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Abstract— Correlation of data sent by different sensors in
a wireless sensor network can be exploited during the data
gathering process to improve energy efficiency. In this paper, we
study the energy efficiency of correlation aware data aggregation
trees under various sensor network conditions and the tradeoffs
involved in using them. The following two related questions are
specifically investigated in the study: (i) Is there any practical
limit on the achievable improvement in energy efficiency in
adopting a correlation aware aggregation structure as opposed
to a correlation unaware structure? (ii) Is there a practical
maximum useable delay bound that can deliver the maximum
achievable improvement? In answering the above questions, we
present comprehensive simulation results and draw inferences
based on the results. We also conclude two rather surprising
results that the energy improvement in using correlation aware
aggregation is not significant under many network scenarios, and
the maximum useable delay bound is not large compared with
the delay along the maximum length shortest-path in the default
shortest path tree.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) have gained tremendous
importance in recent years because of their potential use in
various fields. The devices used for sensing and communi-
cation in such networks are usually small, cheap and low
powered and hence, have limited resources for computation
as well as communication. This has spurred a need for energy
efficient protocols tailored specifically toward sensor network
environments.

One of the key tasks performed by any WSN is the collec-
tion of sensor data from the sensors in the field to the sink
for processing. This task is also referred to asdata gathering.
In this paper, we consider the problem of data gathering in
environments where the data from the different sensors are
correlated. Such correlation of the data being collected can be
leveraged by appropriately fusing the data inside the network
to the best extent possible, thereby reducing the number of
transmissions and hence energy consumption, for the gathering
process.
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On the other hand, a data gathering tree that does not ex-
plicitly make use of the correlation between sensor data can be
considered to be correlation unaware. The most representative
structure for correlation unaware aggregation approaches is a
Shortest Path Tree(SPT).

Since the primary goal of the structure is to minimize delay,
SPT is not considered to be a correlation-aware data gathering
structure. Even though opportunistic aggregation may possibly
occur when different paths overlap with each other, it does not
necessarily maximize the degree of aggregation possible in the
network.

The objective of correlation aware data gathering is to
reduce the energy cost of an aggregation tree. The energy
optimal aggregation structure for a data gathering application
depends on the degree of correlation existing between the
source data. For statistical queries such as min, max, avg,
etc., two pieces of data can be combined and reduced to the
same size as that of the original pieces. We call this type
of correlation asperfect correlation. It is well-known that
when sensor data are perfectly correlated, theSteiner Minimum
Tree (SMT) over all the sources, sink and some of the non-
source nodes is optimal. On the other hand, there are other
scenarios where the message sizes may not be reduced to the
same size as the original data; only a part of each piece of
information is redundant. If the correlations between sensor
data are not perfect, there is no established optimal structure.
Hence, several attempts ([1], [2]) have been made to propose
heuristics to approximate the optimal solution.

In this paper, we study the achievable benefits in using
correlation aware structures in practical sensor applications.
Specifically, we investigate sensor applications with different
degrees of delay tolerance, and explore the energy benefits
brought about by correlation aware structures in data gath-
ering, as well as the trade-offs for obtaining these energy
benefits. Note that the delay tolerance of the application will
determine the optimality of the data gathering structure. This is
because, to maximize aggregation, some sensor data may have
to travel additional hops to combine with other sensor data,
thereby increasing the delay of the data gathering process.



Hence, to satisfy the delay constraints of the application, some
intermediate structure between SPT and SMT may be used to
strike a balance between the energy efficiency and the delay
requirement.

Also, the benefits of a correlation aware data gathering
structure come at the expense of a construction process that
typically incurs more overhead than that for a simpler structure
such as the SPT, both because of the coordination required
for the construction and the fact that unlike the SPT, the
correlation aware structure needs to change for each new set
of source nodes. Hence, for a correlation aware aggregation
tree to be energy efficient, the overhead involved in the tree
construction should also be taken into account and the energy
savings of the resulting tree should be the net savings after
accommodating the cost incurred for the construction.

In this work, we investigate the energy efficiency of the
correlation aware aggregation process through comprehen-
sive quantitative analysis. We specifically explore how the
improvement in energy efficiency is impacted by network
conditions, defined by several parameters including the node
density, source density, the physical distribution of sources,
the correlation degree, and the delay bound. We present
observations from the simulation results, and draw inferences
on the trade-offs involved in achieving energy efficiency.

In studying the improvements in energy efficiency with
respect to specific network parameters, we also answer two
fundamental questions:

1) Is there a practical limit on the achievable improvement
in energy efficiency by adopting a correlation aware ag-
gregation structure as opposed to a correlation unaware
structure? The answer to this question will establish
practical bounds on the energy efficiency improvement
that can be achieved, and in turn provide a motivation
or lack there-of for performing correlation aware aggre-
gation in the first place.

2) Is there a maximum usable delay bound that can deliver
the maximum achievable energy cost improvement?The
answer to this question will establish a practical bound
on how delay tolerant a WSN application needs to be
in order to get the maximum energy efficiency benefit.

Our contributions can thus be summarized as follows:

• We characterize through quantitative analysis how the
energy improvement of a correlation aware aggregation
structure is impacted by different network parameters. We
show that the energy improvement tends to be bounded
by a small constant under many network scenarios. Fur-
thermore, the improvement corresponds to when the ad-
ditional cost of establishing a correlation aware structure
is not taken into account, in the presence of which the
improvement will be further reduced.

