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Abstract— Web-based information access suffers tremendously
in low-bandwidth wireless data networks due to the non-
correlation between the content transferred across the wireless
links and the actual data that is used to serve the user requests. As
a result, the current web-access mechanisms face such problems
as unnecessary bandwidth consumption, large response times, no
service for partial disconnections, and low system utilization in
wireless networks. In order to solve these problems with web-
transfer in wireless networks, we present a new middleware for
wireless web-access called Cut-Load, which performs application
unaware content-partitioning in the graphical domain residing at
both the mobile client and the proxy server that the mobile client
communicates with. Cut-Load uses dynamic mode selection,
opportunistic hoarding, transparent mode transfer, and display
caching for efficient wireless web-access. Through simulations,
we compare the performance of Cut-Load with that of the
current web-access mechanisms and show that the proposed
middleware brings significant performance benefits both in terms
of bandwidth consumption and user-perceived response times.

I. INTRODUCTION

Today, the majority of Internet users perform web-based
information access using a web-browser. By continuous inte-
gration with various plug-ins, a web-browser has become an
unified application to access not only HTML documents with
attached files but also other web-friendly documents such as
desktop publishing and presentation files[1].

As mobile computing technology has developed, users can
browse these web documents on the Internet from their home,
office, or elsewhere. However, in wireless environments, most
network applications suffer from low bandwidth, large delays,
and frequent disruptions in connectivity. These characteristics
lead to several problems with current models of mobile web
information access, such as excessive bandwidth consumption,
large response delays, no service for partial disconnections,
and inefficient system utilization.

The primary reason for these problems is the absence of
flexible content partitioning in current file systems and the
transfer of the entire content files from the backbone file
server through low-bandwidth and less-reliable wireless links.
In this context, graphical content partitioning is a concept
that extracts and provides partial content that the user wants
to view, and can be thought of as a What-You-See-Is-What-
You-Fetch (WYSWYF) paradigm. Content-partitioning in the
graphical domain can be realized without any dependence on
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applications. This is because any web-content can be repre-
sented using a common abstraction in the graphical domain
without any relation to the nature of application using the
content.

In this paper, we analyze how application-unaware content
partitioning scheme in the graphical domain would solve the
problems with traditional web-access systems. We also study
the issues that arise with using simple content partitioning
techniques instead of traditional binary-file transfer models.
Briefly, the issues include larger bandwidth consumption for
full-file access, no support for disconnected operations, and
inefficient performance in the case highly compressed data.
We then use the issues with a default graphical-domain con-
tent partitioning technique as the motivation to design and
implement a new approach to mobile web information access.

We design and evaluate a new mobile middleware called
Cut-Load1, which uses application-unaware content partition-
ing along with the following unique design elements; (1)
Dynamic mode selection solves the problem of inefficiency
of content partitioning for certain types of content that is not
conducive for graphical content representation such as highly
compressed multimedia data; (2) Opportunistic hoarding helps
in decoupling the response time that the user perceives from
the fetch time of the entire binary file. This reduces the
peak load of the system even while fetching binary content
for satisfying future user requests; (3) Transparent Mode
transfer allows the mobile client to switch the current access
mode when the user accesses most of the content of a web-
document in which case traditional binary-content transfer is
more efficient than graphical content transfer.

The rest of the paper is organized as follows. Section II
discusses the problems with traditional access models and
substantiate the impact of the problems with real-life field
experiments. Section III describes the notion of application-
unaware content partitioning and the challenges of using it for
mobile web-based information access. Section IV describes
the details of the three elements and the operation of the
framework as a whole. Section V evaluates the performance
of Cut-Load with that of conventional web-access systems
and discuss the impact of each design element in improving
performance. Section VI discusses related work in the area.
Finally, Section VII concludes the paper.

1The name is inspired from the Unix cut command, which “cuts” files into
smaller parts
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Fig. 1. Transfer Size in HTML
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Fig. 4. Time-Out Rate

II. MOTIVATION

In this section, we describe several drawbacks in the tradi-
tional model for mobile web access and use them as motivation
for designing a new middleware for efficient wireless web-
access. In order to measure the performance of traditional mo-
bile web-access systems in low-bandwidth wireless networks,
we use the CDMA2000-1X WWAN in 144 Kbps mode to
access web-servers from a web-browser on HP N5430 laptop
computer. We also use 10 web document files selected from
the Top 50 Internet Sites and their links[2].

