
ClientClient--Side Web Acceleration for Side Web Acceleration for
LowLow--Bandwidth HostsBandwidth Hosts

TaeTae--Young ChangYoung Chang11, , ZhenyunZhenyun ZhuangZhuang11

AravindAravind VelayuthamVelayutham22, and , and RaghupathyRaghupathy SivakumarSivakumar11

11Georgia Institute of Technology, Atlanta, GA, USAGeorgia Institute of Technology, Atlanta, GA, USA
22Asankya Inc., Atlanta, GA, USAAsankya Inc., Atlanta, GA, USA

2 of 23

IntroductionIntroduction

• Current Web optimization techniques

– Web cache proxies, persistent connections (HTTP/1.1), content distribution

networks (CDNs), WAP, BREW, etc.

– Web browsers still suffer in low-bandwidth conditions.

• Current fetching model of Web browsers is not optimal in low-bandwidth networks.

• Our contributions in this paper are:

– Identification of the problems that lead to inefficiency of current Web

browsers by carefully analyzing the interactions of several factors.

• Screen contention problem

• Bandwidth under-utilization problem

– Proposal of three mechanisms to reduce Web response time in an easy-to-

deploy fashion.

• Prioritized fetching (PF)

• Object reordering (OR)

• Connection management (CM)

3 of 23

Current Web Access Model (1)Current Web Access Model (1)

1) Load balancing can be performed by multiple Web servers.
– A layer-7 switch dynamically rewrites domain names of objects in HTML.
– Objects requests for a single Web page are delivered to multiple servers.

2) Multiple connections can be opened to a single Web server by browsers.
– Internet Explorer and Netscape Navigator open up to 2 and 6 TCP connections

to a single server, respectively.
– A parsing engine in each browser inserts object requests to the message

queues of the connections in a round-robin fashion.

4 of 23

Current Web Access Model (2)Current Web Access Model (2)

• Measurement of comScore’s Top 50 Web Sites
– Default full screen resolution: 1024 x 768 [pixels]

– Pixel size of the client area in Internet Explorer: 1006 x 511 [pixels]
• Client area: an effective area for displaying a Web page in a browser

• Screen: a unit of an area, 1006 x 511 [pixels]

• The size of a screen is equal to that of the client area.

– Average number of screens per Web page: 1937pixels / 511pixels = 3.7

5 of 23

Screen Contention Problem (1)Screen Contention Problem (1)

• What is Screen contention?

1) Current Web browsers always perform greedy fetching.
• They fetches the entire objects of a Web page, regardless of necessity.

2) Users always perform partial Web-page accesses at any instant.
• Only a part of a Web page can be accessed at a time, through the client area.

• Users may not scroll down through the entire content of a Web page and leave.

– Thus, fetching off-screen objects is not always necessary.
• Fetching of necessary on-screen objects may be slowed down.

• Objects from different screens compete for bandwidth: screen contention

• Why does screen contention occur?

– Web browsers adopt an imperfect fairness model.
• Browsers considers only fairness in the number of objects per connections.

• Object requests are inserted to multiple connections in a round-robin fashion.

– Disparity of cumulative transfer size among multiple connections
• Connections having only small-sized objects may finish on-screen transmission early

and begin to fetch off-screen objects.

6 of 23

Screen Contention Problem (2)Screen Contention Problem (2)

• Simulation setup

– ns2 network simulator
• Reno-FullTCP package: support for bi-directional transmissions

– Link characteristics
• Link between Web client and backbone network

– 100-kbps bandwidth and 100-ms link delay.

• From DNS/Web servers to backbone network
– 1-Mbps bandwidth and 5-ms link delay

– Browser Characteristics
• The same Web statistics of Top 50 Web Sites are used.

• Processing time per object: 200 ms.

• HTTP request message size: 500 B.

• HTTP/1.1 persistent connection: supported, pipelining: not considered.

• Cache function: disabled.

– Metric
• Initial screen response time

– Time spent until all objects for displaying the initial screen are downloaded completely

7 of 23

Screen Contention Problem (3)Screen Contention Problem (3)

– In this simulation,
• All the objects are from a single server.

• The initial screen has 18 on-screen objects.

• Screen contention scenario

– Two off-screen objects are fetched before the initial screen is fully displayed.
• Fetching unnecessary objects consumes some portion of bandwidth

• The resulting response time for initial screen is increased unnecessarily.

HTML
Text 1

Text 2
IMG 1

IMG 2
IMG 3

IMG 18
IMG 15

IMG 20
IMG 17

IMG 22

20

Fetching
Sequence

Time [s]

5 10 15

Objects in
2nd screen

0

Last object in
1st screen

IMG 17
IMG 22

IMG 15
IMG 20

IMG 18

Initial screen response time =18.7 s

Connection 1
Connection 2

8 of 23

Screen Contention Problem (4)Screen Contention Problem (4)

• Ideal scenario

– An intuitive solution is to prevent unnecessary object fetching.