• We also characterize what the maximum usable delay
bound is for achieving the maximum energy efficient
structure. We show that the maximum usable delay bound
is a small constant times the delay along the maximum
length shortest-path in the default shortest path tree.

The rest of the paper is organized as follows: In section
II, we describe the evaluation methodology and parameters.
The optimization algorithm used for cost evaluation is also
briefly introduced. In section III, we present comprehensive
simulation results for varying parameters as well as explana-
tions for the inferences drawn from the results. In section IV,
we substantiate an important observation made from the sim-
ulation study, and derive analytical expressions to corroborate
the observation. Finally, we present related work in section
VI, followed by a discussion on some practical issues in V,
and conclude the paper in section VII.

II. M ODEL

We use a custom-built simulator written in C++ for all
our simulations. The simulator takes as input the shape of
the network, node density, source density, source distribution
and correlation degree, and the outputs are the respective
correlation unaware aggregation trees and correlation aware
aggregation trees with different delay bounds, along with their
respective costs.

A. Evaluation Metrics

Most of the energy consumption in a data gathering process
is due to communication. Hence, the amount of communi-
cation (number of transmissions) required is directly related
to the cost of the aggregation tree. Thus, we consider the
aggregation tree cost - the number of edges on a given
aggregation tree - as the measure of energy efficiency of the
corresponding data gathering process.

The metric we use to measure the energy efficiency im-
provement provided by correlation aware trees is thecost
ratio, which is defined as the ratio of the cost of the cor-
relation unaware tree to that of the correlation aware tree
over the same set of sources and sink. The shortest path
tree is constructed with the purpose of minimizing end to
end delay for each source. However, multiple paths from
different sources to sink can overlap at some intermediate
relay nodes, where opportunistic aggregation is possible. We
assume such opportunistic aggregation to take place in all our
evaluations. Several synchronization schemes exist to enable
such opportunistic aggregation [3]. For a correlation aware
tree, the degree of aggregation is higher. Thus, the energy
consumption of correlation aware tree tends to be lower.
The cost ratio defined in the above fashion measures the
relative efficiency of the aggregation aware tree to that of an
aggregation unaware tree.

In most sensor applications, delay bound is typically de-
fined to be the maximum delay instead of the average delay
required to collect all sensor data. In the aggregation process,
messages from sources closer to sink need to be held at
some intermediate nodes until other messages from sources
farther away arrive at this node in order to achieve maximum
aggregation possible. For this reason, the delay incurred in the
entire data gathering process is proportional to the maximum
delay required to gather data from the source that is farthest
from the sink.



In a data gathering process, the delay at each hop of the
aggregation tree should include transmission delay, contention
delay and aggregation delay. For easy of analysis, we as-
sume a contention-free environment where centralized MAC
layer scheduling is used to coordinate transmissions within a
contention region. Therefore, the most important factor that
contributes to the data gathering latency is the transmission
delay and aggregation delay. Aggregation delay comprises not
only of the processing time for aggregation at each node,
but also the time that an aggregation node takes to wait
for data from all downstream nodes in the tree to reach it.
Thus, the total delay for a certain data gathering path can be
assumed to be proportional to the number of hops on the path.
Consequently, we specify delay constraints as the maximum
allowable path length in terms of hop count.

B. Evaluation Environment and Parameters

To study the energy efficiency and tradeoffs of correlation
aware aggregation trees, we consider a typical sensor network
scenario where a total ofn sensors are randomly distributed
in a disk of radiusR. All the sensors communicate using the
same transmission range, which is slightly higher than that
required for minimum connectivity [4]. Of then sensors,k
are randomly chosen as sources to report data to the sink,
which is located at the center of the disk. In this case, data
aggregation trees span all sources and are rooted at the sink.
This configuration is representative of many sensor network
applications and results derived from it are easily extensible
to other scenarios such as multiple sink applications.

The following network parameters are used for a compre-
hensive evaluation:

1) Delay bound:deadline imposed by a sensor application
to one round of data gathering.

2) Node density:total number of nodes distributed in an
unit area in the sensor network.

3) Source density:ratio of the number of sensors that send
data packets to the sink to the total number of sensor
nodes in the network.

4) Source distribution:geographical distribution of source
nodes - uniform or non-uniform.

5) Correlation degree:measure of how much information
two raw data packets share with each other.

C. Algorithms

We choose Steiner Minimum Tree (SMT) as the correlation
aware structure, since it is the optimal aggregation structure [1]
when sensor data are perfectly correlated. On the other hand,
SPT is selected as the correlation unaware structure since it
minimizes the delay required for data aggregation. Notice that
SPT is also the most efficient aggregation tree structure when
there is no correlation between sensor data. Thus, it is expected
that for partially correlated sensor data gatherings, the optimal
aggregation tree structure is an intermediate structure between
SMTs and SPTs. Consequently, the energy improvement of
SMT over SPT that we study in this paper serves as an

upper bound on the energy improvement possible for all other
correlation models as well.

The well-known Dijkstra’s algorithm is used to compute
shortest path tree in the simulations. For SMT, since its
computation is a NP-hard problem, we resort to heuristics
to generate near-optimal aggregation structures. To evaluate
the impact of delay sensitivity of the application on the cost
of a near-optimal tree, we need an algorithm that generates
near-optimal trees for various delay constraints. Specifically,
if the delay bound for a certain data gathering task isD,
the delay incurred on the longest path of the near-optimal
aggregation tree should be less than or equal toD. From
hereon,we refer to the delay-bounded near-optimal tree as
DB-SMT (delay-bounded steiner minimum tree) and the near-
optimal tree without delay bound as simply the SMT.

