
A3: Application-Aware Acceleration for
Wireless Data Networks∗

Zhenyun Zhuang†, Tae-Young Chang†, Raghupathy Sivakumar†§,
and Aravind Velayutham§

†Georgia Institute of Technology, Atlanta, GA 30332, USA
§ Asankya Networks, Inc., Atlanta, GA 30308, USA

zhenyun@cc.gatech.edu, {key4078,siva}@ece.gatech.edu, vel@asankya.com

ABSTRACT
A tremendous amount of research has been done toward
improving transport layer performance over wireless data
networks. The improved transport layer protocols are typi-
cally application-unaware. In this paper, we argue that the
behavior of applications can and do dominate the actual
performance experienced. More importantly, we show that
for practical applications, application behavior all but com-
pletely negates any improvements achievable through bet-
ter transport layer protocols. In this context, we motivate
an application-aware, but application transparent, solution
suite called A3 (application-aware acceleration) that uses a
set of design principles realized in an application specific
fashion to overcome the typical behavioral problems of ap-
plications. We demonstrate the performance of A3 through
emulations using realistic application traffic traces.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication; C.2.2 [Network Protocols]: Applications;
D.4.8 [Performance]: Simulation

General Terms
Algorithms, Design, Performance

Keywords
Wireless Networks, Application-Aware Acceleration

1. INTRODUCTION
A significant amount of research has been done toward

the development of better transport layer protocols that

∗This work was funded in part by NSF grants CNS-0519733,
CNS-0519841, ECS-0428329 and CCR-0313005.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’06, September 23–26, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-286-0/06/0009 ...$5.00.

can alleviate the problems the transmission control proto-
col (TCP) exhibits in wireless environments [9, 18, 11, 12].
Such protocols, and several more, have novel and unique
design components that are indeed important for tackling
the unique characteristics of wireless environments. How-
ever, in this paper we ask a somewhat orthogonal question
in the very context the above protocols were designed for:
How does the application’s behavior impact the performance
deliverable to wireless users?

Toward answering this question, we explore the impact of
typical wireless characteristics on the performance experi-
enced by the applications for very popularly used real-world
applications including the file transfer protocol (FTP), the
Common Internet File Sharing protocol (CIFS)[1], the Sim-
ple Mail Transfer Protocol (SMTP)[7], and the Hyper-Text
Transfer Protocol (HTTP)[4]. Through our experiments, we
arrive at an impactful result: Except for FTP which has a
simple application layer behavior, for all other applications
considered, not only is the performance experienced when
using vanilla TCP-NewReno much worse than for FTP, but
the applications see negligible or no performance enhance-
ments even when they are made to use the wireless-aware
protocols.

We delve deeper into the above observation and identify
several common behavioral characteristics of the applica-
tions that fundamentally limit the performance achievable
when operating over wireless data networks. Such charac-
teristics stem from the design of the applications, which
is typically tailored for operations in substantially higher
quality local-area network environments (LANs). Hence, we
pose the question: if application behavior is a major cause
for performance degradation as observed through the experi-
ments, what can be done to improve the end-user application
performance?

In answering the above question, we present a new solu-
tion called application-aware acceleration (A3), which is a
middleware that offsets the typical behavioral problems of
real-life applications through an effective set of principles
and design elements. We present A3 as a platform solution
requiring entities at both ends of the end-to-end communi-
cation, but also describe a variation of A3 called A3•, which
is a point solution but is not as effective as A3. One of the
keystone aspects of the A3 design is that it is application-
aware, but application transparent.

The rest of the paper is organized as follows: Section 2
presents the motivation results for A3. Section 3 presents
the key design elements underlying the A3 solution. Sec-

tion 4 describes realization of A3 for specific applications.
Section 5 evaluates A3. Section 6 discusses related works,
and Section 7 concludes the paper.

2. MOTIVATION
The focus of this work is entirely on applications that re-

quire reliable and in-sequenced delivery. In other words, we
consider only applications that are traditionally developed
with the assumption of using the TCP transport layer.

2.1 Evaluation Model
We now briefly present the setting and methodology em-

ployed for the results presented in the rest of the section.

Applications: For the results presented in this section, we
consider four different applications. Besides FTP, the appli-
cations are: (i) CIFS - The Common Internet File System
is a platform independent network protocol used for shar-
ing files, printers, and other communications between com-
puters. While originally developed by Microsoft, CIFS is
currently an open technology that is used for all Windows
workgroup file sharing, NT printing, and the Linux Samba
server1. (ii) SMTP - the simple mail transfer protocol is used
for the exchange of e-mails either between mail servers, or
between a client and its server. Most e-mail systems that
use the Internet for communication use SMTP. (iii) HTTP
- the hypertext transfer protocol is the underlying protocol
used by the World Wide Web.

Traffic generator: We use the IxChariot to generate accu-
rate application specific traffic patterns. IxChariot[13] is a
commercial tool for emulating most real-world applications.
It is comprised of the IxChariot console (for control), per-
formance end-points (for traffic generation and reception),
and IxProfile (for characterizing performance).

Testbed: We use a combination of a real test-bed and em-
ulation to construct the test-bed for the results presented in
the section. Since IxChariot is a a software tool that gen-
erates actual application traffic, it is hosted on the sender
and the receiving machines shown in Figure 12. The path
from the sender to the receiver goes through a node running
the ns2 network simulator in emulation mode. The net-
work emulator is configured to represent desired topologies
including the different types of wireless technologies. More
information on the test-bed is presented in Section 5.

Transport protocols: Since we consider wireless LANs
(WLAN), wireless WANs (WWAN), and wireless satellite
area networks (SAT), we use transport layer protocols pro-
posed in related literature for each of these environments.
Specifically, we use TCP-ELN (NewReno with explicit loss
notification)[9], WTCP (Wide-area Wireless TCP)[18], and
STP (Satellite transport protocol)[11] as enhanced transport
protocols for WLANs, WWANs, and SATs respectively.

Parameters: We use average RTT values of 5 ms, 200 ms,
and 1000 ms, average loss rates of 1 %, 8 %, and 3 %, and
average bandwidths of 5 Mbps, 0.1 Mbps, and 1 Mbps for
WLANs, WWANs, and SATs respectively. We use appli-
cation perceived throughput as the key metric of interest.
Wach data point is taken as an average of 10 different ex-
perimental runs.

1Samba uses SMB on which CIFS is based.

2.2 Quantitative Analysis
Figure 1(a) presents the performance results for FTP un-

der varying loss conditions in WLANs, WWANs, and SAT
environments. The tailored protocols uniformly show con-
siderable performance improvements. The results illustrate
that the design of the enhancement protocols TCP-ELN,
WTCP, and STP, is sufficient enough to deliver consider-
able improvements in performance for wireless data net-
works, when using FTP as the application. In the rest of
the section, we discuss the impact of using such protocols
for other applications such as CIFS, SMTP, and HTTP.

