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Poster Abstract: Exposing Two Critical Myths about Correlation Aware Data Aggregation

I. CORRELATION AWARE DATA GATHERING

In this paper, we consider one of the key tasks performed by wireless
sensor networks (WSNs): the collection and transfer of sensor data from
sensors in the field to the sink for processing. This task is referred to as
data gathering.

In most sensor applications, data from different sensors are correlated
with each other. This correlation can be leveraged in order to reduce the
number of transmissions and hence energy consumption for the data gath-
ering process. Using correlation unaware aggregation trees (CUATs) such
as shortest path trees (SPTs), opportunistic aggregation can be achieved
when paths from different sources overlap with each other. However,
these structures do not necessarily maximize aggregation possible in the
network and are hence correlation unaware. By explicitly constructing
aggregation trees with the purpose of fusing data inside the network as
early as possible and as much as possible, the correlation existing in
sensor data can be fully exploited to reduce energy consumption. Many
research works [1], [2], [3] have proposed solutions in this direction for
determining such correlation aware aggregation trees (CAATs).

In this paper, we study the energy efficiency of CAATs from a
new perspective: we consider data gathering applications with real-
time requirements and explore how delay constraints and other network
conditions affect the energy efficiency of a CAAT structure. Energy-
delay tradeoff in wireless sensor networks has been explored in multiple
dimensions. In this work, we consider energy-delay tradeoff from the
perspective of aggregation tree structures. Intuitively, with a higher ap-
plication delay tolerance, longer aggregation paths that support more en-
route aggregation can be generated, thereby resulting in an aggregation
tree with lower energy cost. Therefore, the energy improvement tends to
increase monotonically with the application delay tolerance.

To study the energy-delay tradeoff, we consider a typical sensor net-
work scenario withn sensors randomly distributed in a disk with radius
R. All the sensors communicate using the same transmission range,
which is slightly higher than that required for minimum connectivity
[5]. Of then sensors,k are randomly chosen as sources to report data to
the sink located at the center of the disk. To evaluate the energy efficiency
of a CAAT structure, we define energy improvement as the ratio of the
cost of the CUAT structure to that of the CAAT structure for the same
set of sensor nodes.

For ease of analysis, we assume perfect correlation in this paper,
where two pieces of raw data packets can be combined and reduced
to one packet of the same size as the original packets. In this case,
Steiner Minimum Tree (SMT) over all source nodes and sink is the
optimal aggregation structure [2]. Therefore, we choose SMT as the
CAAT structure in this paper for evaluation because of its optimal energy
cost. On the other hand, SPT is selected as the CUAT structure since it
minimizes the delay required for data aggregations.

Notice that SPT is also the most efficient aggregation tree structure
when there is no correlation between sensor data. Thus, it is expected that
for partially correlated sensor data gatherings, the optimal aggregation
tree structure are intermediate structures between that of SMTs and SPTs.
Consequently, the energy improvement of SMT over SPT that we study
in this paper serves as an upper bound on energy improvement for all
other correlation models.

II. T HE MYTHS

In this section, we introduce the two common myths studied in this
paper and explain the reasons for their belief.

• Myth 1: Significant energy improvement can be achieved by using
CAATs
As stated earlier, SMT proves to be the energy optimal aggregation
structure for sensor applications involving perfect correlation. Com-
pared to a naive SPT structure whose primary goal is to minimize
delay, SMT structure explicitly maximizes data aggregation possible
in the network, thereby ensuring minimum energy cost for the data
gathering process. As a result, the cost ratio of SPT over SMT is
always higher than one.
Furthermore, in large scale sensor networks where sensor nodes are
densely deployed and a fraction of the nodes are selected as sources,
the energy cost of SPT as an aggregation tree is expected to be
much worse than that of SMT. This can be intuitively explained as
follows: when the node density is high, the different shortest paths
connecting each source to the sink have a low probability of over-
lapping with each other. Hence, the cost of SPT over the fixed set
of sources increases when node density increases. The extreme case
is when node density tends to infinity (λn →∞). In this case, the
resulting SPT structure becomes a SPT in Euclidean space, whose
expected cost isO(s), where s is the number of sources in the
SPT structure. On the other hand, the cost of SMT over the same
set of sources decreases as node density increases. This is because
when node density increases, more candidates (nodes) are available
to form Steiner points, thereby minimizing the cost of the Steiner
tree. The extreme case is an Euclidean SMT structure, which results
when node density tends to infinity. In this case, the expected cost
is Θ(

√
s) [6]. Since the cost of SPT isO(

√
s) worse than that of

SMT in Euclidean space, the energy improvement of SMT can be
expected to scale with node density. As a result, many heuristics for
SMT structures have been proposed and used to improve the energy
efficiency of data gathering process in wireless sensor networks.