A set of algorithms developed in the context of multicast
applications can be used for this purpose. Most multicast
routing algorithms are designed to support large number of
simultaneous multicast sessions efficiently. A multicast tree
that minimizes the total bandwidth utilization of the network
links is be established from the source to destinations in these
algorithms. Hence, these algorithms can be used for sensor
network aggregation, with the only difference being that the
data flows in sensor networks are in the reverse direction.
Some of these algorithms are specifically tailored to multi-
cast applications that are delay sensitive such as multimedia
streaming. Such algorithms, called Constrained Steiner Tree
heuristics (CST), generate minimum cost multicast trees within
certain delay constraints and can hence be used exactly for our
purpose.

We choose a CST algorithm called BSMA (bounded short-
est multicast algorithm) to generate the DB-MST. This algo-
rithm has been proven to be able to construct multicast trees
with additional costs less than 7% that of the optimal Steiner
Minimum Tree, and has been shown to achieve lower costs
than other related strategies [5].

D. Methodology

To study the energy efficiency and tradeoffs in WSN data
aggregation process, we start from a shortest path tree span-
ning the sink and all the source nodes in the network, and
apply the BSMA algorithm to reduce the cost of the tree. Using
this algorithm, different tree structures can be obtained for
different delay constraints. Note that, the delay bound has to be
higher than the longest shortest path from sources to the sink;
otherwise no valid tree can be found. The maximum hop count
in the initial shortest path tree is taken as the lowest possible
delay bound and the DB-SMT tree is initially generated with
this delay bound. The delay bound is then relaxed to obtain
DB-SMT trees with further reduced costs.

For each network configuration, we vary the network param-
eters specified in the previous subsection, generate SPT and
DB-SMT trees for each configuration, and take the cost ratio
between SPT and DB-SMT trees. Each network configuration
is run for several random seeds, and the average of the cost
ratio across the seeds serves as a data point in the graphs
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Fig. 2. Topology of SPTs and SMTs

presented subsequently. Each graph contains several curves
displaying the relationship between cost ratio and one of the
varying network parameters, with each curve corresponding
to a specific delay constraint. The varying trends, thresholds
and bounds for each graph are identified and discussed in the
following section.

III. PERFORMANCEANALYSIS

In this section we present simulation results to show the
energy-delay tradeoffs of aggregation trees under various
network conditions.

A. Varying Node Density

To study the impact of node density on the energy efficiency
of aggregation trees, the number of sensor nodes distributed
in the field (n) is increased from200 to 2000. Figure 1 shows
the cost ratio of SPT vs. DB-SMT when the source densities
are1/20, 1/10 and1/5.

It can be observed from the results that the cost ratio
between SPT and DB-SMT increases with node density. This
implies that correlation aware data gathering is more efficient
when the density of sensor nodes is large. This can be
intuitively explained as follows: with high node density, the
probability of shortest paths over-lapping with each other is
low; hence, SPT has very low aggregation efficiency and

there is greater potential for energy improvement using a DB-
SMT. Consequently, the cost ratio improves as node density
increases. To further illustrate this observation, we plot the
structure of SPT and DB-SMT trees constructed whenn is
400 and1200 in Figure 2. In both configurations, the number
of source nodes is1/10 that of total sensor nodes. For the
case ofn = 1200, it can be seen that many parallel shortest
paths exist in the SPT structure. However, after optimization
for aggregation, most of these separated paths are combined,
thereby enabling great cost savings in DB-SMT. However, for
then = 400 case, SPT is already an efficient structure in terms
of path sharing. Thus, the improvement after optimization is
not significant.

We also observe that for different source densities, the
increasing trend of cost ratio remains to be the same. however,
the absolute value of cost ratio reduces as source density
increases. Further, for the same source density, when the delay
constraint is increased, the cost ratio between SPT and DB-
SMT increases, but the increase in ratio tends to saturate when
the delay bound is more than1.5 times the longest shortest
path length. The specific reasons for these observations will
be presented when the impact of source density and delay
constraints are investigated subsequently.

From the three results, we can observe that the cost ratio
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Fig. 3. Performance Improvement over SPT for Different Source Densities

tends to saturate when node density is high (corresponding to
n = 1200). In other words, the rate of increase of cost ratio
tends to slow down with increasing node density. This implies
that, in contrast to common belief, energy improvement of DB-
SMT over SPT does not scale significantly with node density.
In fact, we theoretically analyze and provide a tight bound on
the rate at which the cost ratio improves with node density in
Section IV.

The results also indicate that at low node density, correlation
aware data gathering does not bring significant cost improve-
ment. If we require a correlation aware aggregation tree to
provide a factor of at least 1.5 times in cost improvement
(50% improvement), then from the results it is clear that this
is possible only when the node density is sufficiently high
with n > 600. This in turn implies that correlation aware
aggregation does not provide desired energy efficiency for low
node densities.

Thus, from the study of cost ratio variation with node
density, we have the following insights:

Cost ratio of SPT over DB-SMT increases with node density
in sensor networks, but tends to saturate with increasing
node density. For correlation aware aggregation trees to
achieve a desirable energy improvement, the node density
of the sensor network should be relatively high.

B. Varying Source Density

To investigate how the density of source sensor nodes affects
the efficiency of aggregation tree, we compare the cost of SPT
and DB-SMT across a range of source densities and node
densities. Figure 3 shows how cost ratio varies with source
densities whenn = 600, n = 1200 andn = 2000. Each curve
consists of four data points with respect to source densities of
1/20, 1/10, 1/5 and1/4.