Figures 1(b)-(d) show the performance experienced by
CIFS, SMTP, and HTTP respectively under varying loss
conditions for the different wireless environments. It can be
observed that the performance improvements demonstrated
by the enhancement protocols for FTP do not carry over to
these three applications. It also can be observed that the
maximum performance improvement delivered by the en-
hancement protocols is less than 5 % across all scenarios.

While the trend evident from the results discussed above
is that the enhanced wireless transport protocols do not pro-
vide any performance improvements for three very popularly
used applications, we argue in the rest of the section that this
is not due to any fundamental limitations of the transport
protocols themselves, but due to the specifics of the behavior
of the three applications under consideration.

2.3 Impact of Application Behavior
We now explain the lack of performance improvements

when using enhanced wireless transport protocols with ap-
plications such as CIFS, SMTP, and HTTP. We use the con-
ceptual application traffic pattern for the three applications
in Figure 2 for most of our reasonings[1, 7, 4].

2.3.1 Thin session control messages
All three applications, as can be observed in Figures 2(a)-

(c), use thin session control message exchanges before the
actual data transfer occurs, and thin request messages dur-
ing the actual data transfer phase as well. We use the term
“thin” to refer to the fact that such messages are almost
always contained in a single packet of MSS (maximum seg-
ment size).

The observation above have two key consequences: (i)
When a loss occurs to a thin message, an entire round-trip
is taken to recover from such a loss. When the round-trip
time is large like in WWANs and SATs, this can result in
considerably inflating the overall transaction time for the ap-
plications. Note that a loss during the data phase will not
have such an adverse impact, as the recovery of that loss can
be multiplexed with other new data transmissions, whereas
for thin message losses, no other traffic can be sent anyway.
(ii) Most protocols, including TCP, rely on the arrival of
out-of-order packets to infer packet losses and hence trigger
loss recovery. In the case of thin messages, since there are
no packets following the lost message, the only means for
loss detection is the expiry of the retransmission timer. Re-
transmission timers typically have coarse minimum values
to keep overheads low. TCP, for example, uses a minimum
Retransmission Time Out (RTO) value of one second2.

2While newer Linux releases have lower minimum RTO val-
ues, they still are in the order of several hundred ms.

1 2 3
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Loss (%)

Th
ro

ug
hp

ut
 (M

bit
/s)

NewReno
TCP−ELN

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Loss (%)
Th

ro
ug

hp
ut

 (M
bit

/s)

NewReno
WTCP

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

Loss (%)

Th
ro

ug
hp

ut
 (M

bit
/s)

NewReno
STP

(a) FTP

1 2 3
800

850

900

950

1000

1050

1100

1150

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
TCP−ELN

0 5 10 15
5.5

6

6.5

7

7.5

8

8.5

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
WTCP

0 2 4 6
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
STP

(b) CIFS

1 2 3
950

1000

1050

1100

1150

1200

1250

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
TCP−ELN

0 5 10 15
7.5

8

8.5

9

9.5

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
WTCP

0 2 4 6
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Loss (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
STP

(c) SMTP

1 2 3
1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

Loss Rate (%)

Th
ro

ug
hp

ut
 (M

bit
/s)

NewReno
TCP−ELN

0 5 10 15
4

4.5

5

5.5

6

6.5

Loss Rate (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
WTCP

0 2 4 6
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Loss Rate (%)

Th
ro

ug
hp

ut
 (K

bit
/s)

NewReno
STP

(d) HTTP

Figure 1: Impact of Wireless Environment Characteristics

2.3.2 Batched data fetches
Another characteristic of the applications, especially CIFS

and HTTP, is that although the total amount of data to
be fetched can be large, the data transfer is performed in
batches, with each batch including a “request-response” ex-
change. CIFS uses its request-data-block message to send
the batched requests, with each request typically requesting
only 16 KB - 32 KB of data.

Such a batched fetching of data has two implications to
performance: (i) When the size of the requested data is
smaller than the Bandwidth Delay Product (BDP), there is
a gross underutilization of the available resources. Hence,
when the SAT network has a BDP of 128 KB, and CIFS
uses a 16 KB request size, the utilization is 12.5 %. (ii)
Independent of the size of each requested data batch, one
rtt is spent in sending the next request once the current
requested data arrives. When the rtt of the path is large like
in WWANs and SATs, this can inflate the overall transaction
time, and hence lower throughput performance.

2.3.3 Flow control bottlenecked operations
Flow control is an important function in communication

that helps in preventing the source from overwhelming the
receiver. In a mobile/wireless setting, flow control can kick
in and prove to be the bottleneck for the connection progress
due to two reasons: (i) If the application on the mobile de-
vice reads slowly or is temporarily halted for some other
reason, the receiver buffer fills up and the source is even-
tually frozen till the buffer empties. (ii) When there are
losses in the network, and the receiver buffer size is of the
same order as the BDP (which is typically true), flow control
can prevent new data transmissions even when techniques
such as fast recovery is used due to unavailability of buffer
space at the receiver. The dominant effect of flow control is
however undesirable in wireless environments because of its
resultant low throughput performance.

2.3.4 Other reasons
While the above discussed reasons are behavioral “acts

of commission” by the applications that result in lowered
performance, we now discuss two more reasons that can be
seen as behavioral “acts of omission”. These are techniques
that the applications could have used to address conditions
in a wireless environment, but do not.

Non-prioritization of data: For all three applications
considered, no explicit prioritization of data to be fetched is
performed, and hence all the data to be fetched are given
equal importance. However, for certain applications prior-
itizing data in a meaningful fashion can have a profound
impact on the performance experienced by the end-system
or user. For example, consider the case of HTTP used for
browsing on a small-screen PDA. When a webpage URL re-
quest is issued, HTTP fetches all the data for the webpage
with equal importance. However, the data corresponding to
the visible portion of the webpage on the PDA’s screen is
obviously of more importance and will have a higher impact
on the perceived performance by the end-user. Not leverag-
ing such means of prioritizing data hence results in HTTP
suffering performance as defined by the original data size
and the low bandwidths of the wireless environment.

Non-use of data reduction techniques: Finally, another
issue is applications not using knowledge specific to their
content or behavior to employ effective data reduction tech-
niques. For example, considering the SMTP application,
“email vocabulary” of users has evolved over the last couple
of decades to be very independent of traditional “writing vo-
cabulary” and “verbal vocabulary” of the users. Hence, it is
an interesting question as to whether SMTP can use email
vocabulary based techniques to reduce the actual content
transferred between SMTP servers, or a SMTP server and
a client. Not leveraging such aspects prove to be of more
significance in wireless environments where the baseline per-
formance is poor to start with.