A. Not all content is always seen by users

Users generally don’t view the entire content of a fetched
file. In [3], it has been shown that 90% of users do not scroll
down web pages but simply pick from the options that is
visible on the initial screen when a page comes up. In spite
of the fact that users may see only partial content that they
are interested in, the conventional computing always consumes
additional bandwidth to fetch unnecessary parts of content2.

Figure 1 shows the total data transfer size for the entire raw
data and the amount of data that the user ends up using for
the 10 web document files. In order to get useful access sizes,
we measure transfer sizes for the useful accesses using the
percentage of each screen data with binary-size of content. We
observe from the results that there is a significant difference in
transfer sizes between full data transfer performed by current
web-access systems and the necessary content.

B. Users suffer when response times are large

It is a well-known fact that there is a relationship between
computer response time and users’ perceptions. In [4], it
is shown that users lose their concentration on their access
when the response time is larger than 10 sec, and when
it is over 1 minute, they lose interest and stop the current
access. However, a mobile client in the traditional web-access
system always waits until the entire content of a document is
fetched regardless of which part a user wants to see. Fetching
the unnecessary part of content increases the initial response
time significantly and makes users impatient. Especially, in
environments where available bandwidth is extremely limited
such as WWAN, it results in extremely poor response time.

2Only some applications such as graphic viewers and add-on programs have
limited capability for partial access to enable a user to access a fetched part
of content before fully downloading it.

Figure 2 shows the response time results for the same set of
the documents. In this figure, we observe that the time taken
to download the web content is most often greater than the
average user-tolerance limit, which researchers have observed
in [4], [5], [6]. We note that download of only useful content
can minimize transfer size, thereby response time without the
degradation of content quality.

C. Larger file transmissions suffer from frequent disconnec-
tions

Wireless networks are prone to frequent disconnections due
to attenuation of the wireless signal, fading of the wireless
channel, interference due to other transmissions, and mobil-
ity of the client. This problem impacts the performance of
traditional web-access systems in two ways namely: (1) The
partially downloaded file until disconnection is generally not
usable for serving the user requests for content, and hence the
bandwidth expended to download the file goes waste; (2) The
response time perceived by the user is increased because of
the additional time spent in downloading the content again.

Figure 3 shows that the amount of bandwidth wastage is
significantly smaller in the ideal case than in the traditional
full file transfer case. This is because of the smaller probability
of transmission failures caused by disconnections in the ideal
transfer due to its smaller transfer time. It can also be
observed from the results that the impact of frequent network
disconnections can be alleviated by reducing the amount of
content download using the wireless link.

D. Greedy transmission makes network utilization inefficient

We say that a connection has timed-out if the response time
for the connection is greater than the specified latency tolerated
by the user, and the user has stalled the download. When
the connection is reset by the user, the bandwidth used in
downloading the content till that point is wasted as mentioned
earlier.

Figure 4 presents the percentage of connections that timeout
as a function of the number of users in the network. In this
figure, we observe that the time-out rates increase exponen-
tially when the number of users (network load) is linearly
increased. This exponential increase is due to the fact that
the data downloads in traditional web-access systems use only
greedy transmissions. Therefore, the higher peak load on the
system degrades the system utilization and hence decreases
the performance of the connections.
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III. APPLICATION-UNAWARE CONTENT PARTITIONING

In this section, we present the concept of graphical content
partitioning for efficient web access and the issues with its use
for wireless web-access.

A. Graphical-domain content partitioning

Since current file systems are user-activity unaware, they
are not able to differentiate between the essential part of the
file and the part that will not be used by the application. As
a result, a file requested by an application is retrieved in its
entirety from the backbone server irrespective of whether its
content is eventually viewed by the user. Intuitively, this can
be solved by partial access, and in reality there exist fetch-
on-demand versions of some specific applications. However,
it is infeasible to develop a generic application-unaware data
partitioning technique.

Thus the only solution to application unaware content-
partitioning is at the graphical level, i.e. content-partitioning
at the output device level. Using this mechanism, content is
abstracted in terms of the different inputs to the graphical
user interface of the application. Hence, a web document is
represented as a set of user-viewable screens that feed an
output device. Note that this form of content-partitioning in
the graphical domain can be performed in an application-
independent manner because any web-content can be repre-
sented using a common abstraction in the graphical domain.

