

On Multi-Gateway Association in Wireless Mesh Networks

Sriram Lakshmanan, Karthikeyan Sundaresan, Raghupathy Sivakumar

GNAN Research Group Georgia Institute of Technology

Wireless Mesh Networks

Characteristics

- Multi-hop with a static routing infrastructure
- Several applications in military and commercial scenarios such as hospital, residential broadband networks
- Gateway Association establishing a connection to the wired internet(through a gateway)
- Challenges
 - capacity, security and fairness

GeorgiaInstitute of **Tech**nology

Motivation

Default model

- Single Gateway Association [Wimesh2005].
 - simple model
 - leads to several issues such as single-gateway bottleneck, fairness, security ;etc
- What if we move away from this model?
- Proposed Model
 - Multi-Gateway Association (MGA)
 - every client can use more than one gateway simultaneously
- Focus of present work
 - highlight the benefits & challenges of MGA
 - develop a (centralized) solution suite to achieve anticipated benefits
 - evaluate solution performance using simulations

Benefits of MGA-Capacity(1/4)

- Capacity
 - Better resource utilization
 - Ideally when the network load is below throughput capacity

Benefits of MGA-Fairness (2/4)

- Fairness
 - Problems due to
 - Uneven geographic distributions nearness to gateway
 - Uneven traffic distribution differently loaded gateways
 - MGA improves fairness by more uniform distribution of loads and using aggregate resources than single gateway resources

Benefits of MGA-Diversity (3/4)

- Diversity
 - Types of loss:
 - Hard losses- failure of gateway
 - Soft losses- space dependent channel loss, buffer drops;etc
 - Path, gateway diversity possible with MGA

Benefits of MGA-Security (4/4)

- Security
 - Problem:
 - Gateway a single aggregation point
 - Interception around gateway exposes the wireless network
 - MGA
 - Makes the eavesdropper's task more difficult
 - Reduces the number of intercepted packets

Challenges

Architectural model

 Requirement of splitting for downstream and reassembly for upstream

Gateway characterization

 loss, delay and throughput characteristics of the paths from each client to each gateway

Gateway Association

- How many gateways to associate with?
- Which gateways to associate with?
- Scheduling
 - which packet to send at what time instant so that effective aggregation and in-sequence delivery occur?

- Overview
 - Greedy centralized algorithm to determine associations and rates
 - Maximize aggregate throughput subject to max-min fairness
- Algorithm
 - Step 1: Path Computation
 - Compute shortest paths to each gateway from the client
 - Step 2: Bandwidth Computation
 - Compute available bandwidths on each path using the flow graph
 - Step 3: Gateway Decision
 - Identify the number of gateways and the exact gateways to associate with

Gateway Decision Details

- Is load less than sum of available bandwidths?
 - Yes: allot bandwidth in a greedy manner (in descending order of available bandwidths)
 - No: For the excess load
 - Compute maximum degree bottlenecks on paths to gateways
 - Identify the set of flows which contends or intersects to the maximum
 - Allot unit bandwidth from maximum rate flow to the new flow one the maximum bottleneck path
 - Terminate if load is allotted or max-min allocation is reached

- Illustration
 - Step 1 / Step 2
 - Client with load of 0.5 computes paths and identifies gateway statistics

GAA-Flow sets

Let f4 be the maximum rate flow and Rate(f4,2) = 0.1 ; Rate(f4,3) = 0.1

New rates: Rate(f4,2) = 0.05, Rate(f4,3) = 0.1; Rate(fn,2) = 0.05

Continues till max-min allocation or fn's requirement

Scheduling - Overview

- Goal
 - enable effective aggregation and prevent out of order delivery
- Procedures
 - Step 1:Window calculation
 - Calculate the number of packets to each of the associated gateways
 - Uses integral values of normalized delay ratios.
 - Step 2:Ordering
 - Calculate reception times as transmission time + other delays
 - Tag each packet with a 2-tuple (seq.no, expected reception time)
 - Expected reception time for packets of the same destination = Propagation delay + k*Transmission delay (where k is its position in the destination queue)
 - Sort in ascending order of reception time

Scheduling Illustration

Scheduling Instants

In-sequence delivery, if delays are correct

GeorgiaInstitute of **Tech**nology

Performance evaluation - Setup

- Ns2 simulator
- 1000 m * 1000 m grid
- 4 gateways at (200,200) , (200,900) , (900,200) and (900,900)
- 21 Routers uniformly deployed along with 10 clients
- Each client has a traffic demand of 500 Kbps
- Application CBR
- Transport layer- UDP
- Routing- Static Shortest path
- MAC Ideal Flow Scheduling
- PHY Wireless Phy at 915 MHz

Throughput Improvements

SGA	MGA	benefit
2.5Mbps	2.76 Mbps	10.4%

Average case

- improvement around 10%.
- Effect of load
 - Single reference client at the center and other clients outside the grid of gateways
 - Almost linear improvement in throughput gain with number of associations
 - Load also decides the gains possible

Diversity Benefit (1/2)

- A single loss module at gateway 0 (i.e. at (200,200))
- Simulated path loss rate at gateway
- Averaged over 10 seeds for each loss rate
- MGA has lesser degradation and rate of degradation with losses

Diversity Benefit (2/2)

- For a fixed 50% loss rate at one gateway
- Loads are 100,100,100,100,
 2000 Kbps
- Flows achieve 50% benefit in throughput
- Only flows associated with lossy gateway show improvement

Security Benefit (1/2)

- Security benefit increases with number of gateways
- Fraction of intercepted packets of each flow with increasing associations allowed
- Total interception by eavesdropper assumed
- Trend is same for all flows as the number of associations is same
- Near ideal benefit ratios

Security Benefit (2/2)

- Practical case of, providing security without significant (<10%) capacity degradation
- The associations are 1,2,1,2,3 for flows 1 to 5 respectively
- Near ideal benefits obtained for flows that perform multiassociation

Related Work

- Wireless Mesh networks
 - Dual association of clients with routers for optimizing broadcast load [Wimesh 2005]
 - Capacity of mesh networks [Mobicom 2005]
 - Security challenges in wireless networks [Mobicom 2001]
- Multiple Connections
 - pTCP : Transport solution suite for Managing multiple TCP connections [Mobicom 2002]
 - R²CP : Receiver Centric Transport Protocol allows aggregation of bandwidth [Mobicom 2003]

Conclusions

- Showed that the MGA model has many benefits
- Identified challenges in leveraging the benefits of multigateway association
- Designed centralized algorithms for gateway association and scheduling
- Evaluated the association algorithm through simulations
- Multi-gateway association has benefits, but leveraging them requires non-trivial algorithm development
- Further neither a single gateway nor all gateway association can bring the best benefits

Future work

- Evaluate the scheduling algorithm and the effect of TCP flows
- Identify all the drawbacks of MGA
- Evaluate the different factors that impact the achievable benefits
- Design gateway characterization algorithms to obtain network information and decide in a distributed manner
- Identify a more general framework in which associations are decided to support the desired levels of capacity, diversity and security simultaneously

Thank You