3. DESIGN
Since we have outlined several behavioral problems with

Client Server
Establish NetBIOS Session

Positive Session Ack
Negotiate CIFS Dialect
Choose CIFS Dialect

User Login
User ID

Connect to Resource
Tree ID

Open A File
File ID

Request Data Block 1
Data 1
Data 1

Request Data Block 2
Data 2
Data 2
Data 2

Data 1

CIFS-1

CIFS-2

CIFS-3

CIFS-4

CIFS-5

CIFS-6

CIFS-7

CIFS-8

CIFS-9
CIFS-10
CIFS-11
CIFS-12

(a) CIFS

Client Server

200 smtp.receiver.com Ready
HELO mail.sender.com
250 smtp.receiver.com

MAIL FROM: david@sender.com
250 OK

RCPT TO: bod@receiver.com
250 OK

DATA

250 OK

DATA

SMTP-1

SMTP-2

SMTP-3

SMTP-4

SMTP-5

SMTP-6

SMTP-7

SMTP-8

SMTP-9

Connect to server

SMTP-10

SMTP-11

SMTP-12

SMTP-13

SMTP-14

End of Data

Quit
221 Service Closing

(b) SMTP

Client Server

HTTP 200 OK

HTTP Request (GET)

DATA
DATA
DATA

HTTP Request (GET)

HTTP 200 OK
DATA
DATA

HTTP Request (GET)

HTTP 200 OK
DATA
DATA
DATA

HTTP-1

HTTP-2

HTTP-3

HTTP-4

(c) HTTP

Figure 2: Application Traffic Patterns

2 4 6 8 10 12 14
0

5

10

15

20

25

File Size (MBytes)

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

CIFS
FTP

(a) Throughput

2 4 6 8 10 12 14
50

100

150

200

250

300

350

400

450

File Size (MBytes)

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

(b) Number of Requests

0 1 2 3 4 5 6 7
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Loss Rate (%)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Ideal
TCP Newreno

(c) SMTP

Figure 3: Motivation for TP and RAR

applications in Section 2, an obvious question to ask is:
“Why not change the applications to address these prob-
lems?” We believe that is indeed one possible solution.
Hence, we structure the presentation of the A3 solution into
two distinct components: (i) the key design elements or prin-
ciples that underlie A3; and (ii) the actual realization of the
design elements for specific applications in the form of an op-
timization middleware that is application-aware, but appli-
cation transparent. The design elements generically present
strategies to improve application behavior and can be used
by application developers to improve performance by incor-
porating changes to the applications directly. In the rest of
this section, we outline the design of five principles in the
A3 solution.

3.1 Transaction Prediction
Transaction prediction (TP) is an approach to determinis-

tically predict future application data requests to the server,
and issue them ahead of time. Note that this is differ-
ent from techniques such as “prefetching” where content
is heuristically fetched to speed up later access, but is not
guaranteed to be used. In TP, A3 is fully aware of applica-
tion semantics, and knows exactly what data to fetch and
that the data will be used. TP will aid in conditions where
the BDP is larger than the default application batch fetch
size, and where the RTT is very large. Under both cases,
the overall throughput will improve when TP is used. Fig-
ure 3(a) shows the throughput performance of CIFS when
fetching files of varying sizes. It can be seen that the perfor-
mance is substantially lower than that of FTP, and this is

due to the batched fetching mechanism described in Section
2. Figure 3(b) shows the number of transactions it takes
CIFS to actually fetch a single file, and it can be observed
that the number of transactions increases linearly with file
size. Under such conditions, TP will“parallelize” the trans-
actions and hence improve throughput performance. Good
examples of applications that will benefit from using TP
include CIFS and HTTP for reasons outlined in Section 2.

3.2 Redundant and Aggressive Retransmissions
Redundant and aggressive retransmissions (RAR) is an

approach to protect thin session control and data request
messages better from losses. The technique involves recog-
nizing thin application messages, and using a combination
of packet level redundancy, and aggressive retransmissions
to protect such messages. RAR will help address both is-
sues with thin messages identified in Section 2. The redun-
dant transmissions reduce probability of message losses, and
the aggressive retransmissions that operate on tight RTT
granularity timeouts reduce the loss recovery time. The
key challenges in RAR is to recognize thin messages in an
application-aware fashion. Note that only thin messages re-
quire RAR because of reasons outlined in Section 2. Regular
data messages should not be subjected to RAR both because
their loss recovery can be masked in the overall transaction
time by performing the recovery simultaneously with other
data packet transmissions, and because the overheads of per-
forming RAR will become untenable when applied to large
volume messages such as the data. Figure 3(c) shows the
throughput performance of SMTP under lossy conditions.

1 2 3 4 5 6
0

50

100

150

200

250

Number of Screens

D
a

ta
 S

iz
e

 (
K

B
yt

e
s)

(a) CDF of Transfer Size per Screen

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Application Rate (Mb/s)

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Ideal
Newreno

(b) Application Rate

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Loss Rate (%)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Ideal
TCP−Newreno

(c) Loss Increase

Figure 4: Motivation for PF and IB

The dramatic effect of a 35 % drop in throughput perfor-
mance for a loss-rate increase from 0 % to 3 % is much higher
than the 15 % drop in performance in the FTP performance
for the same corresponding loss-rate increase shown in Sec-
tion 2. Typical applications that can benefit from RAR
include CIFS, SMTP, and HTTP.

3.3 Prioritized Fetching
Prioritized fetching (PF) is an approach to prioritize sub-

sets of data to be fetched as being more important than
others, and to fetch the higher priority data faster than the
lower priority data. A simple approach to achieve the dual
rate fetching is to use default TCP-like congestion control
for the high priority data, but use congestion control like
in TCP-LP[14] for low priority data. An important con-
sideration in PF is to devise a strategy to prioritize data
intelligently, and on the fly. Figure 4(a) shows the average
transfer size per screen for the top fifty accessed webpages
on the world-wide web[2]. It can be seen that nearly 80 % of
the data (belonging to screens 2 and higher) are not directly
impacting response time experienced by the user, and hence
can be de-prioritized in relation to the data pertaining to the
first screen. Note that the results are for a 1024x768 reso-
lution laptop screen, and will in fact be better for smaller
screen devices such as PDAs. Good examples of applications
that can benefit from PF include HTTP and SMTP.

3.4 Infinite Buffering
Infinite buffering (IB) is an approach that prevents flow

control from throttling the progression of a network connec-
tion terminating at the mobile wireless device. IB prevents
flow control from impacting performance by providing the
sender the impression of an infinite buffer at the receiver.
Secondary storage is used to realize such an infinite buffer,
with the main rationale being that reading from the sec-
ondary storage will be faster than fetching it from the sender
over the wireless network when there is space created in the
actual connection buffer at a later point. With typical hard-
disk data transfer rates today being at around 250 Mbps[5],
the abovementioned rationale is well justified for wireless en-
vironments. Note that the trigger for using IB can be both
due to application reading slowly or temporarily not reading
form the connection buffer, or due to losses on the wireless
path. Figures 4(b)-(c) show the throughput performance of
SMTP under both conditions. It can be observed that for
both scenarios, the impact of flow control drastically lowers
performance compared to what is achievable. Due to lack
of space, in the rest of the paper we focus on IB specifically
in the context of the more traditional trigger for flow con-
trol - application reading bottleneck. Typical applications

that can benefit from IB include CIFS, SMTP, and HTTP
- essentially, any application that transfers multiple BDPs
worth of data at a time.