Now we describe how graphical-domain content partitioning
solves the problems with traditional web-access model. We
also present certain issues that arise due to the usage of pure
graphical-domain content partitioning for mobile web-access.

• Usage to fetch-size ratio: Content partitioning in the
graphical level is highly efficient especially when the
byte-size of the entire content is large compared to the
amount of the file that the user actually views, which
is most often the case. However, for highly compressed
multimedia content, it may not be efficient in terms of
transfer size because of the performance limitation of
re-compression in real-time . Hence graphical content-
partitioning mechanism should be used selectively along
with traditional full binary-content transfer techniques.

• Response time: Content partitioning enables quick fetch
of user-accessed graphical content because of the smaller
byte-size of initial graphical content compared to the en-
tire binary-content. This helps in reducing user-perceived
response time as the user requests for web-documents
are served faster. However, when the user accesses all
the content of the web-document, full binary-file trans-
mission is better than graphical content transfer because
of the repeated overhead incurred by graphical content
transfer for serving user requests. Thus the graphical
partitioning access mechanism should be supplemented
with the binary-content transfer so that the mobile client
can use the binary-content if the user accesses more than
a threshold amount of content from the web-document.

• Partial download disconnections: Due to the large trans-
fer sizes in the traditional model, there is a high proba-
bility of disconnection during content transfer. This in
turn leads to increased response time and wastage of
bandwidth. Since content partitioning brings benefits of
transfer size reduction by dividing the accessed content
into several parts that can be transferred individually,
the probability of network disconnections stalling data
transfer is small in the case of content partitioning tech-
niques. However, even small size partitions may suffer
from transmission failures caused by long-scale discon-
nections. Therefore, re-usability of partially downloaded
graphical content is essential to serve user requests during
disconnections.

• Greedy fetch problem: Content partitioning decouples the
part that is needed for the initial access from the other
part that is not required immediately. Therefore, it can
minimize the impact on other network traffic by reducing
the initial transfer size. Reduction of the greedy fetching
size decreases the peak load duration of the system
and minimizes the effect on the performance of other
applications in a multi-tasking environment. However, for
future disconnected operations, a full binary file may need
to be fetched. In order to minimize the effect of this non-
urgent transmission, it is useful to differentiate the greedy
transmission for the initial part from the non-greedy or
low-priority transmission for the remaining part.

B. Thin-client computing

Among currently existing computing models, thin-client
computing provides the required abstraction for application-
unaware and user-activity aware content-partitioning mecha-
nisms in the graphical domain[7]. It is an extreme form of
proxying where the proxy performs all the tasks on behalf
of the client, and the only communication between the proxy
and the client is for dumping screen data (proxy to client) and
conveying user input (client to proxy). Formally, thin-client
computing involves the use of a simple terminal or processing
device connected to powerful servers where applications and
data are stored and processed. A transcoding system on the
servers adapts video, images, audio, and text to the individual
device capabilities. Any remote content access for web-content
attempted by the client results in the content being fetched by
the proxy. Thus the thin-client model allows the client to be
aware of the user inputs and respond accordingly before the
entire data can be retrieved from the server.

Fig. 5. Thin-client computing model
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IV. CUT-LOAD ARCHITECTURE

In this section, we propose a new mobile middleware
that uses application-unaware content partitioning along with
several unique design elements to provide an efficient web-
access system for mobile clients.

A. Overview

We use the content-partitioning mechanism used by thin-
client computing in the Cut-Load middleware. Cut-Load re-
sides at both the client and the proxy as a middleware and
hence it is easily deployable. The client-side middleware
transfers a request of content access, manages content cache,
and follows an application control message received from the
proxy. The middleware at the proxy side decides the best com-
puting mode for a requested content access, transfers objects
for caching, and control applications at both the client and the
proxy. Figure 6 presents an overview of the architecture.
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Fig. 6. Cut-Load architecture overview

Cut-Load operates in one of the following two modes.

• Normal-mode: In this mode, a Cut-Load client works in
the same manner as a traditional web-access client. When
a user wants to see content, the client fetches the original
content files from the web-server and accesses them by
running local applications. Because all required content
files are fully transferred to the client, it can provide off-
line (disconnected) operation with cached files.

