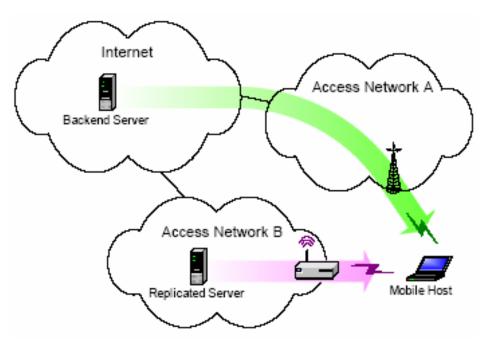

On Transport Layer Adaptation in Heterogeneous Wireless Data Networks


Aravind Velayutham ¹ Hung-Yun Hsieh ² Raghupathy Sivakumar ¹

¹ GNAN Research Group, Georgia Institute of Technology

² National Taiwan University, Taiwan

Heterogeneous Wireless Networks

- Mobile users desire ubiquitous access to information
- Mobile hosts are equipped with heterogeneous wireless interfaces
- Performance tradeoffs
 - Network capacity, coverage area, mobility support, and transmission power
- Challenges
 - Varied network characteristics in terms of bandwidth, delay, loss rate, and bandwidth fluctuation
- Objective
 - Achieving best performance in any given wireless network

Overview

- Current Transport Solutions
 - Target specific wireless network conditions
- Transport Adaptation
 - What is transport adaptation?
 - Ideal nature of transport adaptation
 - Ideal time granularity of transport adaptation
- *TP : Runtime Adaptive Transport Layer Framework
 - Design
 - Framework
- Performance Evaluation
 - Show the effect of adaptation in heterogeneous wireless networks
- Summary

Current transport solutions

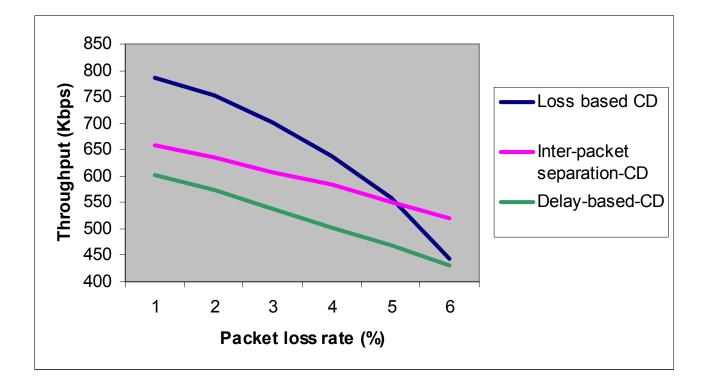
- Alternative mechanisms to the de-facto standard transport protocol, TCP
- TCP-ELN
 - Addresses the issue of high loss rates in Wireless Local Area Networks (WLANs)
 - Uses explicit loss notification to perform intelligent congestion detection
 - Suffers under very high loss rates
- WTCP
 - Solves the problem of high loss rates in Wireless Wide-Area Networks (WWANs)
 - Uses inter-packet separation as the indicator of congestion
 - Suffers under low delay and high jitter conditions
- STP
 - Addresses the issue of asymmetric nature of satellite links
 - Uses polled acknowledgement scheme to reduce reverse path bandwidth consumption

Current transport solutions

	TCP-ELN	WTCP	STP
WLAN	\checkmark	Suffers due to significant jitter condition	Unable to determine forward path bandwidth
WWAN	Suffers due to high loss		Unable to determine forward path bandwidth
Satellite network	High reverse path overhead	High reverse path overhead	\checkmark