3.5 Application-aware Encoding
Unique Total Char. Bits per Email Bits per Email
Words Words per Word for Binary Coding for Simple AE
1362 6383 6.22 3176 664.6

Table 1: Averaged Statistics of 10 Email Folders

Application-aware encoding (AE) is an approach that uses
application specific information to better encode or com-
press data during communication. Traditional compression
tools such as zip operate on a given content in isolation
without any context for the application corresponding to
the content. AE, on the other hand, explicitly uses this
contextual information to achieve better performance. Note
that AE is not a better compression algorithm. However, it
is a better way of identifying data-sets that need to be op-
erated on by a given compression algorithm. Table 1 shows
the average e-mail vocabulary characteristics of ten differ-
ent graduate students based on 100 emails sent by each per-
son during two weeks. It is interesting to see the following
characteristics in the results: (i) the e-mail vocabulary size
across the ten people is relatively small - a few thousand
words; and (ii) even a simple encoding involving this knowl-
edge will result in every word being encoded with only 10 -
12 bits, which is substantially lower than using 40 - 48 bits
required using standard binary encoding. In Section 5, we
show that such vocabulary based encoding can considerably
outperform other standard compression tools such as zip as
well. Moreover, further benefits can be attained if more so-
phisticated compression schemes such as Huffman encoding
is employed instead of simple binary encoding. Typical ap-
plications that can benefit from using AE include SMTP
and HTTP.

4. SOLUTION

4.1 Deployment Model and Architecture
The A3 deployment model is shown in Figure 5. Since

A3 is a platform solution, it requires two entities at either
end of the communication session that are A3 aware. At
the mobile device, A3 is a software module that is installed
in user-space. At the server side, while A3 can be deployed
as a software module on all servers, a more elegant solution
would be to deploy a packet processing network appliance
that processes all content flowing from the servers to the
wide-area network. We assume the latter model for our

TCP

Application

IP PF

MAC

TP IBRAR

Accept

Application Recognition and A3 Management

Application Recognition
Rules

Session Table

PHY

AE

Application Acceleration
Rules

A3: Application Aware Acceleration

(a) Deployment with Netfilter

IP

A3 Components (TP, RAR, PF, AE, IB)

3
Kernel Space

2

User Space

Pre-
Routing Forward Post-

Routing
2 3

1 4

4

Local In Local Out 1

Accept

Accept

(b) Software Architecture

Figure 6: A3 Architecture

discussions. However, note that A3 can be deployed in either
fashion as it is purely a software solution.

This deployment model will help in any communication
between a server behind the A3 server, and the mobile de-
vice running the A3 module. However, if the mobile device
communicates with a non A3 enabled server, one of two op-
tions exists: (i) As we discuss later in the paper, A3 can be
used as a point-solution with lesser effectiveness; or (ii) the
A3 server is brought closer to the mobile device, perhaps
within the wireless network provider’s access network. In
the rest of the paper, we don’t delve into the latter option.
However, we do revisit the point-solution mode of operation
of A3.

We present an A3 implementation that resides in user-
space, and uses the NetFilter utility in Linux for the cap-
turing of traffic outgoing and incoming at the mobile device.
NetFilter is a Linux specific packet capture tool that has
hooks at multiple points in the Linux kernel. The A3 hooks
are registered at the Local-In and Local-Out stages of the
chain of hooks in NetFilter. While our discussions are Linux
centric, our discussions can be mapped on the Windows op-
erating system through the use of the Windows Packet Fil-
tering interface, or wrappers such as PktFilter that are built
around the interface. Figure 6(a) shows the A3 deployment
on the mobile device using NetFilter.

The A3 software architecture is shown in Figure 6(b).
Since the design elements in A3 are to a large extent inde-
pendent of each other, a simple chaining of the elements in
an appropriate fashion results in an integrated A3 architec-
ture. The specific order in which the elements are chained in
the A3 realization is TP, RAR, PF, IB, and AE. While RAR
protects the initial session control exchanges and the data
requests, it operates on traffic after TP, given that TP can
generate new requests for data. PF manipulates the prior-
ity with which different requests are served, and IB ensures
that data responses are not throttled by flow control. Fi-
nally, AE compresses any data outgoing, and decompresses
any data incoming.

Internet
A3-Enabled Client

A3-Enabled Client

AP

Application Server

Wireless Access
Network

A3 ServerEnterprise
Network / Content

Network

Figure 5: Deployment Model

4.2 Application Overviews
Since we describe the actual operations of the mechanisms

in A3 in the context of one of the three applications, we now
briefly comment on the specific message types involved in
typical transactions by those applications. We then refer to
the specific message types when describing the operations of
A3 subsequently.

Due to lack of space, instead of presenting all message
types again, we refer readers back to Figure 2 to observe the
message exchanges for the three applications. The labels
such as CIFS-x refer to particular message types in CIFS
and will be referred to in the A3 realization descriptions
that follow.

CIFS, also sometimes known as Server Message Block
(SMB), is a platform independent protocol for file shar-
ing. The typical message exchanges in a CIFS session are as
shown in Figure 2(a). Overall, TP manipulates the CIFS-11
message, RAR operates on CIFS-1 through CIFS-11, and
IB aids in CIFS-12.

SMTP[7] is Internet’s standard host-to-host mail trans-
port protocol and traditionally operates over TCP. The typ-
ical message exchanges in an SMTP session are shown in
Figure 2(b). Overall, RAR operates on SMTP-1 through
SMTP-8, and SMTP-12 through SMTP-14, IB and AE op-
erates on SMTP-9 and SMTP-10.

The HTTP message standard exchanges are relatively sim-
ple, and typically consist of the messages shown in Fig-
ure 2(c). Typical HTTP sessions consist of multiple ob-
jects, including the original HTML file, and hence appear
as a sequence of overlapping exchanges of the above format.
Overall, RAR operates on HTTP-1, and PF and IB operate
on HTTP-3.

4.3 A3 Implementation
In the rest of the section, we take one design element

at a time, and walk through the algorithmic details of the
element with respect to a single application. Note that A3 is
an application-aware solution, and hence its operations will
be application specific. Since we describe each element in
isolation, we assume that the element resides between the
application and the network. In an actual usage of A3, the
elements will have to be chained as discussed earlier.

4.3.1 Transaction Prediction
Figure 7 shows the flow chart for the implementation of

TP for CIFS. When A3 receives a message from the appli-
cation, it checks to see if the message is CIFS-9, and records
state for the file transfer in its TP-File-States data structure.

