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Abstract—Current popular web-browsers simply fetch the
entire web-page from the server in a greedy fashion. This simple
web fetching mechanism employed by browsers is inappropriate
for use in low-bandwidth networks, since they cause large
response times for users unneccesarily. In this paper, we first
analyze the reasons that cause large response times by consider-
ing several factors including the properties of typical web-pages
and browsers, the interaction of the HTTP and TCP protocols,
and the impact of server-side optimization techniques. We then
propose three easy-to-deploy browser-side optimization mecha-
nisms to reduce the user response time. Through simulations, we
compare the performance of our solution with that of current
browsers and show that the proposed scheme brings significant
performance benefits in terms of user-perceived response times.

I. I NTRODUCTION

In the past couple of decades, tremendous amount of
research has been done on improving web access performance
over Internet. Optimization techniques such as caching web-
proxies ([1], [2], [3]), persistent HTTP connections ([4],
[5]), and content distribution networks ([6], [7]) have found
wide-spread adoption. New paradigms such as WAP[8] and
BREW[9] have also been developed to address web perfor-
mance limitations on mobile hosts.

In this work, we study the performance of a web-browser
under low-bandwidth network conditions. Specifically, we
analyze the characteristics of a web-browser with the objective
of identifying reasons as to why they might suffer in low-
bandwidth conditions. We find that the current fetching model
employed by commercial web-browsers is not optimal in
bandwidth challenged environments.

We show that the absence of content prioritization and in-
telligent object fetching mechanisms in current web-browsers
leads to increased response times. Browsers, today, do not
prioritize the useful data that is viewed by the user over
other data in the web-page. With a greedy fetch of the entire
content of a web-page, precious bandwidth is wasted and in
turn increases user perceived response time. Further, without
intelligent object fetching mechanism, the download process of
current web-browsers does not utilize the network bandwidth
efficiently.

To make this problem even worse, many web-pages have
become larger both in pixel- and byte-size with a large number
of external objects. For example,cnn.com has a main page,
which is larger than 3 times the pixel-size ofclient areathat
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is defined as content area within a main browser window, and
greater than 300-KB data, with hundreds of external objects.
Thus, even with a network with bottleneck bandwidth being
100 Kbps, the time taken to fetch the entire page can be larger
than 20 seconds.

In this paper, we propose a client-side only solution to
address the problem of large response time with current
browsers. The solution is based on careful consideration of
several factors including the content displayed on the screen
viewed by the user, server-side content distribution networks,
and the relationship between the HTTP and TCP protocols.
The three mechanisms we propose include prioritized fetching,
object reordering, and connection management. One major
advantage of our approach is that it is pure client-side enhance-
ment and does not need any server changes. The proposed
solution helps to reduce response time, and is easy to deploy
since it only requires client-side installation to currentweb-
browsers.

To summarize, our contributions in this paper are:

• Identification of the inefficiencies of current web
browsers by carefully analyzing the interactions of several
factors related to web fetching.

• Proposal of three mechanisms to reduce the user response
time in an easy-to-deploy fashion.

The rest of the paper is organized as follows. Section II
discusses the problems with current web access models and
presents the impact of problems. Section III presents the
details of our solution. Section IV evaluates the performance
of our proposed scheme with that of conventional web access
models using simulations. Section V discusses related works
in the area, and Section VI concludes the paper.

II. M ODEL AND MOTIVATION

In this section, we describe drawbacks in the conventional
web access model in low-bandwidth environments and use
them as motivation for designing a new web access scheme.

A. Web Access Model and Simulation Setup

1) Web Access Model:The conventional network model
for web access is as shown in Figure 1. In this model, in
order to access a web page, a user feeds in an URL address.
Then, the browser requests a DNS server to translate the URL
address into an IP address. After obtaining an IP address of
the corresponding web-server from the DNS server, it requests
the HTML document from the web-server directly. When load
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Fig. 1. Network topology

TABLE I
WEB CHARACTERISTICS OFTOP 50 WEB SITES

HTML IMG Others Total

Byte-size Mean 31.72 2.46 12.91 225.96
per object [KB] STD 35.51 5.90 9.67 186.04

Number in Mean 1 17.31 4.41 22.72
first screen STD 15.36 6.22 16.37
Number in Mean 1 46.80 3.99 51.79
all screens STD 28.16 6.22 30.34
Number of Mean 1 5.16 1.74 5.50
web-servers STD 2.90 1.20 3.38

Width Mean 998
[pixels] STD 46.49
Height Mean 1937
[pixels] STD 1119

balancing is performed among multiple servers (e.g. a server
farm), a layer-7 switch rewrites domain names used in the
HTML document in order to distribute requests of embedded
objects to multiple servers. Finally, the web-browser performs
DNS resolution for other unknown web-servers and downloads
objects from them.

