

A³: Application-Aware Acceleration for Wireless Data Networks

Zhenyun Zhuang and Tae-Young Chang GNAN Research Group, Georgia Tech, Atlanta, GA

Raghupathy Sivakumar and Aravind Velayutham Asankya Networks, Inc., Atlanta, GA

Introduction

- Wireless Environments
 - High loss rate
 - Large delay
 - Low bandwidth
- Works focused on developing better transport protocols for wireless environments
 - TCP-ELN, WTCP, STP, etc.
 - Novel design, deals with unique characteristics
 - Improves throughput significantly
- Evaluation of transport protocols
 - FTP, or bulk of data

Analysis of Enterprise Traffic

Figure from Business Communications Review (April 2006)

GNAN

Research Group

Motivation: Network Setup

- Traffic Generator
 - Ixia IxChariot (IxProfile, Console, Endpoint)
- Applications
 - FTP, CIFS, SMTP and HTTP
- Wireless Networks
 - Wireless LAN (WLAN)
 - Wireless WAN (WWAN)
 - Satellite Networks (SAT)
- Transport Protocols
 - NewReno, TCP-ELN, WTCP, STP
- Parameters
 - Varying loss rate (RTT, BDP)

Motivation Results: FTP

Significant performance improvement...

Up to 120% in satellite networks

Motivation Results: Other Applications

Less performance improvement in other applications...

32

3

2.8

Throughput (Kbit/s)

2.2

2

1.8

2

μų

15

5 10 Loss (%)

5%!

SMTP

9

Throughput (Kbit/s)

8

7.5

- NewReno

2

Loss (%)

GeorgiaInstitute

of **Tech**nology

1250

1200

1150

Throughput (Kbit/s) 1000 1000

1050

1000

950

Application Traffic Patterns

Application Traffic Patterns (cont.)

Typical Application Behaviors

- Thin Session Control Messages
 - Sent before DATA; Small
 - Retransmission timer expires to recover loss
- Batched Data Fetch
 - Data transfer is performed in batches
 - Bandwidth Delay Product cannot be fully utilized
- Flow Control Bottlenecked Operations
 - When applications are slow, receive buffer fills up
 - Flow control can kick in and be the bottleneck
- Non-prioritization of Data
 - Data are given equal importance
- Non-use of Data-reduction Techniques
 - Application-specific and user-specific information

A³: Application-Aware Acceleration

- Application aware
 - Recognize applications
- Application transparent
 - No modifications to applications
- A set of design elements
 - Transaction Prediction (TP)
 - Redundant and Aggressive Retransmissions (RAR)
 - Prioritized Fetching (PF)
 - Infinite Buffering (IB)
 - Application-aware Encoding (AE)

A³: Transaction Prediction (TP)

CIFS: Throughput

Transaction Prediction

- Deterministically predict future requests
- Issue them ahead of time
- Designed for protocols that divide data into blocks
 - Examples, CIFS, HTTP

GeorgiaInstitute

Technology

Redundant and Aggressive Retransmission (RAR)

- Helps protect thin session control messages from losses
- Packet-level redundancy
- Aggressive retransmission
- Not applying to DATA
 - Loss recovery is masked by subsequent packets
 - High overhead

Georgia Institute

SMTP Throughput

Prioritized Fetching (PF)

- Divide data into categories of different priorities
- Fetch them with different speeds
- Helps protocols that treat data with equal importance
 - Example, HTTP

Infinite Buffering (IB)

- Prevents flow control from throttling the transmissions
- Uses local storage to store data at the receiver
- Flow control never kicks in

CIFS: Throughput vs Application Rate

Application-aware Encoding (AE)

- Uses application and user specific information
- Better compress data
- Example, SMTP

eoraia Institu

			10 P	ersons (10	0 emails)	Word Frequencies of a Perso		
	Unique	Total	Char.	Bits per Email	Bits per Email			
D	Word	Word	per Word	of Binary Coding	of Simple Coding	90 D		
1	1362	6383	6.22	3176	664.6	9 80		
2	3554	19284	7.12	10984	2274.6	· · · · · · · · · · · · · · · · · · ·		
,	2645	12653	7.08	7167	1438.5			
ļ	4536	25481	6.15	12537	3095.2	tag		
	966	4728	11.46	4335	468.8			
	1205	6413	5.48	2811	656.4			
	798	3346	4.40	1178	322.6			
;	1527	6836	5.72	3128	723.0	₽ 20 [₽] -		
)	1758	9171	4.91	3602	988.6	0 10-		
0	1402	8320	7.3	4859	869.7			
0 4.7%10 16.7%20 30 40 50 52.0% 60 Percentage of Top Words (%)								
	1							

A³ Deployment Model

- Client side is a software module
- Server side can be software modules installed on application servers, or packet processing appliances
- Point solution is also possible
- Implementation with Netfilter for Linux Systems

Evaluation Setup

NS2 Emulation

- Application Emulator (AppEm)
- A³ Emulator (A³Em)
- Wireless Network Emulator (WNetEm)

	WLAN	WWAN	SAT
BW (Mb/s)	5	0.1	1
RTT(ms)	5	200	1000
Loss (%)	1	8	3

Performance Evaluation

CIFS

GeorgiaInstitute

Technology

- RAR, IB and TP
- 70% improvement

SMTP

- RAR, IB and AE
- 110% improvement

HTTP

- RAR, IB and PF
- 30% improvement

Related Works

- WAP: Wireless Application Protocol
- PIE: Pocket Internet Explorer
- Odyssey [Noble 1997]
- Coda [Satyanarayanan 1990]
- "Upload" client-tasks to server side [Czerwinski 2001]
- Out-of-order HTTP objects transmitted in UDP [Mohomed 2006]
- Commercial WAN optimizers [Riverbed, etc]

Summary

- Use emulations to test performances of several popular used applications
- Identify five application behaviors, and analyze their impacts on performances
- Propose an application-aware acceleration solution
 - TP, RAR, PF, IB, and AE
- Evaluate its effectiveness

GNAN Research Group : http://www.ece.gatech.edu/research/GNAN/ Asankya Networks, Inc. : http://www.asankya.com/