Local
Cache

Retrieve from
Local CacheFile Open?

Application

Request
for Local
Block?

Give to
Application

Update TP
States

Update
Request for
more blocks

Close File TP
State

EOF?

Data?
Store

Information
about

Predicted
Requests

File TP
States

Predicted
Request
States

Data for
Predicting
Req?

Store In Local
Cache

No

Yes

Yes

Yes

Network

No

No

Yes No

No

Yes Yes

Figure 7: Transaction Prediction

It then passes through the message. If the incoming message
was a request, TP checks to see if the request is for a locally
cached block, or for a new block. If the latter, it updates the
request for more blocks, stores information about the pre-
dicted requests generated in the Predicted-Request-States
data structure, and forwards the requests.

In the reverse direction, when data comes in from the
network, TP checks to see if the data is for a predicted
request. If yes, it caches the data in secondary storage and
updates its state information, and forwards the data to the
application otherwise.

The number of additional blocks to request is an interest-
ing design decision. For CIFS, A3 uses a TP request for the
entire file size, since the overall performance is not affected
in any way given the CIFS server semantics that allows for
multiple simultaneous requests. The file size information
can be retrieved from the CIFS-10 message. If the incoming
message is for an earlier retrieved block, TP retrieves the
block from secondary storage, and provides it to the appli-
cation.

While CIFS servers accept multiple data requests from
the same client simultaneously, it is possible that for some
applications, the server might not be willing to accept mul-
tiple data requests simultaneously. In such an event, the
A3 server will let only one of the client requests go through
to the server at any point in time, and will send the other
requests one at a time once the previous requests are served.

4.3.2 Redundant and Aggressive Retransmissions
Figure 8 shows the flow chart for the implementation of

Create
Redundant

Transmissions
Thin

Message?

Application

Retrieve Thin
Message

Store State and
Time, Stagger

Transmissions &
Start Timer Response

?

Thin
Message

States

Yes

No

Network

Yes
Update

RTT and
Stop Timer

No

Figure 8: Redundant and Aggressive Retransmis-
sions

Request?

Application

Yes

No

Network

All Contents
Required?

Fetch
Immediately

Yes

Split Requests
into Two

Categories
No

Rquired

REQ / Not REQ

Fetch Slowly

Application Plugin for
Content Requirements

DATA

Fetch Immediately

Figure 9: Prioritized Fetching

RAR for CIFS. When A3 receives a message from the ap-
plication, it checks to see if it is a thin message. The way
A3 performs the check is to see if the message is one of the
messages between CIFS-1 and CIFS-11. All such messages
are interpreted as thin messages.

If the incoming message is not a thin message, it is let
through as-is. Otherwise, redundant copies of the message
are created, information about current time noted, retrans-
mission alarm started, and the copies sent out in a staggered
fashion. When a response arrives, the timestamp for the cor-
responding request is checked, and RTT estimate updated.
The message is then passed on to the application.

If the alarm expires for a particular thin message, the
message is again subjected to the redundant transmissions.
Successful arrivals of redundant copies of the same message
are filtered at the A3 server.

The key issues of interest in the RAR implementation
are: (i) How many redundant transmissions are performed?
Since packet loss rates in wireless data networks rarely ex-
ceed 10 %, even a redundancy factor of two (two addi-
tional copies created) reduces the effective loss-rate to 0.1 %.
Hence, A3 uses a redundancy factor of two. (ii) How should
the redundant messages be staggered? The answer to this
question lies in the specific channel characteristics experi-
enced by the mobile device. However, at the same time,
the staggered delay should not exceed the round-trip time
of the connection, as otherwise the mechanism would lose
its significance. Hence, A3 uses a staggering delay of RTT

10
between any two copies of the same message. This ensures
that within 20 % of the RTT duration, all messages are sent
out at the mobile device. (iii) How is the aggressive timeout
value determined? Note that while the aggressive timeout
mechanism will help under conditions when all copies of a
message are lost, the total message overhead by such ag-
gressive loss recovery is negligible when compared to the
overall size of data transferred by the application. Hence,
A3 uses a timeout value of the RTTavg + α, where α is a
small guard constant, and RTTavg is the average RTT ob-
served so far. This ensures that the timeout values are tight,
and at the same time the mechanism adapts to changes in
network characteristics.

4.3.3 Prioritized Fetching
Figure 9 shows the flow chart for the implementation of

PF in the context of HTTP. Once again, the key goal in PF
for HTTP is to retrieve HTTP objects that are required for
the display of the visible portion of the webpage quickly in
relation to the objects on the page that are not visible.

Unlike in the other mechanisms, PF cannot be imple-
mented with some additional interactions with the appli-
cation itself. Fortunately, browser applications have well

Connection
Open/Close

?

Application

Data ?

No

Yes

Network

Yes

Local
Cache

ACK
Information?

Update IB
State

Max Adv.
Window?Yes Change Ack to Max

WindowNo

Space in
Buffer?

Store Buffer
Occupancy, Ack. Seq.

State

NoYes

No

Yes

Is Ack. <
Max. Ack.?

Yes

No

Retrieve from
Local Cache

Local Cache
Empty and
Space in
Buffer?
Yes

Store in Local
Cache No

Buffer
Occupancy

State
Max. In-

seq. Ack.

Generate
ACK.Yes

Drop
No

No

Space in
Buffer?

Server
Application from
Local Cache till
Buffer Full or
Local Cache

Empty No

Figure 10: Infinite Buffering

defined interfaces for querying state of the browser includ-
ing the current focus window, scrolling information, etc.
Hence, the implementation of PF relies on a separate mod-
ule called the application state monitor (ASM) that is akin
to a browser plug-in to coordinate its operations.

When a message comes in from the application, PF checks
to see if the message is a request. If it is not, it is let through.
If it is, PF checks with the ASM to see if all the requested
content are immediately required. ASM classifies the ob-
jects requested as being of immediate need (visible portion
of webpage) or as those that are not immediately required.
PF then sends out fetch requests immediately for the first
category of objects, and uses a low-priority fetching mecha-
nism for the remaining objects.

Since A3 is a platform solution, all PF has to inform the
A3 server is that certain objects are of low priority through
A3 specific piggybacked information. The A3 server then
de-prioritizes the transmission of those objects in preference
to those that are of higher priority. Note that the rela-
tive prioritization is used not only between the content of
a single end-device, but also across end-devices as well to
improve overall system performance. Approaches such as
TCP-LP[14] are candidates that can be used for the relative
prioritization, although A3 currently uses a simple priority
queuing scheme at the A3 server.

Note that while the ASM might classify objects in a par-
ticular fashion, changes in the application (e.g. user scrolling
down) will result in a re-prioritization of the objects accord-
ingly. Hence, the ASM has the capability of gratuitously
informing PF about priority changes. Such changes are im-
mediately notified to the A3 server through appropriate re-
quests.