• Myth 2: High application delay tolerance is required in order to
achieve significant energy improvement of CAATs
This common belief stems from the observation that on an average,
paths on a SMT structure are longer than the paths on a SPT
structure. To reduce the aggregation tree cost, longer paths that
connect more sources en-route to sink are favored over shorter
paths that connect each source to sink separately. In this way,
sensor data from different sources can be combined well before
they reach the sink to reduce the total number of transmissions
required. Consequently, it is natural to expect that a SMT structure
has longer average path length than a SPT structure. For sensor
applications with a larger delay tolerance, aggregation paths with
more hop count but higher degree of aggregation can be created
to improve energy efficiency. Similarly, applications without delay
constraints can always use SMTs more efficiently than those with
delay constraints.

III. STUDYING THE MYTHS

In this section we present simulation results to disprove the two
commonly believed myths. We use a custom-built simulator written in
C++ for all the simulations. Since determining the SMT structure is a
NP-hard problem, a heuristic of SMT - namely the BSMA [4] (bounded-
delay shortest multicast) algorithm is used to generate approximations
for SMTs. This algorithm has been proven to be capable of constructing
aggregation trees with an additional cost that is less than 7% that
of the corresponding SMT cost. Using this algorithm, different SMT
approximations can be obtained for different delay constraints. The
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Fig. 1. Performance Improvement over SPT for Different Number of Nodes
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Fig. 2. Performance Improvement over SPT for Different Delay Bounds

delay constrained SMT approximations are referred as DB-SMT (delay-
bounded SMT) in the rest of the discussions. Node density and source
density are the two major parameters in simulation study. For each
network configuration, SPT and DB-SMT trees are generated, and
the cost ratios between them is calculated as a measure of energy
improvement. The maximum hop count in a shortest path tree is taken
as the lowest possible delay constraint required by the application and
the corresponding DB-SMT tree is computed initially. The same delay
constraint is then relaxed to obtain DB-SMT trees with further reduced
costs.

Figure 1 shows the cost ratio of SPT vs. DB-SMT when the source
densities are1/20, 1/10 and 1/5 of the total number of nodes. It can
be seen that the cost ratio increases as node density increases, which
indicates that SMT is more energy efficient when sensor nodes are
densely deployed in the field. As outlined in the previous section, when
the node density is high, the probability of shortest paths overlapping
with each other is low. Hence, the naive SPT has very low aggregation
efficiency and there is higher potential for energy improvement using a
CAAT structure.

But this improvement is not always high. According to the simulation
results, the cost ratio is always a small constant (less than 2), and
the rate of cost improvement tends to slow down as the node density
increases. This is in contrast to the first myth considered in the earlier
section, wherein the belief was that significant energy improvement can
be achieved by adopting a correlation aware aggregation tree structure.

The key reason for this counter-intuitive result can be attributed to
the natural path sharing ability of SPT structures in network graph
that improves their cost performance. Since all the source nodes are
connected to the sink via shortest paths, and there are finite number of
nodes around the sink, all the shortest paths tend to start converging
at a certain distance from the sink. This makes the total cost of SPT

smaller than the sum of the individual path costs. If we consider the
distance where the paths start to merge as the threshold distance, then
within this threshold distance, almost all sensor nodes can be considered
to be part of the SPT structure. For SMT, such a threshold distance also
exists, because of the limited number of nodes around the sink, and is the
same as that in the SPT structure. Thus, the main difference between the
SMT and SPT costs is caused by the diverse tree structures beyond the
threshold distance. For SPT, shortest paths beyond the threshold distance
are typically independent of each other. While for SMT, the possible
aggregations among paths are still maximized to ensure optimal cost. So
the cost improvement of SMT over SPT is determined by the threshold
distance. The smaller the threshold distance, the larger the difference
between the two trees. Hence, the higher the room for aggregation in
SMT, and hence higher the cost ratio. According to our analysis1, the
threshold distance is determined by both the node density and source
density parameters, while increasing with the source density. The extreme
case occurs when source density is equal to 1, wherein all the sensor
nodes act as sources. In this case, the threshold distance is the radius
of the entire network, and hence SMT structure is the same as SPT
structure.

