Securing Wireless Data Networks against eavesdropping using smart antennas

Sriram Lakshmanan, Cheng-Lin Tsao Tsao
Raghupathy Sivakumar and Karthikeyan Sundaresan

Presenter: Zhenyun Zhang

GNAN Research Group
Georgia Institute of Technology
Outline

- Introduction
- Scope and Background
- Motivation
- Basic Techniques and Integrated Solution
- Performance Evaluation
- Conclusion
Introduction

- **Wireless Security:**
 - Explosive growth of wireless data networks has led to increasing attention on specifically securing the wireless network
 - Wireless security solutions like WEP are dominantly cryptography based and typically extensions from their wired counterparts

- **Scope of this work:**
 - Using smart antennas to limit the knowledge of existence of information from an eavesdropper
 - A complimentary approach to cryptography based techniques
Scope and Background

- A set of APs and Eavesdroppers M
 - APs have k elements, M have up to k elements
 - M have location information of clients and APs
- Exposure Region
 - Region in which eavesdropper can decode the signal
- Smart Antenna Beamforming
 - Adaptive arrays enable amplitude and phase weighting to obtain large set of antenna patterns
 - A k-element array at the transmitter (receiver) can place k-1 nulls in its pattern and control where it causes (receives) interference
 - When more than k parallel transmissions happen within an interference range, all transmissions become undecodable
Motivation

- Why not just cryptography?
 - Actual solutions are not as secure as the core cryptographic scheme due to Implementation flaws, inability to realize true random numbers
 - Several unique privacy and targeted Denial of Service attacks due to the wireless channel not addressed by cryptography
 - Passive attacks like user fingerprinting * and active attacks like beacon attacks

- Why not just Line Of Sight beamforming?
 - Diminishing benefits with indoor fading, number of elements
 - Cannot handle non-contiguous security regions
 - Sub-linear exposure region with number of elements

- Can an intelligent scheme achieve larger security benefits?

* 802.11 user finger printing, Jeff Pang et al, ACM Mobicom 2007
Virtual Array of Physical Arrays

- Setting
 - Enterprise WLAN with central controller that coordinates decisions of p APs (Virtual array)
 - Each AP has a k element array (physical array)

- Basic strategies
 - Information deprivation – prevent eavesdropper from getting access to the required information/signal
 - Secret sharing
 - Information Overloading – overload eavesdropper with more signals than it can sustain
 - Controlled jamming
 - Stream Overwhelming
Secret Sharing

- **Idea:**
 - Create t' shares of the message such that all shares are required for decoding the message
 - Transmit the shares through different APs by leveraging the high density of access points reachable from each client
 - While client receives all shares, eavesdropper does not receive all shares and cannot decode the message
Controlled Jamming

- **Idea:**
 - Use the available Degrees of Freedom (elements) at an AP to jam areas in the network except around the desired clients.
 - APs suppress interference to desired clients by adapting their beams.
 - Use in conjunction with the maximum allowed power to prevent access in locations without authorized clients.
 - Eavesdropper needs to suppress interference from each element of the active APs (p^*k) in the vicinity to thwart this scheme.
Stream Overwhelming

- **Idea:**
 - Choose AP-client pairs such that overlap of the data streams causes poor decodability
 - Except around the clients, many other areas are overwhelmed
 - APs exploit transmit side interference suppression to protect clients whereas the eavesdropper is overloaded
 - Eavesdropper overloaded by coordinating data transmissions (as opposed to transmitting jamming signals in the previous case)
Integrated Operations

- **Architecture**
 - Central controller which controls transmission of each AP
 - Transmissions are synchronized
 - Downstream and upstream communication alternate in epochs
 - Controller knows the location of APs and approximate location of clients

- **Operation**
 - For a given throughput constraint, if security is to be maximized,
 - A combination of stream overwhelming and secret sharing (with preference to secret sharing) should be used,
 - The remaining APs devoted to controlled jamming
Algorithms and Implementation

- Two cascaded schedulers
 - Throughput scheduler
 - Input: S parameter, connectivity matrix, packet sequence
 - Output: S' In-sequence packets out of the first S packets
 - For each AP determine the number of clients in the stream
 - Greedily assign packets in-sequence by assigning the client to the AP with minimum APs
 - Update the APs and the Degrees of Freedom
 - Security Scheduler
 - Input: S', packet sequence, connectivity matrix
 - Output: Action for each Ap in each fragment duration
 - For each fragment m and each AP determine availability
 - Sort the APs in ascending order of available fragments
 - Greedily assign APs and update the DOF
 - Adjust for stream-overwhelming
 - Assign remaining APs for controlled jamming while ensuring already assigned clients remain unaffected
Algorithm Illustration

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>t1</td>
<td>t2</td>
<td>AP-client association</td>
</tr>
<tr>
<td>AP1</td>
<td>J</td>
<td>C1₂</td>
<td></td>
</tr>
<tr>
<td>AP2</td>
<td>C1₁</td>
<td>C2₂</td>
<td></td>
</tr>
<tr>
<td>AP3</td>
<td>C2₁</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Throughput Scheduler

