta value overheard from other sensors

Functions:
8 s decideTransmission() {
9 get a random number, randNum;

10 if randNum/MAX RAND < min(1, deltaVal/curMaxDelta)
11 sensorStatus ← S Init;
12 prevVal ← curVal ;
13 transmit curVal and deltaVal to the sink;
14 else
15 reset the timer if there is a timer set before;
16 sensorStatus ← S Pending;
17 set a timer;
18 } // probabilistic transmission function in sensor

19 s overhearHandler() {
20 if sensorStatus == S Pending
21 curMaxDelta ← curMaxDelta − overheardDeltaVal ;
22 s decideTransmission();
23 } // interrupt handler for packet overhearing in sensor

24 s timerHandler() {
25 sensorStatus ← S Init;
26 prevVal ← curVal ;
27 } // interrupt handler for the timer set in sensor

Main Procedure:
// interrupted by s overhearHandler() and s timerHandler()
28 sensorStatus ← S Init;
29 while reading a sensor value
30 if sensorStatus == S Init
31 curMaxDelta ← MAX DELTA;
32 deltaVal ← curVal − prevVal ;
33 s decideTransmission();

Fig. 6. Adaptive probabilistic reporting algorithm at sensor.

other nodes transmit. Thus if ΔSi is the change in sensed value

observed by sensor node i and there are totally n sensors which

detect this event, the probability of transmission is given as

Pi =

{
min(1, ΔSi

TH−∑n
k=1,k �=i ΔSk

) if
∑n

k=1,k �=i ΔSk < TH,

0 else,
(1)

where TH is a threshold value set once when the WSN

is designed. This reporting condition ensures probabilistic

transmission such that multiple sensors transmit when the

event is not detected strongly by any of the sensors. If the

event is detected strongly by a single sensor, only that sensor

reports. (i.e. If
∑

ΔSk ≥ TH, then Pi = 0.) But as long

as one sensor detects partially, the other overhearing sensors

transmit with increased probability.

The proposed technique has the following major differences

compared to alternate techniques such as event-driven report-

ing using a low threshold. When using a low threshold for

detection, the sensitivity of the system is increased thereby

leading to transmission of much more packets than required.

Transmission of a large number of packets affects energy and

lifetime of the nodes apart from increasing contention and

associated medium access delay. This could be severe when

the deployment consists of a large number of sensors forming

a generic sensor network. Further, the use of distributed

collaboration is a distinguishing feature of the technique.

Consequently, extensive calibration for getting exact value of

threshold is not required by the proposed scheme.

The aim of the proposed algorithm is to perform an intel-

ligent reporting that provides energy and delay benefits close

to that of the event-driven model but also provides significant

reliability using multiple sensor views. It also addresses the

practical challenge of cumbersome calibration by the user by

intelligently adapting transmissions based on observed sensor

values. The central idea is to utilize sensor pattern information

along with the topological information to make intelligent

decisions on the occurrence or non-occurrence of an event.

The algorithm is described in detail in Fig. 6.

3) Extensions: The algorithm defined above can be ex-

tended in the following ways.

• Aggregation Function: In the algorithm, a linear aggre-

gation function is assumed for the sensor pattern. The

sensed values are such that for different positions of

the event, the aggregated value crosses a threshold for

legitimate events and lies below for illegitimate events.

The aggregation function of linear summation is verified

to work for the present case of using light sensors in

Section V. However, for different sensors this law could

be different.

• Virtual Sensors: Here the transmission probability pro-

portional to the change in sensor values is used. This is

found to be satisfactory, when the number of sensors is

large. However, when the number of sensors is small, the

probability of not transmitting in response to an event

might still be non-negligible. In this case, each sensor

could be considered to have a number of virtual sensors.

The idea of virtual sensing is to consider many virtual

sensors in place of a single physical sensor with the

sensed value equally divided between them. Now the

probability of transmission if carried over these virtual

sensors will be high, thereby reducing missed detections.

In Section V-C we call this scheme enhanced adaptive
probabilistic reporting.