It can be observed that when node density is low, the cost
ratio increases with source density, reaches a maximum, and
then starts to decrease again. However, for high node density,
the cost ratio decreases monotonically with source density.
When there are fewer sensor nodes in the network, due to the
relatively small SPT cost at low source densities, the possible
cost reduction achievable from optimization in DB-SMT is

limited. This explains the low cost ratio at source density
of 1/20 for n = 600 and n = 1200 cases. On the other
hand, when source density is higher than1/5, a considerable
fraction of nodes on SPT are sources, implying that SPT
is already an efficient structure. Consequently, the possible
cost reduction from optimization in DB-SMT is once again
less. An important factor that determines the degree of cost
improvement is the inefficiency of the SPT structure. Thus, at
very low and very high source densities, the higher efficiency
of SPT structures reduces the cost ratio improvement, resulting
in a peak value at an intermediate value of source density.

The inference with respect to node density is the same
as before, where as the node density increases, the path
diversity in SPT also increases. Thus, the shortest paths in SPT
diverge from each other even at low source densities, leaving
considerable margins for cost improvement in DB-SMT. This
results in the monotonically reducing cost ratio atn = 2000.

Simulations with source densities larger than1/4 were also
conducted, and cost ratios were observed to be less than1.2.
This can also be extrapolated from the trend of the curves in
Figure 3. From the study of cost ratio variation with source
density, we obtain the following insights:

Cost ratio of SPT over DB-SMT decreases with increasing
source density when node density is high. However, with
low node density, medium source density ensures the best
possible cost improvement.

C. Varying Source Distribution

In the previous discussions, we had assumed that sources
are uniformly distributed in the network. However, this may
not always be the case in sensor network applications. There
are situations where only certain specific locations (where
scattered events occur) in the network need to be monitored,
in which case the sink gathers data from sensor nodes around
these events. Under these circumstances, source nodes can
no longer be considered to be uniformly distributed. In this
subsection, we study how the distribution of sources affects
the effectiveness of correlation aware aggregation.

In this set of simulations,n increases from200 to 2000, and
each configuration has a total ofs = n/5 sources distributed in
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Fig. 4. Performance Improvement over SPT for Different Source Distributions
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Fig. 5. Performance Improvement over SPT for Different Correlation Degrees

the network. The number of eventse (locations) in the network
for each scenario increases from5, 10, 20, 40 to s. Sources are
equally distributed in the different event locations. When the
number of events is5 and10, the sources are highly cluttered
around the event locations, and as event number increases,
the source distribution becomes closer to uniform distribution.
This model is similar to the event-radius model used in [6].

From the results presented in Figure 4, it can be seen
that the cost ratio increases with the number of events. The
overall trend of the cost ratio improvement can be explained
as follows. The sources tend to be densely distributed around
event locations when there are few events in the network.
Hence, the shortest paths from the same event location to the
sink can combine with each other at an early stage, thereby
making SPTs inherently efficient in terms of path sharing. This
can be observed from Figure 4, where the cost ratio is less
than 1.3 when the number of events is 5 and10. However,
the path diversity of SPTs tends to increase as the number of
event locations increases with the source distribution tending
towards uniform distribution. Consequently, the cost reduction
for correlation aware data aggregation becomes greater.

From the study of cost ratio variation with source distribu-
tion, we gain the following insight:

Cost ratio of SPT over DB-SMT increases as the distribu-
tion of source nodes tends towards uniform distribution

D. Varying Correlation Degree

It is possible that the data gathered in certain sensor network
applications are not perfectly correlated, in which case the
correlation degree will be less than one. The total message
size after aggregation would no longer be the same size as the
original message, but instead would be larger. Several works
[1], [2] have studied this problem before. However, none of
them have identified the effectiveness of SPT versus SMT with
respect to varying correlation degree.

Characterizing the correlation existing between data col-
lected in sensor networks is a fairly complicated task, since the
nature of correlation differs with the type applications consid-
ered. Even for a simple correlation model, the mathematical
representation becomes difficult when multiple distributed
sources are involved. [2] presents a correlation model that
uses joint entropy to define correlation between two sources. A
constructive technique is also proposed to characterize corre-
lation when multiple sources are involved, but the calculation
becomes intractable when there are large number of sources,
uniformly distributed in a 2-dimensional field. For simplicity,
we adopt the same correlation model used in [1], where
each data packet is assumed to bring a fixed amount of new
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Fig. 6. Performance Improvement over SPT for Different Delay Bounds

information into the aggregated data packet. Specifically, ifρ
is defined to be the correlation degree, and the sizes of raw
data packets generated by sensor nodes to bem, then after
aggregation of two data packets, the message size becomes
m + (1 − ρ)m. Similarly, for n sources, the aggregated data
packet has a size ofm + (n− 1)(1− ρ)m.

In this set of simulations we choose the number of nodes
to be 600, 1200 and 2000; source density to be1/5; and
delay constraints ofL, 1.2L, 1.5L, 1.7L and 2.0L. Figure
5 illustrates how cost ratio varies with the correlation degree
and delay constraints.