4.3.4 Infinite Buffering
Figure 10 shows the flow chart for the implementation of

IB in the context of SMTP. IB keeps track of TCP connec-
tion status, and monitors all ACKs that are sent out by the
TCP connection serving the SMTP application for SMTP-9
and SMTP-10. If the advertised window in the ACK is less
than the maximum possible, IB immediately resets the ad-
vertised window to the maximum value, and appropriately
updates its current knowledge of the connection’s buffer oc-
cupancy and max in-sequence ACK information.

Hence, IB prevents anything less than the maximum buffer
size from being advertised. However, when data packets ar-
rive from the network, IB receives the packets and checks to
see if the local disk based cache is empty and the connection
buffer can accommodate more packets. If both conditions
are true, IB delivers the packet to the application. If the disk

Compression
Based on
Application
Vocabulary

DATA?

Application

Decompress
Based on
Application
Vocabulary

Mark as
Compressed

Compressed
?

Yes

No

Network

No

Yes

Common
Table

User
Coding
Table

New
Words
Space

Application
Vocabulary

Figure 11: Application-aware Encoding

cache is non-empty, the incoming packet is directly added
to the cache. In this case, IB generates a proxy ACK back
to the server. Then, if the connection buffer has space in it,
packets are retrieved from the disk cache and given to the
application till the buffer becomes full again. When the con-
nection sends an ACK for a packet already ACKed by IB,
IB suppresses the ACK. When the connection state is torn
down for the CIFS application, IB resets state accordingly.

4.3.5 Application-aware Encoding
Figure 11 shows the flow-chart for the implementation

of AE for SMTP. When AE receives data (SMTP-9) from
the SMTP application, it uses its application vocabulary
table to compress the data, and marks the message as being
compressed and forwards it to the network. The marking
is done to inform the A3 server about the need to perform
de-compression. Similarly, when incoming data arrives for
the SMTP server, and the data is marked as compressed,
AE performs the necessary de-compression.

The mechanisms used for the actual creation and manip-
ulation of the vocabulary tables are of importance to AE.
In A3, the SMTP vocabulary tables are created and main-
tained purely on a user pair-wise basis. Not only are the
table created in this fashion, but the data sets over which
the vocabulary tables are created is also restricted to this
pair-wise model. In other words, if A is the sender and B
is the receiver, A uses its earlier emails to B as the data
set on which the A-B vocabulary table is created, and then
uses this table for encoding. B, having the data set already
(since the emails were sent to B), can exactly recreate the
table on its side and hence decode any compressed data.
This precludes the need for exchanging tables periodically,
and also takes advantage of changes in vocabulary sets that
might occur based on the recipient.

4.4 A3 Point Solution - A3•
While the A3 deployment model assumed so far is a plat-

form model requiring participation by A3 enabled devices at
both the client and server ends, in this section we describe
how A3 can be used as a point-solution, albeit with some-
what limited capabilities. We refer to the point-solution
version of A3 as A3•.

Of the five design elements in A3, the only design el-
ement for which the platform model is mandatory is the
application-aware encoding mechanism. Since compression
or encoding is an end-to-end process, A3• cannot be used
with AE. However, each of the other four principles can be

A2

NS2 Emulation

B2B1

AE
IB
PF
RAR
TP

AE
IB
PF
RAR
TP

A1

AppEm
(Client)

N1 N2

A3Em

WNetEm
AppEm
(Server)

A3Em

Figure 12: Evaluation Network Topology

employed with minimal changes in A3•.
TP involves the generation of predictive data requests,

and hence can be performed in A3• as long as the applica-
tion server can accept multiple simultaneous requests. For
CIFS and HTTP, the servers do accept simultaneous re-
quests. IB is purely a flow control avoidance mechanism,
and can be realized in A3•. RAR involves redundant trans-
missions of messages, and hence can be implemented in A3•
as long as application servers are capable of filtering du-
plicate messages. If the application servers are not capa-
ble of doing so (e.g. HTTP, which would respond to each
request), the redundant transmissions will have to be per-
formed at the granularity of transport layer segments as op-
posed to application layer messages, since protocols such as
TCP provide redundant packet filtering. Finally, PF can
be accomplished in A3• in terms of classifying requests and
treating the requests differently. However, the slow fetching
of data not required immediately has to be realized through
coarser receiver based mechanisms such as delayed requests
as opposed to the best possible strategy of slowing down
responses as in A3.

5. EVALUATION

5.1 Experimental Setup
The experimental setup for the performance evaluation is

shown in Figure 12. The setup consists of three desktop ma-
chines running the Fedora Core 4 operating system with the
Linux 2.6 kernel. An application-emulator (AppEm) mod-
ule runs on both the end machines. The AppEm module is
a custom-built user-level module that generates traffic pat-
terns and content for three different application protocols -
CIFS, SMTP, and HTTP.

The traffic patterns are modeled based on traffic traces
generated by the IxChariot emulator, and documented stan-
dards for the application protocols. The AppEm module
also generates traffic content based on both input real-life
data-sets (for Email and Web content), and random data-
sets (File transfer)3. The traffic patterns shown in Fig-
ure 2 are representative of the traffic patterns generated by
AppEm.

The system connecting the two end-systems runs the em-
ulators for both A3 and the wireless network. Both the em-
ulators, A3-Em and WNetEm, are implemented within the
framework of the ns2 simulator, and ns2 is running in the
emulation mode. Running ns2 in its emulation mode allows

3While the IxChariot emulator can generate representative
traffic traces, it does not allow for specific data sets to be
used for the content, and hence the need for the custom built
emulator.

for the capture and processing of live network traffic. The
emulator object in ns2 taps directly into the device driver
of the interface cards to capture and inject real packets into
the network.

All five of the A3 mechanisms are implemented in the A3-
Em module, and each mechanism can be enabled either in-
dependently or in tandem with the other mechanisms. The
WNetEm module is used for emulating different wireless net-
work links representing the WLAN, WWAN, and SAT en-
vironments. The specific characteristics used to represent
wireless network environments are the same as those pre-
sented in Section 2.

The primary metrics monitored are throughput, response
time (for HTTP) and confidence intervals for the throughput
and response time. Each data point is the average of 20
simulation runs and in addition we show the 90 % confidence
intervals. The results of the evaluation study are presented
in two stages. We first present the results of the performance
evaluation of A3 principles in isolation. Then, we discuss the
combined performance improvements delivered by A3.