AP1
- Client 1

AP2
- Client 2

AP3
- **t1**
Performance Evaluation

- Custom simulator in C++
 - Adaptive beamforming with interference suppression
 - Channel modelling
 - ITU Indoor attenuation model with a path loss exponent of 4 and lognormal fading with a standard deviation of 2.5dB
 - Link fade margin of 3dB with operating frequency of 2.4 GHz
 - SNR threshold of 15dB
 - Noise floor of -100 dBm, Rx. sensitivity of -85 dBm
 - Transmission power of 20dBm
 - Random position of clients, eavesdropper and APs in a 100m * 100m grid
 - Default values of 20 clients, 4 APs, 4 array elements
 - Downstream flows to a random subset of clients
 - Metric: Average Exposure region
Performance Evaluation (1/2)

- With increasing k,
 - Beamforming security gives diminishing returns
 - Integrated algorithm provides large reduction in security with an example exposure region of 1% with just 2 elements and 2 APs.

- With increasing p,
 - Improvements are much larger because of the large secret sharing possibilities
 - With 4 elements and 4 APs, exposure region reduced to 0.01%
Performance Evaluation (2/2)

- Throughput is preserved by the algorithm due to intelligent use of resources
- Eavesdropper collusion affects the integrated algorithm to a much smaller extent when compared to omnidirectional and beamforming
- Slight increase of exposure probability (but less than 10%) when the number of colluding eavesdroppers is increased up to 25
Conclusion

Summary
- introduced the idea of using spatial smartness to provide security against eavesdropping
- presented three novel mechanisms that fundamentally improve security against eavesdropping
- evaluated the performance of an integrated algorithm that uses the three mechanisms in tandem, using simulations

Future work
- Implement the solutions in an actual environment with appropriate prototypes
- Study the details of the beamforming algorithm in indoor settings considering complexity
- Study the security vs throughput trade-off in detail
Thank You

For further details:
www.ece.gatech.edu/research/GNAN
/archive/2008/icdc08a.html

Email feedback/comments to:
sriram@ece.gatech.edu
Performance Evaluation - backup

- When rate parameter is changed, the exposure region slightly increases and then decreases since as S increases both the number of packets scheduled and the possibility of separated clients increases.
- When the number of APs is increased, the integrated algorithm gives increased benefits which saturate when possible spatial reuse in the network is exhausted.
Difference between cryptography and smartsec

- Encryption
 - Disclosing the signal
 - Hiding the message in the signal
 - Data-link layer or above
 - Relies on computational complexity
 - Cannot prevent unique security attacks due to wireless broadcast nature such as fingerprinting

- Our approach
 - Hiding the signal
 - Physical or MAC layer
 - Smart antennas
 - Relies on spatial and channel conditions which are less controllable by eavesdropper

TCP/IP protocol suite

<table>
<thead>
<tr>
<th>Application</th>
<th>Transport</th>
<th>Network</th>
<th>Data Link</th>
<th>Medium Access</th>
<th>Control</th>
<th>Physical</th>
</tr>
</thead>
</table>
Quantitative Results

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Exposure region (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omni-directional</td>
<td>1725.46</td>
</tr>
<tr>
<td>Beam-forming</td>
<td>855.69</td>
</tr>
<tr>
<td>Secret Sharing</td>
<td>146.55</td>
</tr>
<tr>
<td>Controlled Jamming</td>
<td>23.74</td>
</tr>
<tr>
<td>Stream Overwhelming</td>
<td>232.86</td>
</tr>
<tr>
<td>Integrated</td>
<td>5.69</td>
</tr>
</tbody>
</table>
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max tx power</td>
<td>20dBm</td>
</tr>
<tr>
<td>Sensibility</td>
<td>-85dBm</td>
</tr>
<tr>
<td>Noise</td>
<td>-100dBm</td>
</tr>
<tr>
<td>SINR threshold</td>
<td>15dB</td>
</tr>
<tr>
<td>Frequency</td>
<td>2.4GHz</td>
</tr>
<tr>
<td>Path loss factor</td>
<td>4</td>
</tr>
<tr>
<td>Link margin</td>
<td>3.2 dB</td>
</tr>
<tr>
<td>Number of APs</td>
<td>4</td>
</tr>
<tr>
<td>Number of elements</td>
<td>4</td>
</tr>
</tbody>
</table>
All or Nothing encryption

- Procedure such that all shares must be recovered to recover the message else there is no information disclosure
- Developed by R.L. Rivest
- Lecture Notes in Computer science, volume 1267, issue 210, 1997
- Involves xoring the fragments each of which is X bits by dividing the total packet into fragments of size X bits
Why 3 schemes

- There are two flavours of approaches namely deprivation and overload
- For these, capacity preserving and capacity sacrificing techniques can be found
- While deprivation leads to directly a capacity preserving scheme such as secret sharing
- Overload has two flavours to adapt to network conditions
- The controlled jamming and stream overwhelming are the 'extreme' techniques in the range of overload techniques
- Thus for flexibility we include 3 schemes