• Dual-mode: A Cut-Load client works in dual-mode under
specific conditions. In this mode, the client initially oper-
ates in thin-mode. While a user is seeing the content in the
initial thin-mode, the client performs hoarding of original
content files in the background 3. When the content file is
hoarded completely, the client notifies the user about the
change of mode to thick-mode. Then, it opens the hoarded
thick-data using an associated application and moves the
current system focus to the application window. After it
closes the remote application that the user used before,
the mode transfer from thin to thick mode is complete.

In order to support these mode operations, Cut-Load con-
sists of three basic elements, dynamic mode selection, oppor-
tunistic hoarding, and transparent mode transfer to address
the issues with pure graphical content-partitioning mechanism.
These elements bring benefits of faster access speed and
efficient network bandwidth utilization.

3Because the hoarding is performed in an opportunistic non-greedy manner,
we call it as opportunistic hoarding.

B. Dynamic Mode Selection

Thin-client content access is not always the clear winner in
terms of performance[8]. Thus, in Cut-Load, the decision as
to whether to use graphical content partitioning or not is done
dynamically based on several factors such as thin-friendliness,
size of content, and current network condition to maximize its
performance.

For some types of content, the real-time compression
processing in thin-client computing results in significant band-
width inefficiency, and we call those thin-unfriendly content
types. Usually, these content types are pre-compressed using
a non-real-time algorithm, which requires spending a sig-
nificantly long time to minimize their byte-size. However,
de- and re-compression in real-time in thin-client computing
may not reduce the content size enough, and this results in
poor display performance with high body mass index (BMI)
defined as the byte-size divided by the square of the pixel-size.
Thus, thin-friendliness of content is decided by comparing
the compression efficiencies in an off-line algorithm in thick-
mode and a real-time algorithm in thin-mode. Besides the
low re-compression efficiency problem, wrong selection of re-
compression algorithm can be another problem. When a client
accesses video content that is pre-compressed by a MPEG
algorithm, the thin-proxy may not use a video compression
algorithm, but a still image compression algorithm for re-
compression. In this case, the re-compression process cannot
be performed effectively, and finally this overload affects the
server’s overall performance for other clients.

When a user requests to access large pixel-size thin-
unfriendly content, Cut-Load performs the dual-mode oper-
ation for faster initial access. However, an application itself
generally does not provide pixel-size information, and it can
be provided by a specific interface function to the application
window manager, i.e. every application instance that has a
window container needs to operate its own estimator. The
estimator gets pixel-size information by measuring the scrol-
lable size of the window container when a document is opened
initially and when the current zooming rate in the application
instance is varied.

In the mode decision process, the first factor that Cut-
Load considers is the current network connectivity. Because
interactive operations in thin-client computing are based on
strong connection between a client and a server, the ap-
proach estimates the current signal-to-noise ratio (SNR) first
to check eligibility for thin-client solution. If the current
connection is not strong enough for thin-client computing,
Cut-Load accesses the content in thick-mode regardless of
other decision factors. Then, it measures byte-size, pixel-size,
and thin-friendliness of content. The approach may access a
thin-unfriendly document in thin-client mode to improve the
initial access performance when the document has extremely
large byte-size and pixel-size. However, optimal threshold
values of those sizes are dependent on what a user accesses,
therefore data mining of user access patterns is necessary in
the approach.
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C. Opportunistic Hoarding

By using a combination of both greedy thin-screen access
and opportunistic thick-data access, dual-mode operation de-
couples the response time experienced by the user from the
actual fetch time for the thick-content. This decoupling has two
positive effects: (1) For users operating over a low-bandwidth
link such as in a WWAN this significantly reduces the response
time for large data sizes; (2) The decoupling facilitates a non-
greedy approach to hoarding. This in turn reduces the peak
hoarding rate and hence improves the system-wide utilization.
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Opportunistic hoarding is performed when user requests for
content are served using the thin-client mode of operation.
However, unlike a normal content download that utilizes the
entire available bandwidth in a greedy fashion, opportunistic
hoarding is performed at an optimal adaptive data rate with
lower priority to minimize the impact on the thin-client mode
data transfers that use normal TCP with high priority. Thus,
we use a rate control scheme called opportunistic hoarding
rate control (OHRC).