Typical web-browsers open multiple connections to a single
web-server in order to increase fetching speed. For example,
Internet Explorer and Netscape Navigator open up to 2 and 6
connections to a single server respectively[10]. A parsingen-
gine in the browser inserts object requests to message queues
of the multiple connections in a round-robin fashion because
the browser is unaware of object and network characteristics.

In this paper, we consider theTop 50 Web Sites[11] as
representatives of typical web pages, and measure their web
characteristics. Table I shows the results of the measurement.
In the table,screenrefers to an effective area for displaying
a web page in the browser. When we set the default screen
resolution as 1024-by-768, the pixel-size of the client area in
Internet Explorer is 1006-by-511, and we set the size of a
screen as this value. The initial screen is the first part that
is shown in the client area when a web page is accessed.
Therefore, the average number of screens in these pages is
1937

511
= 3.7.

2) Simulation Setup:In order to evaluate the performance
of the conventional web access models in low-bandwidth
environment, we usens2 simulator[12] with theReno-FullTCP
package which support bi-directional transmissions. In the
simulations, the same network topology as shown in Figure 1
is used with the assumption that a local DNS server has all the
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Fig. 2. Object fetching sequence atamazon.com

required domain information. The bottleneck link is located
between the web client and the backbone network, and is
configured to have 100-kbps bandwidth and 100-ms link delay.
The bandwidth and delay from both DNS and web-servers to
backbone networks is 1 Mbps and 5 ms respectively.

For modeling web traffic, we use the same web charac-
teristics as shown in Table I. The average processing time
of each object in the browser is assumed as 200 ms, and
parsing delay is ignored. We assume that all web servers
support HTTP/1.1 with the persistent connection feature, but
pipelining is not considered since it is not faithfully supported
by most commercial web-servers[13]. The size of a HTTP
request message is 500 bytes, and the size of HTTP reponse
header is ignored. We also assume that the cache function of
the browser is disabled.

We considerinitial screen response time, which is defined
as the difference between the time when a web-browser sends
a request for a HTML document and the time when all objects
for displaying the initial screen are downloaded completely, as
a primary metric.

B. Screen Contention Problem

When a user is viewing a screen on a display device, objects
for displaying other screens are unnecessary in the sense that
they are not visible to the user at this time. However, in con-
ventional web browsers, the process of fetchingnecessaryon-
screen objects (i.e. objects on current screen) may be slowed
down due to the competition from the process of fetching
unnecessaryoff-screen objects. We refer to the fact that objects
from different screens are competing for bandwidth asscreen
contention.

The main reason of screen contention is disparity of cumula-
tive transfer-size among multiple connections. As mentioned
earlier, a parsing engine inserts object requests to message
queues in a round-robin fashion that considers only fairness in
terms of the number of objects per connections. As a result,
some connections having only small-size objects may finish
transmissions of on-screen objects early and begin to fetch
off-screen objects. Under this scenario, different connections
may fetch objects on different screens simultaneously.
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Fig. 3. Fetching with screen contention in conventional web-browsers
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Fig. 4. Fetching without screen contention in ideal web-browsers

Another possible reason is directionality in a table structure.
When a multi-cell table is defined in a web page, one of
internal cells may have larger vertical pixel-size than the
client area in the browser window. In such a case, a web
browser fetchesoff-screenobjects located at the end of this
cell first, and then begins to fetchon-screenobjects at the
beginning of the next cells. Figure 2 shows an example of
the object fetching sequence in Internet Explorer[14] at the
amazon.com page, which consists of 1 HTML document, 5
javascript, 2 flash, and 65 image objects. In the figure, most
off-screen objects are fetched or begin to be fetched beforeall
the 35 on-screen objects are downloaded because of fetching
directionality in the table.