• Correlation Awareness: The sink needs to be aware of

the correlation in data sent by different sensors, which

are nearby and sensing the same events. For instance, if

two sensors are deployed physically close to each other,

there might not be new information gained by using

both observations than a single observation. This way it

can prevent a wrong decision by only considering those



sensors that have independent views of the event.

V. PERFORMANCE EVALUATION

In this section, we discuss the testbed setup for our im-

plementation and discuss the performance evaluation of the

proposed algorithms using the testbed.

A. Prototyping Testbed Setup

All our implementations have been made in the Aware

Home at Georgia Institute of Technology. The Aware Home

Research Initiative (AHRI) [8] is an interdisciplinary research

endeavor at Georgia Tech aimed at addressing the fundamental

technical, design, and social challenges in a home environment

that is aware of its occupants whereabouts and activities.

The physical deployment of the various devices, used in the

testbed, is shown in the floorplan diagram of the Aware Home

in Fig. 7. Three TVs are used in three different rooms (living

room, Bedroom 1, and Bedroom 2). Three laptops, running

Fedora Core 7 Linux, are used as the STBs serving these

TVs. Another desktop, running Fedora Core 7, is used as

the video streaming server. A Network NightMare network

emulator [9] is used to emulate the Internet. The video content

is streamed to the STBs in the different rooms using an

802.11g AP. A fourth laptop, running Windows XP, works

as the BS (described in Section III-A). MICAz motes are

used as the wireless sensor devices and operate on a frequency

band of 2.4 GHz. Light and accelerometer sensors are used for

the generating the necessary cues. They are mounted on the

sofa in the living room, on a chair in Bedroom 1, and on the

remote for the TV in the living room. The optimizations for

bandwidth management and zapping delay are performed only

for the TVs in the living room and Bedroom 1. The TV in the

bedroom 2 is used only for limiting bandwidth of the 802.11g

wireless channel. MPEG-2 is used to encode raw video files

and MPEG-4 file format is used to stream MPEG-2 encoded

videos.

Sofa

TV/STB 1

TV/STB 2

Chair

Living Room

Bedroom 1

BS

Sink

Bedroom 2 Bedroom 3

Kitchen

Video 

Streaming

Server

WAN 

Emulator

802.11g

TV/STB 3

: Sensors

Fig. 7. Physical deployment of prototyping testbed in Aware Home.

B. Macroscopic Results

In this section we discuss the various macroscopic results

that are indicative of the optimization benefits of CBN for the

video delivery application.

1) Bandwidth Management: We study the bandwidth man-

agement problem at the wireless leg of the video delivery.

We have three TVs in the house, and 6 Mbps HDTV video

streams are sent to each TV over a wireless 802.11g channel.

Fig. 8(a) shows the number of active TVs (that is, TVs with

people watching content), as function of time and also the

corresponding video display rate of one active TV without the

optimizations. We assume that a user does not switch off a

TV when he/she is not watching the TV. Thus without the

optimization, packets belonging to content for all the three

TVs are sent over the wireless channel. The capacity of the

wireless channels is not sufficient for all three TVs. This is

evident from the fact that data rate drops every few seconds.

Fig. 8(b) shows the same result with CBN turned on. We see

that when the number of active TVs is less than three, the video

rate drops are eliminated. This is because, only the required

number of streams are sent over the wireless channel and the

capacity is sufficient for one or two streams. Fig. 8(b) also

shows the various events in the CBN when the person sits

on or stands up from the sofa. These events are shown in the

magnification graph inset in the top part of the figure. The

event shown as cue is the actual cue generation process at the

base station and the event denoted as action is the application

precessing event.

2) Channel Zapping Delay: Fig. 9(a) shows two events

of changing channels at two different time instants and their

corresponding video rate of the TV. When the user changes

the channels, it takes about 3.5 seconds to display the new

channel. As discussed before, the major components of this

zapping delay are the video buffering delay at the TV and

the various connection establishment times. An accelerometer

sensor, mounted on the remote for the TV in the living room,

is used for generating the cue that aids in reducing the zapping

delay between channels. Assuming that when a user picks

up the remote, the other channel is pre-fetched. Fig. 9(b)

shows the time taken to switch the channel, when the cue

is used. The results indicate that the CBN reduces the zapping

delay considerably. The various events that occur during the

channel zapping are indicated as different events in Fig. 9(b).