In Cut-Load, the OHRC mechanism uses an exponen-
tial increase in the hoarding rate to perform opportunistic
hoarding. It achieves a specific bandwidth share by using a
weighted additive increase multiplicative decrease (W-AIMD)
congestion control mechanism for performing opportunistic
hoarding, i.e. it controls the weight to set a specific fraction of
the bandwidth obtained by the high-priority thin-client flows
that use normal TCP. When the hoarding starts, the flow is
assigned a specific initial weight of 1/w, and this means that
the flow would get 1/w of the capacity that a thin-client flow
would achieve under the given network conditions. As the
user performs input activity and the proxy server sends screen

updates, the weight of the “hoarding” flow is increased by a
pre-determined increment. After several increments the weight
of the hoarding flow reaches 1, and from then on it would
receive the same share of network bandwidth as a normal TCP
flow.

This adaptive data-rate hoarding scheme has two advan-
tages: (1) It avoids the starvation of hoarding flows so that
after a sufficient time even in the presence of other normal
TCP flows, the raw content would be hoarded and be ready
for both efficient connected access and potential disconnected
access.; (2) The exponential rate adaptation would ensure that
sufficiently long hoarding flows achieve data rates comparable
to normal TCP flows and hence complete the hoarding faster.

D. Mode Transfer

After opportunistic hoarding is completed, Cut-Load per-
forms mode transfer to stop unnecessary bandwidth consump-
tion. Our framework uses both thick-mode of operation as well
as thin-mode for information access. When a client accesses
content in dual-mode, it operates in thin-client mode initially.
It also performs opportunistic hoarding of the raw data file in
the background. If the client is still accessing the same content
when downloading is complete, the framework changes the
operating mode from thin-client to the thick client mode.

The transfer point of time is decided by the hoarding rate
and the byte-size of hoarded data. When the mode transfer
point of time is decided, the framework stops the current thin-
client operation and notifies the mode transfer to the user.
When the transfer is completed, it shows a message in a pop-
up window and begins to provide access to the hoarded content
file in normal thick mode. In order to provide a seamless
user access after mode transfer, the environmental settings
and system focus of both sessions in the client and the proxy
should be synchronized.

Environmental settings are categorized into system set-
tings and application settings. The system settings include
screen resolution, keyboard layout, clipboard content, etc.
The value of these settings are obtained by means of query
messages to the operating system. The application settings
include parameters set up within an application, such as menu
bar, zoom rate, view option, etc. Because this information
is application-specific and user-specific, the location of the
application environment file should be input before it performs
synchronization of application environment.

After the environmental synchronization is performed, the
client synchronizes the various types of focuses. Mouse focus
is the current location of the mouse cursor, and it can be
located anywhere in the entire screen. Keyboard focus means
the current position of the keyboard input, and it exists only
when one or more text input controls are included in the
current window. Screen focus is the screen position of the
client area in the document layout. When the system is in
thin-client mode and opportunistic hoarding is performed in
the background, the client traces all the focuses. Once the new
local application is opened, the captured focuses are restored
by OS-specific interface functions.
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V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Cut-Load
and compare it with conventional web-access systems and
discuss the impact of each design element in improving
performance. In order to evaluate the performance and profile
the benefits, we use Monte Carlo simulations.

A. Simulation Setup

The default screen resolution is 1024-by-768, and the pixel-
size of the client area in the WebBrowser control is 1006-by-
511. Each user access is simulated in terms of screen units,
which have the same pixel-size as the client area. We use
the average and standard deviation values of web-document
byte-sizes from the experiments performed in Section II. We
consider the case where the byte-sizes of document files follow
single-side tail-less Gaussian distribution with a mean of 400
KB and a standard deviation 200 KB. The byte-sizes of each
screen in thin-client computing follows a Gaussian distribution
with the mean of 150 KB and the standard deviation of 50 KB.
We assume the byte-size threshold value for mode selection
to be 300 KB. Therefore, when a mobile client requests a
thin-friendly document file larger than 300 KB, the client
triggers the dual-mode operation automatically. In the WWAN
environment, the overall cell capacity between the base station
and the mobile hosts is assumed to be 640 Kbps. We use
the IEEE 802.11 MAC protocol in the Point Coordination
Function (PCF) mode for the WWAN model.

