On the Impact of Mobile Hosts in Peer-to-Peer Data Networks

Zhenyun Zhuang, Sandeep Kakumanu, Yeonsik Jeong, Raghupathy Sivakumar, Aravind Velayutham

GNAN Research Group
Georgia Institute of Technology
Introduction

- P2P data dominate Internet traffic
- Mobile users join P2P networks
- Questions:
 - Performance of mobile users?
 - Performance of fixed users?
- Mismatches
 - Mobile hosts functioning as servers
 - Use of bi-directional TCP
 - Incentive-based mechanisms
 - Data fetching
- Contributions
 - Identify a set of unique challenges
 - Present a wP2P solution
Scope and backgrounds

- P2P data sharing networks
 - BitTorrent

- Wireless technologies and mobile devices
 - Wireless LAN, Laptops

- Metric
 - Throughput

- BitTorrent
 - Torrent, tracker, seeds and leeches
 - Tit-for-tat, rarest-first fetching
Test bed
Motivation: Bi-directional TCP

- Data is exchanged in both directions
- Bi-directional TCP is used to carry data
- Data-piggybacked Ack packets are longer
- BER causes higher PER for longer packets
- Cumulative ACKs, small Cwnd
- Multiple connections cause small Cwnd

![Data Packet Diagram](image-url)
Motivation: Bi-directional TCP
Motivation: Upload-based Incentives

- Incentive mechanisms
- Uploading for downloading
 - It is desirable to upload more
- Not a issue in wired networks
 - 80% of uploading capacity
- A severe issue in wireless networks
 - Contending for shared channel
- Upload or not?
 - Yes; from the incentive’s standpoint
 - No; from the contention’s standpoint
Motivation: Upload-based Incentives

Wired Networks

Wireless Networks
Motivation: Incentives and mobility

- Peers are identified by Peer-id
 - Unique identifier
 - Function of IP and random values
- Peer-id is generated with a new task
 - Wired environments rarely have disconnection
- Peers lose incentives in mobile environments
 - Mobile hosts are assigned with a new peer-id
 - Previous incentives are lost
Motivation: Incentives and mobility

![Graph showing downloaded size vs time for different mobility and uploading scenarios.](image-url)
Motivation: Rarest-first Fetching

- Out-of-sequence data fetching
 - Rarest-first or random fetching
- Small playable fraction
 - Many media files allow partial playback
- Design justification in wired networks
 - Allow peers to contribute well
 - Disconnections are rare
- Disconnections in mobile environments
 - Cannot contribute
 - Cannot play
Motivation: Rarest-first Fetching

5 MB File

100 MB File
Solution: wP2P

- **Design**
 - Age-based manipulation
 - Incentive-aware operations
 - Mobility-aware fetching

- **wP2P**
 - Client-only solution
 - Compatible with existing applications
Design: Age-based Manipulation

- TCP performance vulnerable to ACK losses only when Cwnd is small
- Adjust based on the age of a connection
- Ages are determined by Cwnd values
 - Young
 - Mature
- Decouple Ack and data when “young”
Design: Incentive-aware Operations

- Optimal unloading rate to achieve maximum downloading
- Dynamically adjust the uploading rate
 - Conservative when increasing
 - Aggressive when decreasing
- Incentive maintenance
 - Stores Peer-id when disconnecting
 - Resumes peer-id when reconnecting
Design: Mobility-aware Fetching

- Dynamically adjusting fetching
 - Decreasing selfishness
 - Increasing altruism

- Reasons for such treatment
 - During disconnections, no benefits of using rarest-first fetching
 - More desirable to fetch sequentially
 - Adjust to rarest-fetching as time goes on
Evaluation

- Prototyping using CTorrent
- Test bed
Evaluation Results: AM

![Graph showing throughput vs. bit error rate for Default P2P and wP2P.]
Evaluation Results: IA

Maintaining Peer-id

Dynamic Uploading Adjustment
Evaluation Results: MF

5 MB File

100 MB File
Related work and Conclusion

- P2P Enhancements
- Other works
- Conclusion
Thanks!

Questions?

Email: zhenyun@cc.gatech.edu