It can be seen that the cost ratio increases with correlation
degree. This trend remains the same for all node densities.
However, for higher node densities, the cost improvement of
DB-SMT over SPT is lower. We explain the overall increas-
ing trend of cost ratio with increasing correlation degree as
follows: whenρ → 0 (raw data packets are un-correlated with
each other), SPT is the optimal structure since aggregation
does not help reducing the transmission and hence the energy
cost. Thus, the best approach is to deliver each message along
the shortest possible route to the sink. On the other hand,
when ρ → 1, SMT is the optimal structure with respect to
energy efficiency, as established earlier. Therefore, we expect
the optimal structure to be close to SPT for small correlation
degrees, wherein progress towards the sink is more important
than en-route aggregation. Due to this reason, the cost ratio
of SPT over DB-SMT increases with increasing correlation
degree.

In each of the results, it can be seen that for most of the
correlation degrees, DB-SMT with a lower delay bound results
in a higher cost ratio than DB-SMT with a higher delay bound.
However, this trend is completely reversed whenρ = 1. Also
notice that when delay bound is higher than1.5L, the cost ratio
between SPT and SMT is less than one for some of the lower
correlation degrees. This in turn implies that SPT is a more
efficient structure for aggregation than DB-SMT under those
circumstances. These trends are counter-intuitive, because it is
expected that higher delay bounds assist in path sharing and
hence energy cost reduction in DB-SMT by traversing as many
nodes as possible at an early stage of the aggregation path.

However, results indicate that increasing the delay constraint
and hence extending the path for more aggregation does not
bring in improvements in energy efficiency for most of the
partially-correlated (ρ < 1) cases. The reasoning for this
observation is as follows.

When the simulation results were further analyzed, it turned
out that as the maximum path length (delay constraint) in-
creases, the average path length for a DB-SMT also increases.
For example, when delay bound was10 hops, the correspond-
ing average path length was7.8 hops. However, when the
delay bound was20 hops, the average path length increased
to 10.2 hops. The average path length of an aggregation
tree has two conflicting impacts on its energy efficiency. On
one hand, the smaller the average path length, the lesser the
number of hops (transmissions) towards the sink and hence
lower energy cost. On the other hand, a shorter average path
length also implies lesser room for aggregation, leading to
a lower energy efficiency. The relative impact of the two
components and the net resulting impact on energy efficiency
is in turn dependent on the correlation degree of the sensor
data. For lower correlation degrees, the room for aggregation
is inherently low. Hence, a shorter average hop length would
help reduce the energy cost. Due to this reason, DB-SMTs
with lower delay constraints that facilitate explicit aggregation
while at the same time maintaining smaller average path length
perform the best. However, at high correlation degrees, the
larger room for aggregation and hence cost reduction over-
comes the additional cost due to increased average hop length,
resulting in DB-SMTs with larger delay constraints performing
the best. These observations and results clearly indicate that
SMT serves to be the optimal aggregation structure only when
data from different sources are highly correlated. For scenarios
where correlation between the sensor data is low, SPT or DB-
SMT with lower delay bound is a better structure for energy
efficiency.

From the study of cost ratio variation with correlation
degree, we obtain the following insights:



Energy efficiency of DB-SMT increases with correlation
degree. DB-SMT with the lowest delay bound proves to be
the most energy efficient for low to moderate correlation
degrees. Higher delay bounds helps improve aggregation
efficiency only when the correlation degree is relatively
high. The high correlation degress also ensure the opti-
mality of the SMT structure.

E. Varying Delay Bounds

One of the objectives of this work is also to understand the
limit of data gathering delay bounds on the energy efficiency of
correlation aware aggregation trees. In all the results discussed
thus far, we present curves corresponding to delay bounds (D)
from L to 1.2L, 1.5L, 1.7L, and2.0L. To study the variation
of cost ratio with respect to delay bounds in depth, results
from some of the simulations (ρ = 1) are re-plotted in Figure
6.

It can be clearly seen that the cost ratio increases with
increasing delay bounds, which indicates that less restrictive
delay tolerance helps improve the aggregation and hence the
cost efficiency.

Higher delay bounds imply that the aggregation path can be
longer in order to maximize en-route aggregation. BothD =
1.2L and D = 1.5L result in significant cost improvement
over D = L scenario. However, the growth of cost ratio
slows down and tends to saturate afterD = 1.7L. This is a
very interesting observation. Generally speaking, the intuition
is that the longer a path is, the more data packets can be
aggregated en-route. Thus, higher delay bounds allow the
creation of aggregation trees with lower cost. But simulation
results show otherwise: aggregation path longer than twice the
longest shortest path do not help significantly in reducing the
cost.

To understand this phenomenon better, let’s revisit the struc-
tures of SMT and SPT forn = 1200 in figure 2 respectively.
It can be seen from the two structures that the ”backbone”
structure of SMT is similar to that of SPT, where several
shortest paths tend to divide the network graph uniformly.
The difference is that there are lesser number of shortest
paths in the backbone of SMT. Sources not on the ”backbone”
are connected by ”branches” to the backbone structure. Thus,
while this structure is more efficient than SPT in terms of
cost with the paths being combined as much as possible, the
longest path length is not significantly higher than that in the
SPT structure. Further, the maximum delay tolerance that is
helpful in reducing the aggregation tree cost is given by the
length of the longest path on the SMT structure. Hence, given
the practical structural characteristics of SMT, the longest path
in SMT tends to be only a small constant order that of the
longest path in the SPT structure.

However, notice that all the above discussions are pertaining
to ρ = 1 correlation model. If the correlation degree of sensor
data is low, then a lower delay bound would yield a better
performance. Hence, the cost ratio trend would reverse in that
case for low correlation degrees.