The internal data processing time is ignored, hence when
a mobile client accesses already fetched or hoarded binary
data, the effective response time is 0 second. All user accesses
are performed by PgDn keystrokes in the unit of number of
screens. The initial probability that a user accesses the next
screen in the initial screen is 40%, and it is increased by 10%
per next screen access up to 90%. With this probability model,
each user sees an average of 1.468 screens per document.
User access interval also follows a Gaussian distribution with
a mean of 20 seconds and standard deviation of 10 seconds.

The access method for each requested screen is decided by
the current access mode, current fetching status, and current
hoarding status. If normal-mode is chosen, the initial screen
access is provided only after the binary content file is fetched.
After that, the other screen accesses in the same content
are performed without any delay and any additional transfer.
Therefore, the initial response time in normal-mode becomes
relatively large, however once the file is fetched, additional ac-
cesses are provided instantaneously. If dual-mode is selected,
the initial and all other screen accesses are performed in thin-
client mode consuming bandwidth continuously until oppor-
tunistic hoarding is completed. After hoarding is completed
and mode transfer is performed, all additional screen accesses
in the same document are performed in normal-mode and
do not require any delay and any more transfer as normal-
mode. Therefore, the initial response time is relatively small,
however this operation consumes bandwidth continuously until
the hoarding is completed.
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B. Overall Response Time Performance

Figure 9 shows the overall screen response time using
conventional thick-client model, thin-client, and a dual-mode
client in Cut-Load. In the figure, regardless of the increased
number of users, the dual-mode client shows better and rela-
tively stable response time under 2 seconds. To the contrary,
the thin-client and thick-clients show an exponentially increas-
ing pattern when more users share the network bandwidth, and
the thick-client shows somewhat worse performance than the
thin-client.

This performance difference is explained by utilization of
a judicious combination of thin-client and conventional com-
puting models. When a user requests a large-size thin-friendly
document, the dual-mode client selects the initial thin-mode to
minimize the initial response time. As the user accesses more
screens staying in the same content, the probability that the
user will see the whole content increases, and then the dual-
mode client increases the hoarding rate to reduce the future
response time. Because the hoarding is performed in a non-
greedy manner, it does not have a negative influence on other
users’ response time performance. In the figure, it is also seen
that the dual-mode performance is not affected significantly
by the number of users during the operation region. It means
that the dual-mode consumes much less bandwidth in greedy
transmission than other modes because only greedy traffic
affects the overall response time performance.

C. Initial Response Time Performance

Figure 10 shows the initial response time results. In the
figure, when the number of users is small, both the thin-client
and the dual-mode client show similar performance, whereas
the thick-client shows much worse performance because of its
excessive initial overhead. As the number of users increase,
the performance of both the thin-client and dual-mode client
is not degraded significantly, and their initial response time
is still below 10 seconds, which is generally accepted as the
user tolerance limit [4]. However, the dual-mode client starts to
show somewhat better performance than thin-mode operation.

The reason why the dual-mode client shows better initial
response time performance than the thin-client even though the
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dual-mode client initially uses the same thin-client computing
scheme is more efficient network bandwidth utilization. By
the benefits of hoarding, other dual-mode clients don’t spend
bandwidth continuously as other thin-clients, hence the total
greedy transmission size is relatively smaller.

D. Transfer Size Performance

Figure 11 shows the overall transfer size in the simulations.
The performance in dual-mode is represented by the three
curves of overall size, greedy transmission size, and non-
greedy (opportunistic hoarding) transmission size. Its overall
size is equal to the sum of the greedy and non-greedy size.
In the figure, the conventional thick-client consumes slightly
more than the thin-client. The overall transfer size of the dual-
mode client is larger than or similar to those in other modes,
however its greedy transfer size is only about a half of others.
On the other hand, the non-greedy size begins to decrease
when the number of users reaches 12.

It is generally true that a bandwidth-inefficient computing
model consumes more bandwidth as well as shows worse
response time performance. However, the dual-mode opera-
tions decouples the greedy transmission for the urgent part
required immediately from the non-greedy transmission for
the less urgent part of content. Therefore without disturbing
other users’ transmission it achieves significant response time
performance improvement.