5.2 Principles in Isolation

5.2.1 Transaction Prediction
We use CIFS as the application traffic for evaluating the

performance of Transaction Prediction. The results of the
TP evaluation are shown in Figure 13. The x-axes of the
graphs show the size of the transferred file in MBytes and
the y-axes are the application throughput in Mbps. The
results show several trends: (i) Using wireless aware TCP
(such as ELN, WTCP, and STP), the increase in through-
put is very negligible. This trend is consistent with the
results in Section 2. (ii) Transaction Prediction improves
CIFS application throughput significantly. In the SAT net-
work, for instance, TP improves CIFS throughput by more
than 80 % when transferring a 10 MByte file. (iii) The
improvement achieved by TP increases with increase in file
size. This is because TP is able to reduce more number of
request-response interactions with increasing file size. (iv)
TP achieves the highest improvement in SAT network. This
is due to the fact that TP’s benefits are directly proportional
to the RTT and the BDP of the network, and SATs have
high RTTs and large BDPs when compared to the other
wireless environments.

5.2.2 Redundant and Aggressive Retransmissions
We evaluate the effectiveness of the RAR principle using

the CIFS application protocol. The results of the RAR eval-
uation is presented in Figure 14. The x-axis in the graphs
is the requested file size in MBytes and the y-axis is the
CIFS application throughput in Mbps. We observe that
RAR delivers better performance when compared to both
TCP-NewReno and the tailored transport protocols, deliv-
ering up to 80 % improvement in throughput performance
for SATs. RAR is able to reduce the chances of experiencing
a timeout when a wireless packet loss occurs. The reduction
of TCP timeouts leads to better performance using RAR.

5.2.3 Prioritized Fetching
The performance of the PF principle was evaluated with

HTTP traffic and results are shown in Figure 15. The x-
axis in the graphs is the requested web-page size in KBytes,
and the y-axis is the response time in seconds for the initial

0 2 4 6 8 10 12

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)
TCP Newreno
ELN
Newreno with TP

(a) WLAN

0 2 4 6 8 10 12
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with TP

(b) WWAN

0 2 4 6 8 10 12
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
Newreno with TP

(c) SAT

Figure 13: Transaction Prediction: CIFS

0 2 4 6 8 10 12

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
ELN
Newreno with RAR

(a) WLAN

0 2 4 6 8 10 12
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with RAR

(b) WWAN

0 2 4 6 8 10 12
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
Newreno with RAR

(c) SAT

Figure 14: Redundant and Aggressive Retransmissions: CIFS

screen. In the figure, it can be seen that as a user accesses
larger web pages, the response time difference between de-
fault content fetching and PF increases. PF consistently
delivers a 15 % to 30 % improvement in the response time
performance. PF reduces aggressive traffic volumes by de-
prioritizing the out-of sequence fetching of unseen objects.
Note that PF, while improving the response time, does not
improve raw throughput performance. In other words, only
the effective throughput, as experienced by the end-user,
increases when using PF.

5.2.4 Infinite Buffering
The effectiveness of IB is evaluated using CIFS traffic, and

the results are shown in Figure 16. The x-axes of the graphs
are requested file size in MBytes and the y-axes are the ap-
plication throughput in Mbps. We can see that: (i) Trans-
ferring larger data size with IB achieves higher throughput.
This is because of the fact that IB helps most during the ac-
tual data transfer phase, and will not help when the amount
of data to be transferred is less than a few times the BDP
of the network. (ii) IB performs much better in a SAT net-
work than the other two networks, delivering almost a 400 %
improvement in performance. Again, the results are as ex-
pected because IB’s benefits are higher when the BDP of
the network is higher.

5.2.5 Application-aware Encoding
Application-aware Encoding is designed primarily to ac-

celerate e-mail delivery using SMTP and hence we evaluate
the effectiveness of AE for SMTP traffic. In the evalua-
tion, emails of sizes ranging from 1 KBytes to 10 KBytes
(around 120 to 1200 words) are used. We show the results
in Figure 17 where the x-axis is the e-mail size in KBytes
and y-axis is the application throughput in Mbps. Varying
degrees of throughput improvements are achieved, and in
WWAN, an increase of 80 % is observed when transferring
a 10 KBytes email. We can see that AE achieves the highest
improvement in WWAN due to its relatively low bandwidth.

We also show the effectiveness of AE in terms of compres-

sion ratio in Figure 19. In the figure, the results of ten per-
sons’ emails using three compression estimators (WinRAR,
WinZip and AE) are shown. We can see that WinRAR and
WinZip can compress an email by a factor of 2 to 3, while
AE can achieve a compression ratio of about 5.

5.3 Integrated Performance Evaluation
In this section, we present the results of the combined

effectiveness of all applicable principles for the three appli-
cations, CIFS, SMTP and HTTP. We employ RAR, TP, and
IB on the CIFS traffic. For SMTP, the RAR, AE and IB
principles are used. In the case of HTTP, the A3 principles
applied are RAR, PF and IB. As expected, the through-
put of the applications (CIFS and SMTP) when using the
integrated A3 principles is higher than when any individ-
ual principle is employed in isolation, while the response
time of HTTP is lower than any individual principle. The
results are shown in Figure 18, with A3 delivering perfor-
mance improvements of approximately 70 %, 110 %, and
30 % respectively for CIFS, SMTP, and HTTP.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Person ID

Co
m

pr
es

sio
n

Ra
tio

 (%
)

RAR
ZIP
VBC

Figure 19: Efficiency of AE

6. RELATED WORKS

6.1 Wireless-aware Middleware/Applications
The Wireless Application Protocol (WAP) is a protocol

developed to allow efficient transmission of WWW content
to handheld wireless devices. The transport layer proto-

0 100 200 300 400 500 600
0.2

0.4

0.6

0.8

1

1.2

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)
TCP Newreno
ELN
Newreno with PF

(a) WLAN

0 100 200 300 400 500 600
0

10

20

30

40

50

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)

TCP Newreno
WTCP
Newreno with PF

(b) WWAN

0 100 200 300 400 500 600
0

10

20

30

40

50

60

Web Page Size (KB)

R
es

po
ns

e
T

im
e(

s)

TCP Newreno
STP
Newreno with PF

(c) SAT

Figure 15: Prioritized Fetching: HTTP

0 2 4 6 8 10 12

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
ELN
ELN with IB

(a) WLAN

0 2 4 6 8 10 12
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
ELN with IB

(b) WWAN

0 2 4 6 8 10 12

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
ELN with IB

(c) SAT

Figure 16: Infinite Buffering: CIFS

cols in WAP consists of the Wireless Transaction Protocol
and Wireless Datagram Protocol, which are designed for use
over narrow band bearers in wireless networks and are not
compatible with TCP. WAP is highly WWW centric, and
does not aim to optimize any of the application behavioral
patterns identified earlier in the paper. Browsers such as
the Pocket Internet Explorer (PIE)[6] are developed with
capabilities that can address resource constraints on mobile
devices. However, they do not optimize communication per-
formance which is the focus of A3.

Work in [15] aims to save bandwidth/power by adapting
the contents based on user semantics and contexts. The
adaptations, however, are exposed to the end-applications
and users. This is different from the A3 approach which is
application-transparent.