In summary, contrary to common belief, SMT does not always bring
significant cost improvement over a naive SPT, and even for the cases
where SMT does have a lower cost than SPT, the cost improvement is
limited due to SPT’s ability of natural path sharing in network graphs.

Figure 2 shows how the energy improvement of SPT over SMT
changes with respect to delay tolerance. For low delay tolerances, the
cost ratio increases steadily. But when the delay bound is higher than
1.5 times that of the maximum shortest path length, the increasing trend
tends to slow down and the cost ratio tends to saturate. It is obvious from

1The theoretical analysis is omitted here due to space limitation.
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Fig. 3. Topology of SMT, n=1200, k=120
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Fig. 4. Topology of SPT, n=1200, k=120

the results that after a certain threshold value, higher delay tolerance does
not help increase the cost ratio anymore. This result in turn contradicts
our second myth. To understand this phenomenon better, we plot the
structures of SMT and SPT forn = 1200 in figures 3 and 4 respectively.
It can be seen from the two structures that the ”backbone” structure of
SMT is similar to that of SPT, where several shortest paths tend to divide
the network graph uniformly. But there are lesser number of shortest
paths in the backbone of SMT. However, there are several ”branches”
connecting the sources to the backbone structure, although via shortest
paths. Thus, while this structure is more efficient than SPT in terms of
cost with the paths being combined as much as possible, the longest path
length is not significantly higher than that in the SPT structure. Further,
the maximum delay tolerance that is helpful in reducing the aggregation
tree cost is given by the length of the longest path on the SMT structure.
Hence, given the practical structural characteristics of SMT, the longest
path in SMT tends to be only a small constant order that of the longest
path in the SPT structure.

In summary, a relatively small delay tolerance is enough for a sensor
application to guarantee a correlation aware aggregation tree with a
near optimal cost.

IV. PRACTICAL IMPLICATIONS

A. Practical Implications of Energy Improvement Observation

As identified through simulation studies and analysis, the energy
improvement of CAATs over that of CUATs is not always significant.
We now discuss the practical implications of these observations.

Many research works have studied the optimization of data aggregation
trees to maximize energy improvement. It is commonly believed that
CAAT structures can always bring substantial energy savings. But energy
saving of CAATs does not come for free. To set up the CAATs structures,
explicit communication between sink and sensor nodes is required.
Furthermore, the CAAT structures over different sets of sensor nodes

are different from one another, which implies that a dedicated tree
construction process is necessary for each data gathering round with
different set of source nodes. This constitutes a non-negligible amount
of energy consumption, and may even offset the cost savings resulting
from optimization (data aggregation). Under these circumstances, CAATs
are more energy efficient only when the extra cost incurred from the set-
up of the structure itself can be compensated by energy savings due to
aggregation over that of CUATs. But the observation clearly shows that
the cost benefits of CAATs is limited and hence it might not be beneficial
to consider them in all sensor network applications, taking into account
the cost incurred in the setting-up process of the CAAT structure.

It is also possible that in some sensor network applications, the set of
source nodes reporting data packets to the sink is not known a priori, in
which case CAATs cannot be computed before the aggregation process
and are hence not viable solutions for data gathering. On the contrary,
CUATs such as shortest path trees, even for diverse sets of sources, can
be obtained from the same shortest path tree over the sink and all sensor
nodes by trimming branches that are entirely over non-source sensor
nodes. Therefore, shortest routes can be programmed into sensor nodes
before the data gathering process, thereby eliminating the cost of explicit
tree construction.

Due to the above reasons CUATs such as shortest path trees may be
a desirable data gathering structure when compared to CAATs under
several circumstances.

B. Practical Implications of Delay Tolerance Observation

We also observed that increasing delay tolerance does not always help
reduce aggregation tree cost. When the delay constraint is small, the
cost of the SMT structure reduces with delay bound. But this is not
always true: beyond a delay tolerance which is comparable to the longest
shortest path length, the cost ratio improvement saturates. This is because
the optimal aggregation tree can be constructed for this delay tolerance.
Practically, this means that an application does not have to be designed
with large delay tolerances to ensure energy efficiency.

V. CONCLUSIONS

In this paper, we study the energy efficiency of correlation aware data
aggregation and the tradeoffs involved for the data gathering process in
wireless sensor networks. Sensor applications with and without delay
tolerance are considered. Through quantitative analysis and theoretical
reasoning, we infer practical limitation on the achievable energy improve-
ment in adopting a correlation aware aggregation structure as opposed to
a correlation unaware structure, as well as practically maximum useable
delay bound that can deliver the maximum achievable improvement.
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