We show the effect of the screen contention problem by
presenting the simulated object fetching progress in Figure 3.
We assume that all the objects are from a single server, and
the effect of directionality in a table structure is ignored.
In the simulations, the initial screen has 18 objects,i.e.
objects numbered after 18 are unnecessary data. As observed
from the figure, objects from both the current screen and
other screens are fetched simultaneously due to the screen
contention problem. Since fetching the unnecessary objects
consumes some portion of bandwidth, the resulting response
time for initial screen is increased unnecessarily. As shown
in the figure, image (IMG) objects numbered 20 and 22 are
fetched in parallel with other objects on the initial screen. As
a result, the response time of initial screen, which is measured
after IMG 17 is downloaded, is 18.7 s.
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Fig. 5. Impact of screen contention

An intuitive solution to screen contention is to prevent
unnecessary object fetching. Figure 4 shows an ideal case that
contention is eliminated in an ideal browser. As seen from the
figure, when the faster connection (Connection 1) completes
the downloading of all the objects on the initial screen, it stops
fetching and waits for the other connection (Connection 2) to
finish fetching the objects on the initial screen. By doing so,
the remaining connection can obtain more bandwidth and in
turn reduces the response time for the initial screen by 1.1 s.

Moreover, under scenarios where content of a web page is
distributed over multiple servers, this performance degradation
becomes even worse because the degree of contentions among
connections to different server becomes higher. Figure 5(a)
shows how screen contention affects the initial screen response
time under both single and multiple servers scenarios with
varying number of connections and servers. In the multiple
servers case, we assume that up to 2 parallel connections are
allowed to each server.

For a web-browser to fetch objects from a single server, it
can be seen that as the number of connections increases from 1
to 3, both the conventional and ideal browsers show significant
performance improvement. However, when the number of
connections is larger than 4, the performance is less affected by
it. In such scenarios, the ideal browser shows less performance
improvement.

When web objects on a single page are from multiple
servers by some load balancing techniques, the performance
is directly affected by the number of servers. In Figure 5(b),
both the schemes show the best performance as the number
of servers becomes closer to 3. However, the performance in
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Fig. 6. Fetching with synchronized ending time in ideal web-browsers

the ideal scheme is less influenced by the number of servers
due to its effective prevention of screen contention.

C. Bandwidth Under-utilization Problem

In HTTP/1.1, a persistent connection consists of a series of
request-response transactions. Given this model, [13] shows
that the idle time of the network decreases with the increasein
the number of simultaneous TCP connections. The authors of
[13] also show that there is an optimal number of simultaneous
TCP connections (around 6) at which the performance is
optimal because of reduced idle time. However, since current
web-browsers do not schedule object transfers in a bandwidth-
efficient way across multiple TCP connections, current web
transfers do not always maintain the optimal number of
simultaneous TCP connections. In many cases, only a small
number (e.g. 1 or 2) of connections are active at any instant.
This results in under-utilization of the access link which we
refer to as thebandwidth under-utilizationproblem.

The above-described bandwidth under-utilization problem
results in varying levels of performance degradation depending
on specific server scenarios. In the case of a single server,
bandwidth efficiency is determined by synchronized ending
times of transmission among parallel connections. In Figure 4,
the last object, IMG 17, is fetched with no other objects, and
thus only a single connection uses network bandwidth toward
the end. In cases of multiple servers, the user performance is
also affected by synchronized ending among connections to
different servers.

The solution to the bandwidth under-utilization problem
is to schedule the GET requests across the multiple TCP
connections such that all the TCP connections are always
active during the fetching process. Figure 6 shows the impact
of performing ideal scheduling such that there is a pending
request in each of the TCP connection. In the figure, when
the faster connection finishes fetching all the objects in its
request queue and has no more objects to fetch, it takes
over the unfulfilled object requests from the queue of the
other connection and perform fetching. As a result, both the
connections can use bandwidth more efficiently and improve
the initial screen response time by 1.6 s when compared to
conventional web-browsers.
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Fig. 7. Impact of bandwidth under-utilization

Significant amount of web content is being served from
distributed web-servers. Ease of content update and server
load-balancing are some of the benefits of employing multiple
web-servers to serve web content. In the scenario of multiple
web-servers, different objects belonging to the same web-page
are delivered by opening TCP connections to the different
servers. Commercial web-browsers do not take into account
the size of the objects in scheduling the different object
requests. This invariably leads to scenarios where severalTCP
connections to different web-servers are idle while the other
connections are active.

