

Component Based Channel Assignment in Single Radio, Multi-channel Ad-Hoc Networks

Presenter: Sandeep Kakumanu

Authors: Ramanuja Vedantham, Sandeep Kakumanu, Sriram Lakshmanan and Raghupathy Sivakumar

GNAN Research Group
School of Electrical and Computer Engineering
Georgia Institute of Technology

Preview: Context

- Channel assignment in multi-channel wireless networks can increase achievable throughput
 - Interference, varying channel characteristics, poor end-to-end characteristics
- Multi-channel, multi-hop wireless networks with single radio
- Channel Assignment: For each node, which channel should we operate at any given point in time?
- Granularity of assignment
 - Packet: Channel assignment on a per-packet basis [DCA'00]
 - Link: Channel assignment on a per-link basis [MMAC'04,SSCH'04]
 - Flow: All packets in a flow are sent along the same channel [MCP'05]
 - Component: Channel assignment on a component basis

What is the ideal granularity for doing channel assignment, and how to achieve it?

Background: Link and Flow Based

- Link based channel assignment
 - Different links in the flow graph can operate on any of the available channels.
 - Different links in a flow can potentially be assigned to different channels.

- Flow based channel assignment
 - Different flows in the flow graph can operate on any of the available channels.
 - All links in a single flow operate on the same channel.

Component based Channel Assignment

- We introduce a new model for channel assignment known as Component-Based:
 - All links in a connected component induced by the underlying flow graph operate in a single channel.
 - However, different connected components can potentially operate on different channels.
 - Leverage the presence of multiple channels to increase spatial reuse at the granularity of a component.
 - Although the component based model looks simple, we show that this model can have equal if not better performance over link and flow based approaches.

Motivation: Logical Reasoning

- Single Radio Bottleneck.
- Capacity under an ideal scheduling scheme.

Motivation: Quantitative Results

- Performance in a random network using simulations
- NS2 simulations
 - 100 nodes in 750mx750m square
 - Transmission range: 250m
 - Channel data rate: 2 Mbps
- From graphs 1, 2
 - Component based shows minimal degradation in throughput
 - Flow and link based approaches saturate
 - Switching delay
 - Lack of synchronization
 - Head of line blocking

Research Group

Motivation: Practical Considerations

- Hardware/ MAC changes
 - Link and flow based assignment require changes to MAC layer [MMAC'04].
 - Need for customized wireless cards to support new MAC layer functionality.
- Switching delay
 - Link and flow based require switching at intersecting links or flows.
 - Hardware switching delay: 80-100 µs [Herzel'03].
 - With software overheads it can be higher.
- Synchronization requirement
 - When a common node serving two links (or flows) switches to another channel
 - Sender/receiver for new link should be on the same channel.
 - Sender of old link should not transmit for the duration of time spent in the other channel.
- Scheduling overheads
 - Common node informs the switching schedule to neighboring nodes.

Motivation: Analytical Results - Bounds

Variable	Description			
W	Capacity of single channel			
F	Total number of Flows			
С	Number of Channels			
Δ	Maximum number of contending flows			
Г	Maximum number of intersecting flows			

(i) Notation

Type	Condition	Link LB	Link UB	Comp LB	Comp UB
NC	N/A	O(WF)	O(WF)	O(WF)	O(WF)
С	Δ ≤ c	O(WF)	O(WF)	O(WF)	O(WF)
С	∆ > c	O(WFc/ Δ)	O(W(c+F- Δ))	O(WFc/ Δ)	O(W(c+F- Δ)
I (NC)	N/A	O(WF/ Γ)	O(W(1+ F - Γ))	O(WF/ Γ)	O(W(1+ F - Γ))
I and C	$\Delta \le c + \Gamma - 1$	O(WF/ Γ)	O(W(1+F- Г))	O(WF/(Γ+ Δ))	O(W(1+F- Г))
I and C	Δ > c + Γ – 1	O(WF/ Γ)	O(W(C+F- Γ))	O(WF/(Γ+ Δ))	Ο(W(C+F- Γ))

(ii) Theoretical Upper and Lower Bounds

Centralized Approach

- Greedy centralized approach to do component-based assignment efficiently.
- Based on insights from theoretical analysis.
 - Capacity is inversely proportional to number of intersections.
 - Capacity is inversely proportional to level of contention.
- Algorithm has two phases:
 - Phase 1: Path selection minimize the number of intersections in the network and form components.
 - Phase 2: Channel Assignment minimize the contention level among different components.

Centralized Approach (...contd)

- Path Selection: Given S-D pairs, find the flow graph, component set
 - Compute k shortest paths for each S-D pair.
 - Cost of the path, w(i) = sum of the weights of each node, i (node weight = 1 initially).
 - Path with the least cost is chosen.
 - Update weights for any chosen path to $w(i) = w(i) + \alpha$.
- Channel assignment: Given component set, determine the channel assignment
 - Compute total contention for a component: sum of pair-wise contention.
 - Compute channel contention: number of nodes assigned to that channel.
 - Choose component with maximum total contention
 - Assign to a channel with least channel contention.
 - Update channel contention level corresponding to the assigned channel.

Centralized Approach (Example)

Distributed Approach

- Distributed realization of the centralized algorithm.
- Path and channel selection are performed in an integrated fashion (8 phases):
 - 1. Pre-preparation
 - 2. Route Request Broadcast
 - 3. Route Request Update
 - 4. Channel Selection
 - 5. Route Reply Propagation
 - 6. Component Update
 - 7. Route Maintenance
 - 8. Flow Termination

Distributed Approach (contd ...)

- Route Request Broadcast:
 - *RREQ()* on all active channels by source.
- Channel Selection
 - Destination waits for some T_{RREO} seconds or k RREQ() messages.
 - Destination selects path with minimum congestion and also decides the channel.
 - Path selection and channel assignment in centralized algorithm are preformed on for each S-D pair when required.
- Route Reply Propagation
 - Route Reply is sent on old active channel of receiving node.
 - As Route Reply propagates nodes in the route update new component information.
- Component Update
 - Update channel and component information for nodes.
 - Component broadcast by node, forwarding RREP(), to update channel and component information of other nodes in existing component.

13

Simulation Results: Setup

Setup

- NS2 simulator
- 750mx750m grid with 100 nodes
- Number of orthogonal channels: 1 to 8
- Data rate: 10 Mbps, 54 Mbps
- 20 flows, CBR over UDP
- Switching delay: 100 μs
- Routing protocol: Distributed algorithm for component, DSR for link and flow
- Flow: MCP, Link: MMAC
- Metric
 - Throughput (Kbps)
 - Delay (sec)

Simulation Results: Channel Rate

- Component based throughput increases with increasing number of channels (for both data rates)
 - Fewer intersections
 - No switching delay
 - No synchronization requirements
 - No scheduling overheads

Simulation Results: Delay

- Component based has decreasing end-to-end delay with increasing number of channels
 - No synchronization requirements
 - No head of line blocking
 - Decrease in intersections, contention

Testbed

Setup

- 8 IBM and Dell laptops
- Lucent Ornico & Intel Pro wireless 2200 802.11b/g Wifi cards
- 3 laptops have FC 4 linux
- 5 laptops run on windows XP
- Ftp application

Testbed

Topology 1

Topology 2

Summary

- Multiple channel usage does not automatically imply good performance in a single radio setting.
- Practical considerations greatly impact the performance of the type of channel assignment
 - Switching delay
 - Synchronization
 - Scheduling overheads
- Component based assignment performs well in most scenarios.
- Proposed centralized and distributed algorithms to perform efficient channel assignment in component-based.

Thank You.