From the study of cost ratio variation with respect delay
bounds, we have the following insight:

The cost ratio of SPT over DB-SMT increases as delay
bound increases for high correlation degrees and tends to
saturate. Further, delay bounds beyond twice the maximum
shortest path length do not help reduce the DB-SMT
cost further in this case. However, the cost ratio tends
to decrease as delay bound increases when correlation
degrees are low.

F. Summary

In this subsection, we summarize all the observations and
insights derived from simulation studies.

• We have shown that the cost ratio of SPT over DB-SMT
increases with node density in the sensor network, but
tends to saturate with increasing node density.

• Further, when node density is high, the cost ratio of SPT
over DB-SMT decreases with increasing source density.
However, at low node density, a moderate source density
delivers the best cost improvement.

• With respect to the impact of source distribution on
aggregation efficiency, we observe that cost ratio of SPT
over DB-SMT increases as the distribution of source
nodes tends closer to uniform distribution.

• For different correlation models, we find that the energy
efficiency of DB-SMT increases with correlation degree,
and DB-SMT with the lowest delay bound is the most
energy efficient for low to moderate correlation degrees.
Higher delay bounds help improve aggregation efficiency
only when correlation degreeρ is sufficiently high. The
high correlation degree also ensures the optimality of
SMT.

• Most importantly, the energy delay tradeoff of correlation
aware and unaware tree can be summarized as follows:
The cost ratio of SPT over DB-SMT increases as de-
lay bound increases for high correlation degrees. Delay
bounds beyond twice the maximum shortest path length
do not help reduce DB-SMT cost further. Furthermore,
the cost ratio tends to decrease as delay bound increases
for low correlation degrees.

Finally, we highlight two major observations we inferred
from simulation study:

1. The cost ratios of SPT over DB-SMT scales very slowly
(tends to saturate) with respect to node density.
2. Increasing delay bound beyond a (small) constant order
of the longest shortest path length does not help reduce
aggregation tree cost further.

IV. A NALYTICAL REASONING

In this section, we theoretically substantiate the slow rate
of growth of the cost ratio of SPT over SMT with respect to
node density. Specifically, we show that the expected (energy)
cost improvement obtained by a SMT over SPT scales very
slowly (as

√
log n) with node density.



Before going into the details of the proofs, we present the
details of the SPT and SMT structures considered in estimating
the costs.

A. Expected SPT Cost

We consider a network graph where nodes are uniformly
distributed in a unit area disk and the root of the SPT tree is
at the center of the disk. For the convenience of analysis, we
divide the network into layers of concentric rings, each ring
consisting of all the nodes that are at the same distance (in
terms of hops) away from the sink, i.e. nodes in between the
ith and (i − 1)th rings are assumed to bei hops away from
the sink. The distribution of nodes and sources are assumed
to be uniform in the network. The uniform distribution of
nodes assumed in the network corresponds to a poisson point
process with a certain rateλ. A property of such a poisson
point process is that the expected number of nodes in a certain
subregion with areaA is equal toA ∗ λ. Hence, the expected
number of nodes that arei hops away from sink increases with
i2.

In a SPT structure, each source is connected to the sink
located at the center of the unit disk. For sources further
away from the sink, the shortest paths can be considered to be
independent of each other with a high probability. However, at
a certain distance away from the sink, all shortest paths tend
to converge, and the nodes within this distance belong to at
least one of the shortest paths with a high probability. Hence,
we assume that there exists a threshold distance and hence
ring i∗ exists, such that for alli ≤ i∗, all nodes onith ring
are part of the SPT structure. However, for rings beyond ring
i∗, only some of the nodes on each ring will be part of the
SPT structure.

Based on the SPT structure defined above, we define a
relaxed SPT structureSPTr, such that the cost ofSPTr is
higher than that ofSPT . This relaxed SPT structure also
consists of two components. The first component (SPT0) is a
SPT spanning all the nodes withini∗ hops from the sink. And
the second component (SPT1) is a set of independent shortest
paths such that each path connects exactly one source to a leaf
on SPT0. In other words, paths onSPT1 never overlap with
each other. Thus, the cost ofSPTr is always higher than the
cost ofSPT .

Now, let m be the hop number of longest shortest path in
the network,n ands be the total number of nodes and sources
in the network respectively.

The expected cost ofSPTr (Cspt) is given by

E[Csptr] = E[C1] + E[C2] (1)

Since all nodes inSPT0 component are part of the SPT
structure, the net cost ofC1 is contributed by the number of
nodes in theSPT0 component, which in turn is given by the
number of nodes with thei∗th ring. According to the property
of poisson point process for uniform node distribution, we
have, and we have

E[C1] =
i∗∑
1

E[nj ] =
i∗2

m2
n (2)

To obtainE[C2], we condition the product of the number
of sources present in a ringj (i∗ < j ≤ m) along with their
shortest distance to a leaf inSPT0. This results in,

E[C1] =
m∑

j=i∗+1

sjdj =
m2 − i∗2

m2
s× 2

3
(m− i∗) (3)

=
2
3

s

m2
(m− i∗)(m2 − i∗2) (4)

where, m2−i∗2
m2 s is the total number of sources onSPT1,

and 2
3 ∗ (m − i∗) is the expected length of shortest paths on

SPT1.
Thus, the expected cost of the relaxed SPT structure from

the costs of the two components (C1 and C2) is now given
by,

E[Csptr] =
i∗2

m2
n +

2
3

s

m2
(m− i∗)(m2 − i∗2) (5)