The intuitive solution is to schedule the different object re-
quests across the multiple servers such that all the connections
are active. Figure 7 shows how bandwidth under-utilization
affects the response time performance under various server
scenarios. Note that the response time in the figure means the
transfer time for all the objects of a web page, and thus screen
contention does not exist in this scenario. In Figure 7(a), the
single server case shows a similar pattern as in Figure 5(a)
and improves the performance consistently in the entire range.
In Figure 7(b), unlike Figure 5(b), as the number of servers
increases beyond 3, both the schemes show stable or slightly
worse performance. In this figure, the ideal scheme shows up
to a 20% performance improvement.

D. Summary

We have identified two issues with conventional web-
browsers in bandwidth-limited networks. We observe that
contention among objects belonging to different screens within
the same web-page can increase user-perceived response time



of the initial screen. We also identify that network bandwidth
can be under-utilized because of two issues with conventional
browsers. observe that in most cases screen contention and
bandwidth under-utilization problems affect user performance
negatively in a conventional web model, and show how the
ideal browser can overcome these problems and achieve signif-
icant performance improvement. Based on these observations,
in the next section, we propose a new web access scheme.

III. SOLUTION

A. Overview

Our proposed solution includes three mechanisms, namely
prioritized fetching, objects reordering, and connectionman-
agement. The brief summary of the mechanisms is as follows.

• Prioritized fetching (PF)addresses the screen contention
problem in a multiple-screen page and provides an opti-
mization solution for fetching objects with varying prior-
ity levels. Basically, PF is aWhat-You-See-Is-What-You-
Fetch (WYSIWYF)mechanism, and while giving higher
priority to the on-screen objects, while it gives lower
priority to the off-screen ones in order to reduce the user
perceived response time.

• Object reordering (OR)addresses the bandwidth under-
utilization problem when fetching objects from the same
server. When load on connections to a single server
is unbalanced, OR reschedules object requests across
connections.

• Connection management (CM)addresses the bandwidth
under-utilization problem when multiple servers are in-
volved in a web-page. In order to balance load among
connections to different servers (i.e.domains), it performs
dynamic re-assignments for entire connections.

The three mechanisms complement each other as well as
performing optimization with different levels of granularity
for web object fetching on the web-browser side. One of
the advantages of our solution is easy deployment, since it
requires only client-side modification. In fact, the solution
can be implemented as nothing more than an add-on to the
current web-browsers. Figure 9 shows the flow charts of these
mechanisms, and Figure 8 shows where they are located in
the entire data flow.

B. Prioritized Fetching (PF)

Conventional web-browsers begin to fetch and parse objects
as soon as finding definitions of objects while downloading a
HTML document. This on-the-fly fetching mechanism may
bring performance improvement in high-bandwidth networks
because the overhead of screen contention is relatively small in
this environment. However, in a bandwidth-limited client,this
overhead affects user performance significantly as mentioned
earlier. Thus, PF differentiates objects from different screens
based on the current screen view and allows for downloading
only the objects that are required to render the current screen
display. As a result, it reduces the response time experienced
by web users.
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Fig. 8. Overview of three mechanisms

The basic operation of PF is as following: (1)When a
web access is performed, PF first obtains the initial screen
view information in the entire document layout and prioritizes
embedded objects according to their locations in the document
layout. (2)Then, it performs fetching objects according totheir
priority levels. (3)When a user scrolls to move to a different
view, PF performs the above-mentioned process again for the
new screen.

PF consists of three components, initial object prioritiza-
tion, selective object fetching, and re-prioritization for screen
update. The detailed operations are illustrated in Figure 9(a).

1) Initial Object Prioritization: Generally, a web-page con-
sists of various types of embedded objects. PF considers text-
based files including HTML, javascript, cascading style sheets,
and other layout-related files, as the highest-priority objects
since these objects play an important role to construct the
overall HTML display layout. On the other hand, for other
types objects such as image and multimedia objects, PF as-
signs different priority levels according to their locations. For
simplicity, we consider only IMG objects as representatives of
objects that do not affect the document layout.

As mentioned earlier, PF performs location-based prioriti-
zation for IMG objects. The detection of pixel-location of an
IMG object is possible because most HTML document files
defines the pixel-size of image objects and a web-browser
can construct the full page layout without downloading these
objects. In cases that the HTML document does not specify the
pixel-size of an image object that is not fetched yet, PF uses
an pre-obtained averaged value based on browsing history.