Another interesting point is that the non-greedy transmission
has a peak point around a number of user of 23, and after this
point the non-greedy size as well as overall size decreases. It
means the available excess bandwidth for the dual-mode oper-
ations begins to decrease after the overall network utilization
becomes saturated. At the same time, the overall transfer size
begins to outrun because of the reduction of the non-greedy
transfer size and the hoarding benefits that still exist. When
the size of non-greedy transmission becomes almost zero due
to the extremely heavy traffic, the transfer size overhead of
the dual-mode becomes the same as that of the thin-mode.

E. Hoarding Performance

Because opportunistic hoarding mainly utilizes the excess
network bandwidth available, as the excess available band-

width is reduced by an increased number of active users, its
performance is degraded. However, the increased background
traffic also affects the main greedy transmissions, hence the
dual-mode can keep dominance in the response time perfor-
mance.

In Figure 12, we study the performance of opportunistic
hoarding used in Cut-Load compared to conventional thick-
client systems as well as pure non-greedy transfers. We had
shown in Section II, that the traditional thick-client transfers
suffer from lowered system utilization due to higher peak rates.
We modeled system utilization as the transmission time-out
rate ratio which is the ratio of the total number of connections
which have response times greater than the average user
tolerance level. It is shown in the figure that opportunistic
hoarding used by our approach performs better than pure
greedy transfers used by traditional file systems. This is due
to the better system utilization because of the lower peak rates
of opportunistic hoarding.

VI. RELATED WORK

In [9], the authors propose a proxy that can transform
data in new formats to old formats to accommodate thin-
clients. Most software upgrades can then be performed at the
proxy as opposed to at the client. However, the transcoding
mechanism is not dealt with in detail since the paper presents
it as one of many aspects of the proposed architecture. In
[10], the authors propose a scheme to transparently support
resource constrained mobile devices through powerful proxies.
The proxy adapts its mechanisms to the dynamic nature of
the wireless environment, and addresses the limitations of the
client devices. The proxy provides filtering and compression
of graphical images, converts postscript files to ASCII text,
and does static data partitioning. Finally, in [11], the authors
propose a combination of end-to-end and proxy-based ap-
proaches as an ideal solution for supporting mobile hosts. The
proxy explicitly requests data from servers that has a resolution
matching the present QoS and client capabilities.

In [12], the authors propose Spectra, a remote execution
system in order to balance performance, energy conservation,
and application quality. Even though it manages resources
effectively in a mobile environment, it has a limitation of
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application dependency. Therefore, it needs newly structured
applications for Spectra to work or modifications of current
applications. In [13], the authors propose Puppeteer, a system
for adapting component-based applications in mobile environ-
ment. Puppeteer has an advantage of adaptive transcoding ex-
ecution by a proxy without modifying applications. However,
it cannot overcome the quality degradation problem caused by
limitations of transcoding in thick-client computing.

[14] is one of the first papers to analyze a real thin-client
product, Microsoft Terminal Services. The authors show the
performance analysis of CPU, memory, and bandwidth usage
for several types of local applications. The focus of the paper is
primarily on resource sharing in a multi-user environment, and
the paper has limited analysis of the user behavior. [8] evalu-
ates the web browsing performance of thin-client computing in
a wireless environment. The authors focus on latency and size
of pure transferred TCP data impacted by high packet loss rate
over wireless network. However, their experiments are also
executed in the simulated environment emulated by the wired
network emulator, even though the network characteristics in
a wireless environment are completely different from that in
a wired environment.

VII. CONCLUSION

Traditional web-access systems are not tailored to perform
well in low-bandwidth wireless networks. In this paper, we
study the reasons why conventional web-server models are
not optimal for wireless networks. We find that the reason for
the inefficient performance is the operation in the binary level
and being unaware of user activity. We evaluate the use of
application-independent content-partitioning in the graphical
domain as an alternative to binary-level file transfers for
efficient web-performance for low-bandwidth wireless links.

We found several issues in using pure graphical content-
partitioning techniques to serve mobile web-access requests.
In addressing these issues, we propose and implement a new
middleware for mobile web-access over wireless links. The
proposed middleware uses an intelligent mix of binary file-
transfers and graphical content-partitioning along with fea-
tures such as opportunistic hoarding to reduce the bandwidth
consumption as well as response times for web-access. We
evaluated the performance of the Cut-Load middleware and
proved its benefits over traditional web-access systems.
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