The radius of transmission and hence the hop length is the
minimum connectivity range defined in [4],

r = R

√
log 10n

n
(6)

whereR is the radius of the entire network.
Let ni∗ represents the total number of nodes oni∗th ring

(with i∗ hops), andsj denotes the number of sources onjth

ring. Since the shortest paths onSPT1 are independent, each
node oni∗th ring is connected to at least one shortest path on
SPT1. Therefore, we have:

ni∗ <

m∑

j=i+1

sj (7)

⇒ (2i∗ − 1)
n

m2
<

m2 − i∗2

m2
s (8)

⇒ si∗2 + 2ni∗ − n−m2s < 0 (9)

Solving the above inequality, we get wherei∗ is given by

i∗ =
−2n±

√
4n2 + 4s(n + m2s)

2s
(10)

' −2n± 2ms

2s
(11)

' m− n

s
(12)

When the fraction of sources is large such that,s
n > 1

m .
And m can be approximated as

m =
R

r
β (13)

= 1.32
√

n

log 10n
(14)



where R is the radius of the network,r is the minimum
transmission range for connectivity defined in [4] andβ is
a constant. This constant is introduced to account for a path
connecting a furthermost node to sink not being a straight line.
Plugging in the transmission range defined with 6, we get,

m = 1.32
√

n

log 10n
(15)

B. Expected SMT Cost

Determining the cost of SMT in a network graph directly is
rather difficult. However, for the sensor network environment
considered, we can translate the cost of SMT in Euclidean
space (ESMT) (whose cost is known directly) into the cost of
SMT in network graphs (NSMT).

Lemma 1: The expected cost ESMT isΘ(R
√

s).
Proof: From [7], the cost of a minimum spanning tree in

Euclidean space (EMST) has the following upper bound:

E[CEMST ] ≤ 0.707
√

sR + o(
√

s) (16)

and has the following lower bound:

E[CEMST ] ≥ 1
2
R

s− 1√
s

(17)

Combining the two bounds, we have:

E[CEMST ] = Θ(R
√

s) (18)

On the other hand, it is shown in [8] that the cost ratio of
EMST over ESMT for the same set of source nodes is bounded
by a small constant:

E[CEMST ]
E[CESMT ]

<
2√
3

(19)

Therefore, we have

E[CESMT ] = Θ(R
√

s) (20)

Lemma 2: The expected cost of NSMT isΘ(m
√

s) for the
sensor network considered on network graphs.

Proof:
Note that, the distance between two sources on ESMT

can be translated into hop count directly via the following
relationship:

H = dL
r
e (21)

whereH is the hop count of path between two nodes, andL
is the Euclidean distance. Because such a translation maintains
the order of the cost, andm is the equivalent ofR in network
space, we have

E[CNSMT ] = Θ(m
√

s) (22)

Accordingly the expected cost of a SMT in network graph
can be approximated as:

E[Csmt] = c
√

sm, (23)

wherec is a constant.

C. Cost Ratio

Proposition 1: The expected cost improvement of SMT over
SPT in sensor network graph increases atΘ(

√
log n), where

n is the total number of node in the sensor network, ands is
Θ(n).

Proof: Combining equations 5 and 23, and observing the
fact that theSPTr structure considered for the analysis is a
relaxed variant of the actual SPT structure, we obtain the ratio
of the expected costs of the SPT and SMT structures as,

Cost Ratio ≤ E[Csptr]
E[Csmt]

(24)

=
i∗2
m2 n + 2s

3m2 (m− i∗)(m2 − i∗2)
cm
√

s
(25)

wherem andi∗ are computed using equation (15) and (10).
Plugging inm and i∗, we get:

E[Csptr] = Θ(
√

n log n) + Θ(n) (26)

= Θ(n) (27)

and
E[Csmt] = Θ(

n√
log n

) (28)

Combining the above two equations, we get:

Cost Ratio = Θ(
√

log n) (29)

From the above analysis, we arrive at the conclusion that the
cost ratio of SPT over SMT increases only withΘ(

√
log n)

for large n. This increase rate is responsible for making the
cost ratio improvement saturate at high node densities in the
simulations. Hence, we can expect that whenn is sufficiently
large, the energy improvement of SPT over SMT tends to
saturate. Although theoretically speaking, the cost ratio still
increases as a function ofn, practically the improvement in
energy efficiency provided by such a slow increasing rate
is negligible beyond a certain node density. Consequently,
for large scale sensor networks, the energy improvement of
correlation aware aggregation trees is not as significant as
normally expected. We discuss the practical implications of
this observation in the next section.

V. PRACTICAL IMPLICATIONS

A. Practical Implications of Limited Energy Improvement

As inferred in Section III, the energy improvement of
correlation aware tree structures over correlation unaware tree
structures is bounded by a small factor of two for all the
scenarios we simulated. We also shown through analysis that
cost ratio increases asΘ(

√
log n). This indicates that even

for a large scale sensor network with node densities greater
than those simulated in this work, the perceivable energy
improvement will still be limited due to the slow rate of energy
improvement.

This observation implies that correlation aware aggregation
data gathering may not always be a good choice for sensor



data gathering. As discussed in section I, explicit communica-
tion is required for setting up correlation aware aggregation
trees. Furthermore, for highly dynamic sensor applications
where sources change rapidly with time, the overhead of
tree construction may offset the energy benefits resulting
from correlation aware aggregation. It is also possible that
the source nodes that are going to report data packets to
sink are not known a priori, in which case correlation aware
aggregation trees cannot be computed before the data gathering
process.