In order to get the location information of objects, PF scans
the document object model (DOM) tree[15]. When it finds an
IMG object definition, it searches all the successors in the tree
and calculates location offsets from successors to predecessors
in a recursive fashion until it reaches the top of the tree. The
absolute location in the layout is defined as the sum of all the
relative offset. Based on this location information, PF gives
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Fig. 9. Flow charts of three mechanisms

highest priority level to objects that are located within the
current view in the client area and low priority levels to others.

2) Selective Object Fetching:For the schemes used to fetch
objects of different priority levels, many existing schemes
such as [17] allocates a small portion of bandwidth for
low-priority transmissions. However, these schemes cannot
be efficiently exploited in PF due to the following reasons:
(1) HTTP 1.1 defines persistent connections, which allows
transfer of multiple objects using a single TCP connection.In
PF, a priority-based connection doesn’t have flexibility tosend
both high- and low-priority objects. (2) Each TCP connection
performs multiple short transmissions. As mentioned earlier,
generally IMG objects that account for the half of total byte-
size of a web-page have a small average byte-size (a few
packets). In these short bursty on-off transmissions, priority-
based connection schemes can’t assign a desired portions of
bandwidth accurately.

Thus, PF uses a delayed-transmission scheme. When infor-
mation of new objects are extracted from a HTML document
and they are prioritized as high level, PF inserts the corre-
sponding request messages into the already-in-use queues.In
this scheme, low-priority objects are fetched only after all the
higher-priority objects have been downloaded,i.e. after the
higher-priority queues become empty.

3) Re-prioritization: When browsing web-pages, a user
may scroll to another view other than the current one before
all the on-screen objects in the current screen are fully
downloaded. For example, a user may performfast scroll
by searching and clicking an internal link to another part
in the same page. In these scenarios, the current focus is
changed before the downloading of previous screen, and the
initial prioritization may not perform efficiently. Thus, aproper
mechanism is required to deal with these scenarios.

When the screen focus is moved to a new area, PF removes
all the IMG objects that reside in request queues and re-
prioritizes them for the newly focused area. For the objects
that are currently being downloaded, PF waits for their com-
pleteness. The reason for allowing this off-screen fetching is
that most web-browsers, as applications above transport layer
following HTTP standards, do not have mechanisms to manage
disconnections and re-connections. PF thus keeps the currently
incoming transfer and only updates the priority levels of the
queues involved.

The provided fetching schemes can be different transport
protocols, different parameters in the same protocol, or dif-
ferent starting time. As mentioned earlier, in this work, we
consider only adjusting starting time to fetch different screens
using the currently existing transport protocols.

C. Objects Reordering (OR)

For parallel connections to a single server, OR uses balanced
ordering of objects to gain benefits in terms of reduced
response time. The operations of OR consist of three steps. (1)
At the first step, an initial assignment of objects is executed.
(2) Then, an optimized ordering of objects is performed
by TCP-aware object reordering. (3) After that, it performs
dynamic objects rescheduling until all objects are completely
fetched. The detailed operations are illustrated in Figure9(b).

1) Initial Objects Assignment:As we identify in Section
II, conventional browsers perform a round-robin assignment
to distribute object requests to multiple connections. This
size-unaware assignment may cause unsynchronized ending
time among different connections, and as a result increases
response time. Therefore, OR performs load balancing among
connections using byte-based metric rather than simple round-
robin in order to synchronize their ending time.



Since larger byte-size translates to longer downloading time
in web fetching, OR synchronizes ending time of different
connections by distributing same amount of objects to every
connection. A more accurate way to synchronize the ending
time could be one that also considers the number of objects,
the precessing time for each object, and others. That is, the
expected ending time is given bySizeData

BWAvailable
+ n ∗ rtt

2
+ TProc,

wheren is the number of objects andTProc is the processing
time.1 However, OR simplifies the metric by considering only
data size, based on the observation that the first term,SizeData

BWAvailable

dominates over other terms in low bandwidth networks.
Performing OR requires the byte-size information of ob-

jects. Since this information is normally not included in HTML
documents, OR estimates it by considering both the object’s
pixel-size included in HTML documents and the object for-
mats such as gif and jpeg. Based on this data size information,
OR sends object requests through multiple connections in a
balanced way. A time with aϕ expiration value is used to
strike the balance between amount of objects and increased
response time.