Correspondingly the video rate is shown in the bottom part

of the same figure. When the remote is picked up, the other

channel is pre-fetched in the background. This is evident from

the increased video rate at the TV. When the channel is actually

switched, it happens seamlessly, and the time required to

change the channel is about 800 ms. When the remote is put

down, pre-fetching stops. A small figure in the bottom part

of Fig. 9(b) also shows the network rate when the different

events occur. We can see that during pre-fetching the network

rate doubles because two streams are fetched at the same time.
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Fig. 8. Video rate of one specific TV vs the number of users, with three TVs on.
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Fig. 9. Video rate of one specific TV with channel zapping.

C. Microscopic Results

We discuss microscopic results of the system solution and

present insights that enable us to gain a deeper understanding

of system internals and also practical issues. The focus of this

section is on the cue generator (sensor) network and primarily

concerns the robustness and timeliness of detection and how

the proposed algorithm addresses the challenges. The same

setup of the sensors as in Section IV-A5 is used for showing

the benefits of the proposed adaptive probabilistic reporting

algorithm.

1) Timeliness: Fig. 10 adds the time taken to report an

event using the proposed algorithm to the previous results of

the continuous and event-driven reporting. We can see that the

time taken is very similar to the case of simple event-driven

approach. The adaptive algorithm requires one of the sensor

to overhear a packet from the neighboring sensors and send an

additional packet. The results indicate that this overhearing is

not time consuming. This is evidenced by the fact that the pure

event-driven reporting that does not need overhearing requires

almost the same amount of time for the event detection.

2) Robustness: Fig. 11 adds the reliability results of the

proposed algorithm to the reliability results of continuous

and event-driven reporting. The event detection reliability of

the adaptive probabilistic reporting scheme does not have

100% reliability when the user sits in one of the intermediate

positions. We observe that the reliability of the enhanced

adaptive probabilistic algorithm is always 1 for all locations

of the user. Note that the enhanced adaptive probabilistic

reporting is based on the use of virtual sensors described in

Section IV-B3. Thus we conclude that the adaptive algorithm

has the reliability of the continuous reporting.
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VI. RELATED WORK

A few representative works in the field of ubiquitous

computing are [10], [11], [12], [13]. In almost all the works,

context or sensor data is often used as input for applications

running as a layer on top of the network stack. Thus the

network is used only as a transport medium for the sensed

data. However, in the CBN approach, we argue that a com-

munication network can itself benefit from intrinsic processing

of context information, provided as cues by the sensors. The

work that is closest to the CBN approach is [14], where the

authors discuss context aware networking. However, the work

only uses contexts within the network such as available energy

resources, processor load, and link quality.

Video delivery over wireless has received a lot of attention

of late. A significant amount of work looks at optimizing

video delivery at the application layer itself by adapting the

video encoding rate [15]. Some works also look optimizing the

lower layers of the network stack to aid video delivery [16],

[17]. In particular, [16] discusses the various optimizations

at the transport layer and routing layers, to optimize video

performance over wireless networks. In [17], the authors

discuss a cross layered signaling approach for optimized video

streaming over 802.11 networks.

We assume that a generic sensor network in the home can

help several CBN applications. To support several applications

on a such a single deployed sensor network a middleware

solution is required. Research towards such a goal has been

conducted in works such as [18], [19].

VII. CONCLUSION

In this paper, we have introduced a new model for net-

worked application performance enhancement called cue-
based networking. In this model, network applications use

external hints to significantly enhance performance and enable

new services. We have described an architecture where a

wireless home sensor network is used to generate cues to

a video delivery application. We have also discussed the

design of algorithms and their implementation to demonstrate

the feasibility of applying the proposed model. Finally, our

goal has been to introduce this new approach of networked

application performance enhancement and demonstrate the

benefits in a real-life setting.
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