• When a faster connection completes all on-screen object transmissions,

it stops fetching and waits for the other connections to finish fetching.

– The remaining connections can obtain more bandwidth.

• The response time for the current screen can be minimized.

HTML
Text 1

Text 2
IMG 1

IMG 2
IMG 3

IMG 18

IMG 17

20

Fetching
Sequence

Time [s]

5 10 15
Initial screen response time =17.6 s

0

IMG 15
Last object in
first screen

IMG 17
IMG 15

IMG 18

Connection 1
Connection 2

9 of 23

Screen Contention Problem (5)Screen Contention Problem (5)

– Single server case (no load balancing)
• The performance of both is not directly affected by the number of connections.

• Number of connections = 3: the performance improvement is saturated.

– Multiple servers case (load balancing, up to 2 connections to server)
• Number of servers > 3: the performance of the conv. Browser is degraded.

– The degree of contentions among connections to different server becomes higher.

• The performance in the ideal browser is less influenced by the number of servers.

<Multiple servers cases><Single server case>

10 of 23

Bandwidth UnderBandwidth Under--utilization (1)utilization (1)

• What is bandwidth under-utilization?

– Idle time of a network increases with the decrease in the number of

simultaneous active TCP connections.

• An optimal number of simultaneous TCP connections exists.

– A non-optimal number of active connections result in under-utilization of links.

• We refer this to as the bandwidth under-utilization problem.

• Why does bandwidth under-utilization occur?

– Current browsers do not maintain the optimal number active connections.

• Only a small number of connections are active at any instant in a browser.

• Other connections go into the idle status after completing all their object fetching.

– In Web browsers, bandwidth efficiency is determined by how much the ending

times of transmissions in all connections are synchronized.

11 of 23

Bandwidth UnderBandwidth Under--utilization (2)utilization (2)

• Ideal case
– The intuitive solution is to schedule different object requests across multiple

servers such that as many connections are active as possible.
• Each TCP connection should have at least one pending request in the message queue.

• An inactive connection takes over the unfulfilled object requests from others.

– Cooperative connections can use bandwidth more efficiently and improve the
initial screen response time.

HTML
Text 1

Text 2
IMG 1

IMG 2
IMG 3

IMG 4
IMG 5

IMG 6
IMG 7

IMG 8
IMG 10

IMG 9
IMG 12

IMG 14
IMG 11

IMG 16
IMG 13

IMG 18
IMG 15

IMG 17

20

Fetching
Sequence

Time [s]

5 10 150

Connection 1
Connection 2

IMG 17
IMG 15

IMG 18

Initial screen response time =17.1 s

Last object in
first screen

12 of 23

Bandwidth UnderBandwidth Under--utilization (3)utilization (3)

– In the simulations,
• screen contention does not exist in this scenario.

– Single server case
• The performance of both is not directly affected by the number of connections.

– Multiple servers case
• With 2 or 3 (probably the optimal numbers) servers, both show the best performance.

– As the number of servers increases beyond 3, performance rather becomes degraded.

• The ideal scheme shows up to a 20% performance improvement.

<Multiple servers case><Single server case>

13 of 23

Overview of SolutionOverview of Solution

• Prioritized fetching
– Addresses the screen

contention problem
– Provides an optimization

solution for fetching objects
with varying priority levels.

– What-You-See-Is-What-You-
Fetch (WYSIWYF)

• Object reordering
– Addresses the bandwidth

under-utilization problem
– Dynamically schedules object

transmissions in a single
connection

• Connection management
– Also addresses the bandwidth

under-utilization problem
– Performs load balancing

across multiple connections

14 of 23

Prioritized Fetching (PF) (1)Prioritized Fetching (PF) (1)

• Basic operation steps
1) Obtain the initial screen view information in the entire document layout

2) Prioritize embedded objects according to their locations in the layout

3) Perform fetching objects according to their priority levels
• When a user scrolls to a different view, repeat the process again.

• Initial object prioritization
– Object-type-based prioritization

• Text-based objects: HTML, javascript, cascading style sheets, etc.
– They play an important role to construct the overall HTML display layout.

– PF Gives the highest priority to these objects.

• Other object types: Image (IMG) and multimedia objects, etc.
– Different priority levels are given to objects according to their locations.

– The highest priority level is assigned to on-screen objects.

– Location-based prioritization
• Detection of pixel size of objects

– An HTML document file generally defines the pixel size of image objects.

– In cases of no pixel size, PF uses an averaged value based on browsing history.

– A Web browser can construct the full page layout without downloading these objects.

15 of 23

Prioritized Fetching (PF) (2)Prioritized Fetching (PF) (2)

• Detection of location of objects
– PF scans the document object model (DOM) tree. When it finds a target object, it

1) searches all the successors in the tree

2) calculates location offsets from successors to predecessors

3) repeats the process until it reaches the top of the tree.

– The absolute location in the layout is the sum of all the relative offsets.

