
Hazard Avoidance in Wireless Sensor
and Actor Networks

Ramanuja Vedantham
Zhenyun Zhuang

Prof. Raghupathy Sivakumar

GNAN Research Group
Georgia Institute of Technology

http://www.ece.gatech.edu/research/GNAN

2

Context
Wireless Sensor Network (WSN)

Sink : sends queries and collects data from sensors
Sensor : monitors phenomenon and reports to sink

What next?
If there are devices capable of acting on the environment, sink could issue a
command

Traditionally, problems in WSNs have been addressed
[Intanagonwiwat’00,Heinzelman’00,Sankarasubramaniam’03,Park’04]
Surprisingly, problems in Wireless Sensor and Actor Networks (WSANs) have
not been studied

Sink Sensor and Actor Field

Sensor
Actor

3

Characteristics of WSANs
Static, multi-hop wireless network

Sink: Collects data from sensors and sends queries and commands
Sensors: Monitors phenomenon and report it to sink
Actors: Acts on the environment based on the command issued by the sink
Example: Environment monitoring

Sensors
Limited battery capacity (< 1J), small memory (< 1MB) and processing
power, large number of nodes, high density of nodes [Park’04]

Actors
Larger battery capacity, larger memory and processing power, small
number of nodes, low density of nodes [Akyildiz’04]

Network
Low bandwidth (< 100Kbps), frequent node failures [Akyildiz’04]

4

Hazards

Hazards: Lack of causal execution of directives
Out-of-order execution of directives from the order that the sink has issued,
due to lack of coordination between sensors, actors and the sink
Leads to potentially undesirable changes in the environment

Reason for hazards
Different latencies

For different sensors and actors randomly located in an event region, the paths
differ, and hence, the latencies may differ
For a single sensor or actor, different directives may have different latencies

5

Types of Hazards
CAC Hazard

Command-After-Command hazard occurs when a command, C2, issued after a
command, C1, gets executed prior to C1

QAC Hazard
Query-After-Command hazard occurs when a query, Q2, issued after a
command, C1, is executed prior to the command

CAQ hazard
Command-After-Query occurs when a command, C2, issued after a query, Q1,
is executed prior to the query

6

Goals
Correctness

Ensure 100% hazard-free operation
Causal execution of directives

Throughput
Maximize the rate at which queries and commands are processed
Define a parameter, directives execution throughput, and maximize it
Control loop delay

Overhead (subject to above two goals)
Reduce the overall traffic generated while addressing hazards
Reduce the resource and energy consumption at sensors and actors

7

Observations on Hazards
Generic hazard avoidance goal

For any two entities Dx, Dy with overlapping execution ranges A(Dx) and
A(Dy), and any two sequential instructions, Ij→Ii

Observations for hazard-free operation
yiyj

xiyj

yixj

xixj

·DI·D I

·DI·D I

·DI·D I

·DI·D I

 t t
 t t
 t t
tt

>
>
>
>

Dependency region: Minimum region
surrounding an entity, where hazard-
free operation is required

Any pair of dependent directives issued to entities that do not have any
overlapping execution regions can be executed concurrently across the two
entities, although the relative ordering must be preserved within each entity

Any pair of dependent directives issued to entities with overlapping
execution regions needs to be ordered in the union of the two regions

8

The Neighborhood Clock
Every sensor and actor in the event region has a virtual, local
clock
Local clock is used to provide virtual clock synchronization
among all nodes within a dependency region

Ensure that the local clock values are the same within a dependency
region

Neighborhood Clock (NC) introduces the notion of a single,
virtual clock among all nodes within every dependency region
Execution of directives based on the neighborhood clock
There is a dependency region associated with each entity in
the event region
For this reason, we refer to the local clock itself as
neighborhood clock in the NC approach

9

Neighborhood Clock Operation
Virtual neighborhood clock on every sensor and actor for ordering within every
dependency region
Sink creates a unique reference clock initially and sensors and actors initialize
their clocks to this value
Each entity, Dx, maintains its own view of the progress in the network, based on
its neighborhood clock identifier, NC(x), where the view number is set to be
NC(x) + 1
Each sensor and actor will move to the next view only after all other sensors
and actors have moved into its current view
A directive is executed only when the NC views within a dependency region are
synchronized and when they have executed all prior directives

10

Why NC?
100% hazard avoidance

Consider any two entities Dx, Dy with overlapping execution ranges A(Dx)and A(Dy), and any two sequential instructions, Ij→Ii

For a generic XAY hazard to happen
Dx executes Ij prior to Ii by Dy

This implies that Dx is in view Ij+1 and Dy is in view Ij

But this is impossible because Dx will wait for views to be synchronized within
dependency region before executing directive
No hazards

Dependency region-based
Smallest region within which hazards need to be addressed
Minimizes delay and maximizes throughput
Reduces overhead for hazard avoidance as only views of nodes within
dependency region need to be synchronized

Virtual clock
Event-driven approach
No fine-grained timers

11

Distributed NC (1/2)