2) Dynamic Objects Rescheduling:Irrespective of initially
balanced assignment of objects among connections, due to
dynamic behavior of connections, the total fetching time
of different connections may still vary significantly. If due
to some reasons one connection is delayed, and the other
connection is idle, it is possible to reschedule the objectsfrom
the busy connection to the idle one, and thus reduce response
time even more. Dynamic objects rescheduling runs in an on-
demand fashion during the fetching process in order to deal
with the dynamic nature of the connections.

3) TCP-aware Objects Reordering:When initial objects
are assigned to connections, TCP-aware reordering of fetching
sequence can minimize the adverse effect of slow-start in TCP
connection setup and increase fetching speed. For example,
let us assume there are 3 objects with data size of 7, 3,
and 2 KB respectively are waiting to be fetched along one
single connection. If the connection is newly created, the total
fetching time for an order of 7→3→2 KB may be 5rtts since
it takes up to 3rtts to fetch the first object that has 7 KB data
size and one morertt for each of two other objects.2 However,
if an opposite order of fetching is allocated, it may just take
3 rtts to finish the fetching. Thus, appropriate ordering the
fetching may save response time in the order ofrtt of the
path.

TCP slow start can kick in at any time during the down-
loading process. However, since HTTP and upper layer is
unaware of each other’s status information, there is no way
to take advantage of them without some other cross-layer
mechanisms. Thus, the TCP-aware objects reordering scheme
only makes use of the slow start phase in the beginning of a
TCP connection.

1Since fetching each object has to follow the HTTP request-reply hand-
shaking pattern, which wastes 0.5rtt.

2More than 95% of the servers do not perform TCP-JumpStart[16], and we
assume that the initial value of congestion window in web-servers is 1.
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Fig. 10. Reordering using OR

For this rescheduling to take place, appropriate ordering of
objects is required. Intuitively, with small objects beingput at
the end of connection, it is more likely to reschedule objects
among connections, and thus reduce response time. Also,
ordering objects from big to small also makes rescheduling
easily to perform, since small objects can be rescheduled ina
finer granularity as the fetching process going on.

Thus, both considering the two requirements, OR orders
the fetching sequence in arats-elephants-ratsfashion. The de-
tailed operation of TCP-aware Objects Reordering is illustrated
in Figure 10. First, all the objects assigned to one connection
are sorted according to their data size. After that, from smallest
one, all objects are inserted from two ends of the queue in
round-robin way, and the resulting ordering is a small-to-big-
to-small order.

D. Connection Management (CM)

CM addresses the bandwidth under-utilization problem
when fetching objects from multiple servers by controlling
the numbers of connections a browser can open to different
servers. By adjusting the number of connections for each
server, CM effectively synchronizes the ending time of down-
loads in the connections. As a result of the improved band-
width utilization, the response time is reduced. CM consists
of two components, estimation of per-connection load and
dynamic connection assignment. The detailed operations are
illustrated in Figure 9(c).

1) Per-Connection Load Estimation:In order to estimate
the ending time of downloading, CM uses the byte-size
information that OR converted earlier. The intuition of CM
is to assign more connections to servers with larger data size,
while assign less connections to servers with smaller data size.
To maintain friendliness to current browsers and compatibility
to published standards, the total number of connections in
our mechanism is maintained the same as in today’s popular
browsers. By doing so, CM behavesfriendly to them. To
achieve this purpose, whenever it assigns one more connection
to some server, one less connection should be deducted from
some other server. Furthermore, CM limits the maximum
number of connections assigned to a server to four due to
several reasons including the observation made by [13] stating
that allocating too many (say, more than 6) connections to the
same server does not necessarily lead to better performance.

2) Dynamic Connection Assignment:When fetching a
HTML document from a server, a browser fetches and parses
the contents. Whenever it detects new object information, it



estimates the byte-size of this object, and starts a timer with
δ expiration value. The setting of this timer requires careful
consideration. On one hand, CM needs to collect some amount
of object samples in order to achieve improvements. Thereby
the δ should not be too small. On the other hand, CM should
not delay object fetching significantly to avoid increasing
response time adversely, and thus the expiration value should
not be very large such as dozens of ms.

After the expiration of this timer, CM performs the initial
assignment based on object information collected so far.
During the process of fetching objects, it keeps recording
the object information on how much data already received.
This information will be used again to adjust the number of
connections

3) Mathematical Model:This CM mechanism can be for-
mulated into the following mathematical model. Given a set
of servers,S = {si|1≤i≤N}, where N is the total number
of servers, letdi denote the total data size of objects from
serversi. Given a connection set,C = {ci|1≤i≤N}, whereci

is the number of connections opened for serversi, CM finds
a minimized maximum value ofdi/ci.