• Selective object fetching
– In HTTP, priority-based bandwidth allocation is not possible.

• Connections perform short bursty on-off transmissions by sharing bandwidth.

• A single TCP connection cannot send both high- and low-priority objects.

– PF uses a delayed-transmission scheme.
• PF inserts request messages into the already-in-use queues.

• Low-priority objects begin to be fetched only after all the higher-priority queues
become empty.

• Re-prioritization
– When the screen focus is moved to a new area, PF re-prioritizes all the

remaining objects in the queues for the newly focused area.
• PF keeps the currently incoming transfers.

16 of 23

Objects Reordering (OR) (1)Objects Reordering (OR) (1)

• Basic operation steps

1) Execute an initial assignment of objects

2) Perform a TCP-aware ordering of objects

3) Perform dynamic objects rescheduling

• Initial objects assignment

– Conventional browsers perform byte-size-unaware round-robin assignments.

• It causes unsynchronized ending times among different connections, and thus

increases response time.

– Initially, OR performs load balancing among connections by distributing the

same amount of objects to every connection.

• Expected ending time is given by SizeData/BWavailable + n*rtt/2 + TProc

– n is the number of objects, and TProc is the processing time.

– The first term dominates over other terms in low-bandwidth networks.

• OR estimates the ending times by considering both the objects’ pixel-size included in

HTML document and the object formats, such as gif and jpg.

17 of 23

Objects Reordering (OR) (2)Objects Reordering (OR) (2)

• TCP-aware objects reordering

1) In TCP, appropriate ordering can minimize the adverse effect of slow start

• 7-3-2 KB objects fetching takes 5 rtts.(2+4+1+3+2 KB) (if cwnd starts from 2)

• 2-3-7 KB objects fetching takes 3 rtts. (2+3+7 KB)

2) Small objects can be rescheduled in a finer granularity.

• With small objects being put at the end of connections, it is more likely to reschedule

objects among connections.

– Thus, OR orders the fetching sequence in a rats-elephants-rats fashion.

• Data-size-based sorting

• Size-based round-robin assignments

• Dynamic objects rescheduling

– Because of dynamic behavior of TCP connections, the total fetching time of

different connections may still vary significantly.

– OR dynamically reschedules objects from the busy connections to the idle ones

in an on-demand fashion.

18 of 23

Connection Management (CM)Connection Management (CM)

• Basic operations step

1) Estimate per-connection load

2) Adjusting the number of connections for each server

• Per-connection load estimation

– Estimation of the ending time of downloading

• CM uses the byte-size information that OR converted earlier.

• Dynamic connection assignment

– CM assigns more connections to servers with larger data size

and less connections to servers with smaller data size.

• The total number of connections is always maintained the same as in current

browsers for friendliness and compatibility.

– When it assigns one more connection to a server, one less connection should be deducted from

some other server.

• CM limits the maximum number of connections to a server to 4.

– Allocating too many connections to the same server does not necessarily lead to better

performance.

19 of 23

Performance Evaluation (1)Performance Evaluation (1)

• Impact of object characteristics

– Variance of object size
• Large variance of sizes reduces bandwidth utilization.

– Number of objects in a Web page
• As more objects are included in a page, larger response time is expected.

– Our solution reduces up to 30% of response time.

20 of 23

Performance Evaluation (2)Performance Evaluation (2)

• Impact of number of connections/servers
– Number of connections

• Number of connections > 4: no obvious performance improvements in both

– Number of servers
• Number of servers > 3: performance begins to be degraded.

– Increasing the number of servers does not necessarily always result in better performance

– Up to 20% of response time can be reduced by using our solution.

21 of 23

Performance Evaluation (3)Performance Evaluation (3)

• Impact of network characteristics
– Bandwidth

• Our solution brings more performance improvement for smaller bandwidth.
– Smaller bandwidth makes the screen contention problem more severe.

– Round-trip time (rtt)
• Our solution reduces the required number of rtts for object transmission.

– Around 20% performance improvement is achieved by our solution.

22 of 23

Performance Evaluation (4)Performance Evaluation (4)

• Impact of fast scroll
– In conventional browsers, when a user scrolls away from the initial screen,

response time for that screen increases significantly.
• Displaying of any screen requires downloading of all previous screen(s).

– Our solution has smaller response time, as a user scrolls farther away.
• PF always fetches the current screen first in an on-demand way.

• In most Web pages, less data is located in farther screens.

– Up to 70% of the response time can be reduced.

23 of 23

ConclusionsConclusions

• In this paper, we explore the reasons that conventional web access

models are not appropriate for low-bandwidth hosts.

We identify the screen contention and bandwidth under-utilization

problems, which result in large user-perceived response time.

• To address this problem, we propose a new Web access scheme for low-

bandwidth hosts, which uses an intelligent mix of prioritized fetching,

object reordering, and connection management.

• Using simulations with the statistics of Top 50 Web Sites, we evaluate

the performance of our scheme and prove its benefits over conventional

Web access models.