The Odyssey project[16] focuses on system support for
collaboration between the operating system and individual
applications by letting them both be aware of the wireless
environment, and thus adapt their behaviors. Compara-
tively, A3 does not rely on OS-level support, and is totally
transparent both to the underlying OS and the applications.

The Coda file system[17] is based on the Andrew File Sys-
tem (AFS), but supports disconnected operations for mobile
hosts. When the client is connected to the network, it hoards
files for later use during disconnected operations. During
disconnections, Coda emulates the server, serving files from
its local cache. Coda’s techniques are specific to file systems,
and require applications to have changed semantics for the
data that they use.

6.2 Related Design Principles
Some related works in literature have been proposed to ac-

celerate applications with various mechanisms. We present
a few of them here, and identify the differences vis-a-vis A3.

TP-related: In [10], the authors propose to “upload” clients’
task to the server side, thus eliminating many RTTs required
for applications like SMTP. This approach is different from
the A3 approach in terms of application protocols applied
and the overall mechanism.

RAR-related: Mechanisms like FEC use error control cod-
ing for digital communication systems. Another work[19]
proposes aggressive retransmission mechanism to encourage
legitimate clients to behave more aggressively in order to
fight attack against servers. Compared to these approaches,
A3 only applies RAR to control messages in application pro-
tocols, and it does so by retransmitting the control message
when a maintained timer expires. We present arguments
earlier in the paper as to why protecting control message ex-
changes is a major factor affecting application performance.

PF-related: To improve the web-access performance, work
in [15] proposes out-of-order transmission of HTTP objects
above UDP, and break the in-order delivery of an object.
However, unlike the A3 framework, it requires the confor-
mation of both client and server sides.

IB-related: [8] shows that overbuffering on routers in-
creases end-to-end delay in the presence of congestion, and
complicates the design of high-speed routers. IB is different
from overbuffering, which aims at fully utilizing the net-
work resources by removing the buffer length constraint. IB
specifically applies to applications with large bulk of data
transfer, such as FTP, and is meant to counter impact of
flow control.

AE-related: Companies like Converged[3] provide applica-
tion aware compression solutions through compressing the
data for some applications based on priority and applica-
tion natures. These mechanisms share the property of be-
ing application aware, meaning only subset of applications
will be compressed. However, AE has the property of be-
ing user-aware, that is take into considerations user-pattern
information, and thus can achieve better performances.

6.3 Commercial WAN Optimizers
Several companies, such as Riverbed and Peribit, sell WAN-

optimization application-acceleration products. However,
(1) Almost all the commercial solutions are proprietary ones;
(2) The A3 principles such as RAR, IB, AE and PF are not
seen in commercial solutions; and (3) Many of the techniques
used in commercial solutions, such as bit-level caching and

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Email Size (KB)

T
hr

ou
gh

pu
t (

M
b/

s)
TCP Newreno
ELN
Newreno with AE

(a) WLAN

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

Email Size (KB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with AE

(b) WWAN

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

Email Size (KB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
STP
Newreno with AE

(c) SAT

Figure 17: Application-aware Encoding: SMTP

0 2 4 6 8 10 12

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

File Size (MB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
ELN with RAR+TP+IB

(a) CIFS

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

Email Size (KB)

T
hr

ou
gh

pu
t (

M
b/

s)

TCP Newreno
WTCP
Newreno with RAR+IB+AE

(b) SMTP

0 100 200 300 400 500 600
0

10

20

30

40

50

Web Page Size (KB)

R
es

po
ns

e
T

im
e

(s
)

TCP Newreno
WTCP
Newreno with RAR+IB+AE

(c) HTTP

Figure 18: Integrated A3 Results in WWAN

LPZ-based compression, are hardware-based approaches, and
require large amounts of storage. The above properties ren-
der the commercial solutions inapplicable for environments
where easy deployment is required. Also, A3 is a middleware
approach, and does not require large amounts of storage.

7. CONCLUSIONS
In this paper, we motivate the need for application accel-

eration for wireless-data networks, and present the A3 solu-
tion that is application-aware, but application transparent.
Using a combination of principles targeted toward tackling
design problems in popular real-world applications, A3 pro-
vides significant improvements in end-user application per-
formance.

8. REFERENCES
[1] CIFS: A common internet file system.

http://www.microsoft.com/mind/1196/cifs.asp.

[2] Comscore media metrix top 50 online property ranking.
http://www.comscore.com/press/release.asp?press=547.

[3] Converged access wan optimization.
http://www.convergedaccess.com/.

[4] Hypertext transfer protocol– http/1.1.
http://www.ietf.org/rfc/rfc2616.txt.

[5] Linux magzine.
http://www.linux-magazine.com/issue/15/.

[6] Pocket internet explorer.
http://www.microsoft.com/windowsmobile/.

[7] Simple mail transfer protocol.
http://www.ietf.org/rfc/rfc2821.txt.

[8] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In Proceedings of ACM SIGCOMM,
Portland, Oregon, 2004.

[9] H. Balakrishnan and R. Katz. Explicit loss notification
and wireless web performance. In Proceedings of IEEE
GLOBECOM, Sydney, Australia, Nov. 1998.

[10] S. Czerwinski and A. Joseph. Using simple remote
evaluation to enable efficient application protocols in

mobile environments. In Proceedings of the 1st IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, 2001.

[11] T. Henderson and R. Katz. Transport protocols for
Internet-compatible satellite networks. IEEE Journal
on Selected Areas in Communications (JSAC),
17(2):345–359, Feb. 1999.

[12] H. Hsieh, K. Kim, Y. Zhu, and R. Sivakumar. A
receiver-centric transport protocol for mobile hosts
with heterogeneous wireless interfaces. In Proceedings
of ACM MOBICOM, 2003.

[13] IXIA. http://www.ixiacom.com/.

[14] A. Kuzmanovic and E. Knightly. TCP-LP: A
distributed algorithm for low priority data transfer. In
Proceedings of IEEE INFOCOM, 2003.

[15] I. Mohomed, J. C. Cai, S. Chavoshi, and E. de Lara.
Context-aware interactive content adaptation. In
Proceedings of the 4th International Conference on
Mobile Systems, Applications, and Services (MobiSys),
Uppsala, Sweden, 2006.

[16] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker. Agile
application-aware adaptation for mobility. In
Proceedings of the 16th ACM Symposium on Operating
System Principles, Saint Malo, France, 1997.

[17] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: A
highly available file system for a distributed
workstation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990.

[18] P. Sinha, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan. WTCP: A reliable transport protocol
for wireless wide-area networks. In Proceedings of
ACM MOBICOM, Seattle, WA, USA, Aug. 1999.

[19] M. Walfish, H. Balakrishnan, D. Karger, and
S. Shenker. Dos: Fighting fire with fire. In Proceedings
of the 4th ACM Workshop on Hot Topics in Networks
(HotNets), College Park, MD, 2005.