Adaptation at transport layer

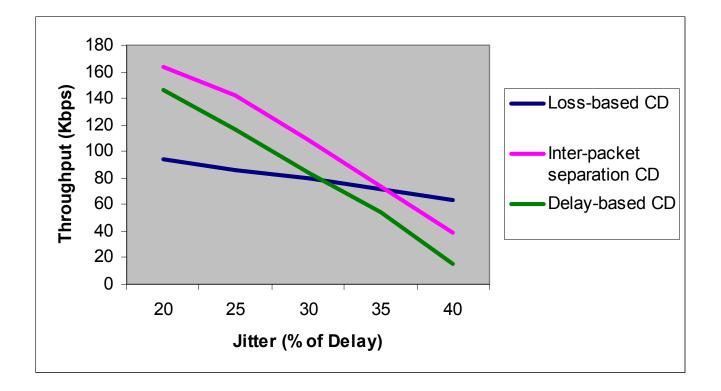
- How to address the specific characteristics of heterogeneous wireless networks?
- Perform adaptation at the transport layer
- Transport Adaptation
 - Behavior of a transport protocol with the goal of obtaining best performance when a mobile host moves across different wireless networks
- Ideal nature of transport adaptation
 - What should be changed within the transport layer for achieving optimal performance?
- Ideal time granularity for transport adaptation
 - When should adaptation be performed for achieving optimal performance?



Nature of transport adaptation

- What should be changed within the transport layer for achieving optimal performance?
- Options
 - Entire transport protocol
 - Transport layer mechanisms
 - Transport protocol parameters
- Observations
 - Network conditions impact the performance of transport mechanisms
 - High wireless loss rate (network condition) adversely affects loss-based congestion detection mechanism (transport mechanism)
 - Window-based congestion control (transport mechanism) used by the same transport protocol (TCP) is not affected by high loss rate
 - Increasing the number of SACK blocks (protocol parameter) is not sufficient to overcome high wireless loss rate
- Transport adaptation should be performed at the granularity of transport layer mechanisms

Nature of transport adaptation



Time granularity of transport adaptation

- When should adaptation be performed for achieving optimal performance?
- Options
 - Transport layer sessions
 - Wireless interface handoffs
 - Network characteristic change
- Observations
 - Network conditions impact the performance of transport mechanisms
 - Performance of inter-packet separation based congestion detection is affected at high jitter conditions
 - Network conditions can change within the same wireless access network
 - Delay variations (jitter) can be high even within a WWAN depending on the amount of multiplexing of other traffic that is performed at the base station
- Transport layer adaptation should be performed when network characteristics change

Time granularity of transport adaptation

*TP : Design Goals

Reconfigurability

- Ability to use transport layer mechanisms best-suited for the given environment
- Ability to perform reconfiguration at runtime, triggered by changes in network characteristics
- Ability to perform reconfiguration in an application unaware fashion

Extensibility

- Operation should not be limited by specific transport protocol or mechanism
- Should be able to accommodate any transport mechanism, potentially those that may be developed in future

• Minimal Overheads

- Overheads comparable to static transport protocols
- Execution efficiency, redundancy due to repetitive functionality implementation, reconfiguration latency
- Easy deployability
 - Should be able to be deployed in an incremental fashion in current network architecture

Design elements

• Separation of core and non-core modules

- Transport layer framework constitute the core
- Transport mechanisms form the non-core
- \checkmark Helps in reconfigurability and minimizing overheads

Triggers

- Identify network condition changes
- Enable reconfiguration of transport mechanism
- \checkmark Helps in reconfigurability
- Modular architecture and execution model
 - Non-core components are designed to be modular
 - Enables fast-swapping and fine-grained adaptation of transport mechanisms
 - \checkmark Helps in minimizing overheads

Design elements

• State Propagation

- Inheritance of transport layer state across non-core modules
- Helps in extensibility and reconfigurability

Mobile-host centric operations

- Reconfiguration happens at the mobile host
- Static Internet host *TP configuration need not change
- Facilitates deployability