Operations at sink:
When an event has been detected, the sink creates reference clock
The sink issues the START() control message to all sensors and actors in the
event region with the reference clock information
When a sensor or actor receives the information, it sets the initial value of the
NC clock to the reference clock

12

Distributed NC(2/2)
Operations at sensors/actors: When a node, m, receives the kth directive, the
following operations are performed:

If the clock piggybacked with the directive requires synchronization with NCm(i) and
RC(k) = NCm(i)+1, then action is performed and ACK() message is sent to neighbors
If the neighborhood clock, NCm(i), is at least 2 less than the reference clock is queued
and the action is performed later
If an acknowledgement, ACK(), is received:

The node identifier is first added to the neighbor list from which ACK() has been received for this
directive
If ACK() from all nodes have been received, the NC value is incremented and the next queued
directive is executed

ACK(j)
Add j to Nbh_List

RC(k) = NCm(i)+1

RC(k) > NCm(i)+1

13

Other Extensions
Applications where there is a single event and complete ordering
among directives is necessary
Applications may have different types of events and need not require
complete ordering
Challenges

Parallel dependency among directives
Opportunistic execution of directives
Merging of events
Pruning of events
Selective directives

Vector Neighborhood Clock and other extensions to the NC approach
to address these challenges

14

Performance: Baseline Approaches
Bounded Delay (BD) approach:

Sink waits for a specified amount of time after issuing a query or
command
After issuing a query, sink waits for a time TWs corresponding to
a fixed specified time to receive all responses from sensors
After issuing a command, sink waits for a time TWa
corresponding to an estimate fixed time before which the
command is executed

Wait-For-All (WFA) approach:
Sink issues next directive only after it receives all responses or
notifications of execution of that directive from all entities in the
event region
If the sink sent a command, it will wait for all notifications about
the completion of the command from all actors before it issues
another query or command

15

Performance: Simulation Environment
Simulation environment:

Event driven network simulator
1000 nodes in 2000m * 2000m square area
Sensing, acting and communication range = 30m
TEP= 2sec, TBD(query) = TEP, TBD(command) = 2*TEP

100 directives of 1KB each, 50% query, 50% command
Metrics

Correctness (hazard probability%)
Directives execution throughput (directives/sec)
Total Traffic (KB)

16

Performance: Event Area Size

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
x 104Total Traffic per Directive vs. Event Region Size

Event Region Size(m)

Tr
af

fic
 (K

B
)

NC
WFA
BD

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Hazard Probability vs. Event Region Size

Event Region Size (m)

H
az

ar
d

P
ro

ba
bi

lit
y

NC
WFA
BD

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Directive Execution Throughput vs. Event Region Size

Event Region Size(m)

Th
ro

ug
hp

ut

NC
WFA
BD

BD does not guarantee 100%
correctness. NC and WFA have
100% correctness

NC approach has the highest
directives execution throughput

NC approach has slightly lesser
traffic overhead than WFA

17

Performance: Event Distance to Sink

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25
Hazard Probability vs. Distance of Event Region

Distance from the sink to the event (m)

H
az

ar
d

P
ro

ba
bi

lit
y

NC
WFA
BD

100 200 300 400 500 600 700 800 900 1000
500

1000

1500

2000

2500

3000

3500

4000

4500
Total Traffic per Directive vs. Distance of Event Region

Distance from the sink to the event (m)

Tr
af

fic
 (K

B
)

NC
WFA
BD

BD does not guarantee 100%
correctness. NC and WFA have
100% correctness

NC approach has the highest
directives execution throughput

NC approach has lesser traffic
overhead beyond 500m

100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Directive Execution Throughput vs. Distance of Event Region

Distance from the sink to the event (m)

Th
ro

ug
hp

ut

NC
WFA
BD

18

Related Work
Data hazards when instructions are pipelined in a
computer architecture environment [Hennessy’02]
Synchronization problem in a parallel programming
environment [Silberschatz’01]
Cooperation in multi-processor environment in distributed
systems [Coulouris’01]
Based on software primitives and hardware techniques
and do not address hazards in the context of a WSAN
environment
Do not have a notion of dependency region
Do not address the associated challenges in this
environment

19

Conclusions
Causal execution of directives (Hazard Avoidance)

Identification of different types of hazards in WSANs
Identification of the associated challenges and goals in a
WSAN environment
Identification of design principles needed to address the
problem
Design of a distributed approach to address the problem
and the challenges
Evaluation of the proposed approach with two baseline
approaches

	Hazard Avoidance in Wireless Sensor and Actor Networks
	Context
	Characteristics of WSANs
	Hazards
	Types of Hazards
	Goals
	Observations on Hazards
	The Neighborhood Clock
	Neighborhood Clock Operation
	Why NC?
	Distributed NC (1/2)
	Distributed NC(2/2)
	Other Extensions
	Performance: Baseline Approaches
	Performance: Simulation Environment
	Performance: Event Area Size
	Performance: Event Distance to Sink
	Related Work
	Conclusions