On the contrary, correlation unaware trees such as shortest
path trees can usually be established in a distributed fashion
or pro-actively before the data gathering process. Furthermore,
different shortest path trees for various sets of sources can
be derived from the same shortest path tree over the sink
and all sensor nodes by trimming branches that are entirely
over non-source sensor nodes. The cost of explicit tree con-
struction is eliminated for correlation unaware aggregation
trees. Thus, given the cost and feasibility issues involved in
the construction of correlation aware trees and the moderate
energy improvement possible, correlation unaware approach
may be a more desirable choice under several circumstances.

B. Practical Implications of Limited Delay Tolerance

We also observed that increasing delay tolerance does not
always help reduce the aggregation tree cost. With increasing
delay constraint, the cost of the SMT structure reduces. But
this is not always true: beyond a certain delay tolerance,
which is comparable to the longest shortest path length, the
cost ratio improvement tends to saturate. This is because, it
becomes possible to construct the optimal aggregation tree for
the given network and delay tolerance. Practically, this means
that an application does not have to be designed with large
delay tolerances to ensure energy efficiency that is close to
the maximum possible.

VI. RELATED WORKS

In this section, we discuss related works that have done
similar studies as ours presented in this paper. For each
related work, we explain its scope of study and introduce
observations and results made by the authors. The similarities
and differences between their results and ours are compared,
and reasons for those differences are identified.

A. Related Works on Correlation Aware Aggregation Trees

[1] provided in-depth discussions related to efficient data
gathering structure, and proved that the generation of an
optimal aggregation structure is a NP-complete problem. Two
heuristics: leaves deletion algorithm and SPT/TSP balanced
tree algorithm are proposed to approximate the optimal tree
and the cost ratios of approximation trees over SPTs are
presented in this paper. The results presented in this paper
are similar to ours in that the cost ratio of optimized tree over
SPT is bounded by0.5. This paper made a similar observation
to ours that SMT resembles a combination of a SPT core
and TSP paths in the outskirts. A SPT/TSP balanced tree is

proposed as an approximation of optimal tree according to
this observation. For an aggregation tree, SPT is built for nodes
within a radiusq(ρ) from the root, and for the rest of the nodes,
TSP paths are used to connect sources in a certain subregion to
the existing shortest path tree. The advantage of this algorithm
is that correlation degree is taken into account during tree
construction process. But this structure is not adaptive to
number of nodes in the network. As illustrated in figure 2,
when the number of nodes is high, SPT is rather inefficient
even at area close to sink due to path diversity. Therefore, we
speculate that performance of this approximation algorithm
degrades as node number increases.

[9] studied the energy efficiency of aggregation tree to some
extent. But the main focus of this paper is to propose an
approximation of SMT called Greedy Incremental Tree(GIT)
and study its performance, therefore the scope of this paper is
different from this paper. In its simulation study, [9] compared
the energy dissipation of GITs and SPTs. Since the energy
model they use is different with ours, their results is not
directly comparable to ours. Nonetheless, this paper pointed
out that SPT and GIT are similar in low density networks
but achieve significant energy savings at higher node densities
(each node has more neighbors). This observation is similar
to the observation we made in this paper.

B. Related Works on Data Aggregation Tree Efficiency

[6] first systematically studied data-centric routing ap-
proaches in wireless sensor networks. However, the focus
of [6] is on comparing data-centric routing with traditional
end-to-end routing scheme(address-centric routing). In this
paper, address centric routing scheme is defined as shortest
path tree without aggregation (overlapped paths are counted
separately). Therefore, the emphasis of [6] is to compare
the performance differences between “aggregate” and “do not
aggregate”, while our work investigates energy cost differences
between aggregation aware and unaware schemes (SPT with
aggregation and DB-SMT tree). So the focus of the two works
are different.

[2] compares two major classes of data aggregation scheme:
routing-driven compression (RDC) and compression-driven
routing (CDR) across a broad range of spatial correlations.
In this paper, RDC routes data through shortest paths toward
sink, and performs opportunistic aggregations when routes
overlap with each other. For CDR, routes are selected in
order to compress data from all sources sequentially. This
work mainly investigate the impact of correlation degrees
on optimal aggregation structure. While for our study, we
consider not only correlation degrees, but delay bounds and
other parameters when comparing efficiency of correlation
aware and unaware data aggregation trees. [2] uses grid topolo-
gies to compare RDC and CDR performance for different
correlations, and we use more general uniform distribution
topologies. Therefore, in this paper, the cost ratio of RDC over
CDR is higher than the bound we observed in our study. We
suspect that this difference is caused by the grid topology used
in their paper. Nonetheless, results from this paper indicate that



CDR outperforms RDC for high correlation scenarios, whilst
CDR performs better for low correlation scenarios, which
is comparable to our conclusion in more general network
settings.

VII. C ONCLUSIONS

In this paper we study the energy efficiency of correlation
aware aggregation trees in wireless sensor networks. Sensor
applications with and without delay tolerance are considered,
and how delay tolerance and other network conditions affect
the efficiency of an correlation aware aggregation tree is
explored. Through quantitative study and analysis, we con-
clude two rather surprising results: the energy improvement
in using correlation aware aggregation is not significant under
many network scenarios compared to the cost and complexity
incurred in the tree construction process; and the maximum
useable delay bound required to achieve the best possible
energy efficiency is not high compared with the delay along
the maximum length shortest-path in the default shortest path
tree. Practical implications of these results have also been
identified.
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