Cooperating with Smartness: Using Heterogeneous Smart Antennas in Ad-hoc Networks

> Karthikeyan Sundaresan, Raghupathy Sivakumar Georgia Institute of Technology

Introduction

- Ad-hoc networks are multi-hop wireless networks
 - Constrained performance due to multi-hop, mobility, interference
- Smart antennas prøvide significent improvements in capacity, reliability, range power over omni antennas
 - Application in performance-constrained ad-hoc networks
- Several works exploitement antenna capabilities at MAC and routing layers [Zhang'04, Shellesan'04]
 - Most works on prinogeneous apenna networks
- Heterogeneous smart antenna networks (HSANs) are more promising from a practical perspective
 - Economic feasibility, much/community networks, digital battlefields
- Focus: Efficient utilization of heterogeneous antenna capabilities available in HSANs
 - Achieved through a simple form of node cooperation

Outline

- Smart antennas overview
- Motivation for cooperation in HSANs
- □ Some properties of node cooperation
- Adaptive cooperation mechanism
- MAC protocol for cooperation
- Performance evaluation
- Conclusions

Smart antenna

- Switched-beam (directional) and adaptive arrays
- Beamform energy in specific patterns to provide higher SNR in desired directions
- Pre-determined patterns in switched beam effective only in LOS
- Adaptive patterns required for multipath environments
 - necessitate adaptive arrays
- □ SNR gain bounded by 'K²', (K-# elements)
- Gain (G) exploited for increased reliability, rate, or range, or reduced power
 - Exploitation of SNR gain for reliability and rate: $C = log(1+\rho G)$

Motivation

5

- Simple form of node cooperation: retransmit diversity
- Neighbors of 'S' exploit broadcast advantage to assist 'D' in successful reception of pkts during fading losses
- Diversity benefits in omni networks only if 'R' has better link gain to 'D' and in timecorrelated fading
 - Not common characteristics!
 - Large benefits in HSANs
 - Low gain omni nodes exploit high gain smart neighboring nodes for improved retransmit diversity gains
 - Efficient exploitation of smart antenna capabilities by replacing omni retransmissions with smart ones
 - Simple deployable mechanism: only one relay node exploited

Environment

Network model

- Mixture of omni and smart nodes
- Random: random node placement and traffic pattern
- Arbitrary*: controlled node placement of some nodes, random traffic pattern
 - Controlled nodes form a routing backbone, consisting of mainly smart nodes; eg. Mesh networks with smart mesh routers

Link model

- Block (time-correlated) Rayleigh fading
- Fixed # MAC layer retransmissions: 'F' retrials
- Basic communication model
 - No cooperation: available antenna gain used for reliability at smart node transmitters, relays do not participate
 - Cooperation: neighboring nodes within communication pattern of S and D participate in cooperation during fading losses

Metric

Outage probability and cooperation gain (SNR gain in dB)

Properties of Cooperation Gain

- > Property 1: $G_{c_R} > G_{c_A}$
 - Cooperation gains are more in random networks; although absolute performance is better for arbitrary*
 - More room for exploitation of smart antenna capabilities in random nets
 - Tool for bridging performance gap

Properties of Cooperation Gain

- Property 2: G_{c_R} has a concave nature in the fraction of smart nodes in network
 - Higher degree of heterogeneity results in higher degree of cooperation
 - Homogeneous omni better than homogeneous smart

>

Increasing # smart nodes increases spatially sensitive transmissions but reduces potential for cooperation

Tradeoff in Random Networks

- Increasing # smart nodes, antenna elements
 - More antenna gain higher absolute performance (rate/reliability)
 - More spatial sensitive transmissions lesser cooperation gain (diversity)
- Fundamental tradeoff in exploiting antenna gain and cooperation gain!
- Relative importance of gains depends on fading conditions and availability of smart nodes

Tradeoff in Random Networks

- C_{ant}: all antenna gain used for reliability on experiencing fading loss
 - C_{coop}: switch to omni mode after loss to favor cooperation

- \Box C_{ant}: best strategy under fast fading + smaller # smart nodes
- \Box C_{coop}: best strategy under block fading + larger # smart nodes
- Difficult to estimate dynamic fading statistics
 - Need an adaptive mechanism transparent to fading statistics

Adaptive Mechanism

- \Box C_{adap} strikes a balance between C_{ant} and C_{coop}
- On fading, employs an intermediate stage of transmission on reduced # elements (three)
 - Favors higher cooperation while retaining some antenna gain
- On further loss, returns to maximum antenna gain if smaller degree of smart neighbors
- Moves to omni if sufficient smart neighbors
- Probabilistic guarantee of locating a relay: atleast 1/3 that of an omni transmission
- Better than rate adaptation schemes
- Incorporation in a distributed MAC protocol

Distributed Channel Access

Weighted proportional fairness model

- Proportional fairness provides good tradeoff between fairness and efficiency
- Weighted arises from heterogeneous link gains
- Notion of fairness in channel access time
- Distributed persistence-based access adaptation:
 - w_i proportional to link gain
 - Link weight scaled by two constants: c₁, c₂
 - Cooperating links contend with higher priority than source links of similar type: c₂> c₁

Protocol Operations

- □ RTS-CTS-DATA-ACK
- Omni RTS, CTS
 - Neighbors identify feasibility for cooperation
- Data/ACK transmitted using nature of source/destination
- Pre/post-ambles for fading loss detection
- NACK transmitted on omni
 - Indicates need for cooperation
- Source initiates adaptive cooperation mechanism

Protocol Operations

- Relays store DATA pkt if decoded
- Contention winner determines participating relay
 - Favors cooperating neighbor with high gain
- Winner sends omni RTS
- Omni CTS confirms pkt responsibility transfer to R
 - S, other contenders drop DATA
- DATA/ACK sent using R/D mode
- □ Lack of cooperation
 - S falls back to omni/ant gain based on smart neighbor degree

Performance Evaluation

Set-up

- ns2 simulator used for evaluations
- 100 nodes in 1000m x 1000m
- Random source-destination pairs
- Backlogged sources with UDP
- Environment
 - LOS (omni+directional) and NLOS (omni+adaptive)
 - Random and arbitrary* networks
- Strategies and metrics
 - Non-cooperation (NC), basic cooperation (C), MACH
 - Aggregate throughput, cooperation gain, throughput standard deviation

Throughput Results (1)

- C brings more gains in random networks
- MACH provides gains close to 100% over C
 - Higher gains at larger fraction of smart nodes
- □ Gains more at low SNR region, emphasizing cooperation
 - C improves over NC by 2 folds and MACH over C by 3 folds

Cooperation & Fairness Results (2)

- Increasing smart nodes reduces cooperation gain
 MACH retains 40% gain even in all-smart network unlike C
- □ Fairness
 - MACH gains not from aggressive channel access by smart nodes fairness measure better for MACH than for C

Conclusions

- Motivated the potential for a simple form of node cooperation in HSANs
 - Highlighted importance in random networks
- Analysis to capture some key properties of cooperation in HSANs
- Proposed an adaptive mechanism to address the tradeoff in antenna and cooperation gain
- Proposed a simple distributed MAC protocol (MACH) to incorporate the adaptive mechanism
 - Compatible with more sophisticated smart antenna MAC protcols

Thank You!