C is also subject to three other constraints. First, the total
number of connections should not exceed2N to maintain
friendliness to current browsers. Second, theci should not
exceed the number of objects insi. Third, ci should have a
range from 1 to 4.

Let us useni to denote the number of objects in serversi.
The outputC should achieve the purpose described in Eq. 1,
and satisfy the constraints denoted in Eq. 2.

Lmax is minimized, where1≤i≤N (1)

∑

1≤i≤I

Ci ≤ 2I and 1 ≤ Ci ≤ min{4, N} (2)

The detailed algorithm is as follows. In the beginning, every
server is assigned 2 connections, and CM computes the largest
and smallest values ofLi = di/ci. We useLmax andLmin to
denote the largest and smallest values ofLi. Assume serversj

has the largest value (i.e. Lmax = dj/cj), and serverk has the
smallest value,Lmin. Now, we increasecj by 1 (i.e. cj = 3),
and decreaseck by 1, then compute the new maximum value,
Lmax′. If Lmax′ < Lmax, that means the new assignment has
a smaller maximum value, then the algorithm will continue
to run. Otherwise, ifLmax′ > Lmax, the algorithm stops
and resume to previous assignment, since the new assignment
results in a larger maximum value.

The algorithm runs whenever an object is downloaded. For
the new runs, the metrics considered in Equation 1,i.e. si,
are set to be the remaining data size for serversi. Thus, the
algorithm will be performed whenever an object-related event
happens. For this reason, an adverse effect - fluctuation on
the number of connections assigned to servers, may possibly
happen. To reduce this fluctuation, we introduce a threshold
value, τ . In CM, only when theLmax′ values between two
consecutive iterations is larger thanτ , the algorithm will adjust

connections set. We suggest a 10% of previousLmax′ as the
τ value.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the proposed
mechanisms, and compare it with that of conventional web-
browsers.

A. Simulation Setup

In order to evaluate the performances, we usens2
simulator[12]. Unless otherwise noted, the network configura-
tions as well as the web characteristics used in simulationsare
the same as described in Section II. We use the same network
topology as shown in Figure 1 with the assumption that the
local DNS server has all the required domain information.

Response time for the initial screen is used as the primary
metric for comparing performances. In this section, we com-
pare five schemes including conventional (CONV), PF only
(PF), PF with OR (PF+OR), PF with CM (PF+CM), and all
integrated (ALL) schemes. To better explore the impacts of
some factors on the performances, we vary some factors in
evaluation. These factors include object characteristicssuch
as object sizes and total number, numbers of servers involved,
number of connections opened to a single server, network
characteristics such as link bandwidth and rtt, and user’s fast
scrolling to different screens.

B. Impact of Object Characteristics

Figure 11 shows the initial response time of conventional
web-browsers, and our proposed solution when the standard
deviation of individual object size and the number of objects
in the first screen vary. As shown in the figure, when used in
combination, the three proposed mechanisms can reduce up to
30% of response time compared to current browsers.

Figure 11(a) show that as the variance of object size
increase, the performance of both the conventional model and
our scheme shows worse performance. For conventional web-
browsers, the reason is obvious, since larger variance can
be translated to reduced bandwidth utilization as described
in Section II. Our mechanisms can alleviate this problem,
and thus reduce the initial response time. However, since the
problem still exists, and becomes more severe when variance
of object size increases, the performance degradation is still
expected.

Figure 11(b) shows the performance differences between
conventional web-browsers and proposed ones when the total
number of objects increases. Two trends are shown in the
figure. As more objects are included in a web-page, first,
larger response time is expected; second, the response time
reduced by the proposed solution is larger since all of the
three mechanisms can gain more benefits.

C. Impact of Number of Connections and Servers

Figure 12(a) shows the impact of number of connections to
a single server, and it can be seen that up to 20% of response
time can be reduced by using our solution. In the figure, as
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Fig. 11. Impact of object characteristics
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Fig. 12. Impact of numbers of connections and
servers
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Fig. 13. Impact of network characteristics

the number of connections to a single server increases, both
the conventional and our solution has smaller response time.
However, as this number exceeds 4, there are no obvious
performance improvements with more connections. This result
is consistent with the results presented in other works [13].