*TP Software Architecture

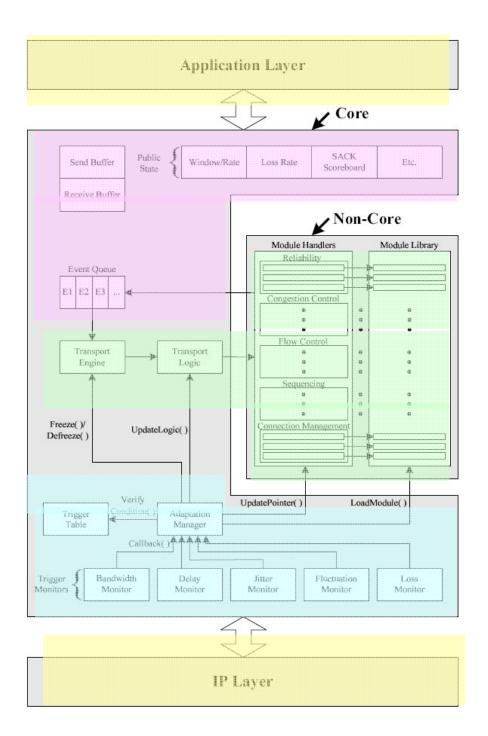
Transport engine

- Logic for the execution of the transport mechanisms which are event handlers
- Transport mechanisms respond to external events and events generated by other modules
- Transport engine executes the transport logic which specifies how the transport mechanisms are used

Reconfiguration entities

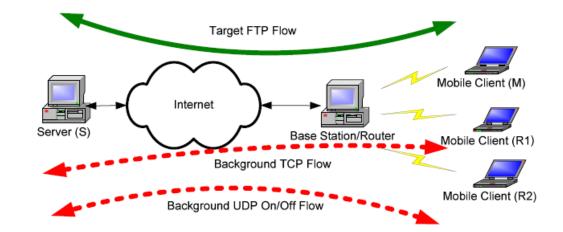
- Aid in the reconfiguration process
- Trigger table is logical combination of network parameters monitored by the trigger monitor
- Adaptation manager receives callbacks from the trigger monitors when the conditions specified by non-core modules are satisfied
- Adaptation manager then loads the corresponding modules into the non-core

*TP Software Architecture

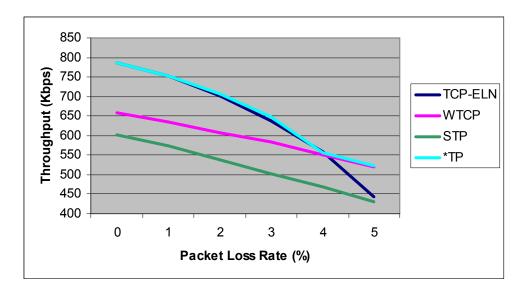

Interface with the Application and IP layers

- Core provides a fixed interface for the application layer and the IP layer
- Socket layer abstraction maintained
- $\checkmark\,$ Helps in application and network independent manner

Global Data Structures


- Common data repository for transport mechanisms
- Send and receive buffers
- Event queue
- ✓ Facilitates state inheritance
- Serves as a shared space for non-core modules (transport mechanisms) to communicate with each other

Performance study


- Connection between server and access router spans 16 Internet hops
- Protocols used
 - TCP-ELN
 - WTCP
 - STP
- Last hop from access router to mobile host is WLAN connection
- WWAN and satellite network are emulated by altering the characteristics of the wireless link
- Packet loss rates are emulated by inserting a random loss module at the router

Lossy WLANs


- Loss-based congestion detection suffers at high lossrates
- Insufficient information about the network at high packet loss rates
- Loss-rate as the trigger parameter for the loss-based congestion detection mechanism
- *TP adapts to achieve optimal performance across different packet loss rate

Bandwidth Fluctuation in WWAN


- Tuned acknowledgment scheme used by WTCP suffers when the bandwidth fluctuation increases
- *TP can accommodate both the tuned rate acknowledgment and selfclocked acknowledgment mechanisms
- *TP is able to adapt the acknowledgment mechanism for optimal performance even as the bandwidth fluctuation increases

Jitter in Satellite Networks

- Delay and inter-packet separation based congestion detection mechanisms suffer under high delay variations
- Under high jitter conditions in satellite networks *TP is able to change the congestion detection mechanism from delay-based to loss-based and achieve optimal performance

Summary

- Problem of transport adaptation in heterogeneous wireless data networks
- Ideal nature of transport adaptation
- Ideal time granularity of transport adaptation
- Design and implementation of *TP
- For more information:
 - http://www.ece.gatech.edu/research/GNAN