Figure 12(b) shows how the initial response time varies
as the number of servers for a web-page increases. Two
observations can be made from the figure. Increasing number
of servers does not necessarily always result in better per-
formance for both conventional browsers and proposed ones.
Second, with more servers, our solution can achieve more
improvements compared to conventional web-browsers.

D. Impact of Network Characteristics

Figure 13(a) shows how the initial response time changes
under varying bottleneck bandwidth. As shown in the figure,
our solution brings more performance improvement for smaller
bandwidth. It is because of the fact that smaller bandwidth
makes the screen contention problem identified in Section II
more severe, and thus our solution can reduce response time
more by alleviating this problem.

Figure 13(b) shows how the initial response time is affected
by the rtt values. Since the major effects of rtt come from
the request-response behavior of HTTP protocols (i.e. each
object is fetched upon the request from the web client, and thus
takes at least one rtt to fetch one object) and our solution can
alleviate this effect by removing some of these rtts required,
our solution sees better performance. As shown in the figure,
around 20% performance improvement is achieved by our
solution under the rtt values considered in the evaluation.
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Fig. 14. Impact of fast scroll

E. Impact of Fast Scroll

Figure 14 shows the response time performance when a user
performs fast scrolling. The x-axis of the graph shows the
screen to which a user scrolls, and the y-axis is the response
time. We assume that scrolling is performed when a web-
browser completes downloading of the main HTML document
and the entire document layout becomes available.

As seen from the figure, the response time increases when
a user scrolls farther away from the initial screen for conven-
tional web browsers. It is because conventional web-browsers
perform greedy fetching without considering the locationsof
objects on a screen, and thus display of any screen requires
downloading of all previous screens. In contrast, our solution
has smaller response time as a user scrolls farther away from
the initial screen. That is, if a user simply scrolls to the fourth
screen, it can experience even smaller response time than any



preceding screen! Since PF performs non-sequential fetching
and fetches the current screen first, the response time does
not depend on the screen number, instead, is determined by
the data sizein the current screen. Consequently,as less data
are located in farther screen (as seen in most popular web-
pages), the response time for these screens is less than that
for preceding screens. Thus, we see a 70% reduced response
time when the users jump to the fourth screen.

V. RELATED WORKS

In order to obtain optimization techniques related to web
fetching, a lot of research such as [18] and [19] have studied
the characteristics of embedded objects included in HTML
documents. They have examined number, size, type, attribute,
and file extension of web objects through millions of web-
pages using their web tools or search engines.

To accelerate web browsing in today’s Internet, especially
for users who access Internet via low-bandwidth links, ex-
tensive research has been conducted and various approaches
have been proposed. Besides the caching and server-side
optimization techniques[20], most of these approaches require
modifications on proxies or servers. For example, Gilbert at
el.[21] proposed a new web delivery scheme that improves
response time performance of images using progressive jpeg
coding. [22] also proposed a distillation technique that controls
the jpeg compression ratio in order to adapts to changing
network environments. Some works suggest reducing image
size via lossy compression, a lot of prototypes and commercial
products such as UC Berkeley’s Transend[23], Intel’s Quick-
Web, IBM’s WebExpress[24], and Oracle’s Portal-To-Go[25]
have been developed. However, these solutions are difficultto
deploy since it requires support from non-browser entities.

Web acceleration techniques such as [26] reduce user re-
sponse time either through pre-fetching or predicted fetching
on web-browsers. However, using these technologies requires
either excessive bandwidth, thus degrades performance of
other users or applications, or cannot guarantee 100% cor-
rectness. Compared to these techniques, our solution is free
of these two concerns.

VI. CONCLUSIONS ANDFUTURE WORKS

In this paper, we first explore the reasons why conventional
web access models are not appropriate for low-bandwidth
hosts. We identify two reasons, screen contentions and band-
width under-utilization, which results in large user-perceived
response time. To address this problem, we propose a new
web access scheme for low-bandwidth hosts. The proposed
scheme uses an intelligent mix of prioritized fetching, object
reordering, and connection management. Using simulations
with the web parameters obtained from the top web sites, we
evaluate the performance of our scheme and prove its benefits
over conventional web access models.

However, the performance evaluation through the simula-
tions in this paper has not considered other factors that could
possibly affect the user-performance in real communication
networks, such as wireless packet loss, variance of roundtrip

time, screen size in small devices, and so on. As a part of
future works, we intend implementing a prototype of the
proposed algorithms and investigating the impact of those
other factors.
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