
Hazard Avoidance in Wireless Sensor and Actor
Networks

Ramanuja Vedantham, Zhenyun Zhuang and Raghupathy Sivakumar
School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, USA

{ramv,zhenyun,siva}@ece.gatech.edu

Abstract— A typical wireless sensor network performs only one
action: sensing the environment. The requirement for intelligent
interaction with the environment has led to the emergence of
Wireless Sensor and Actor Networks (WSANs). In WSANs, the
sensors monitor the environment based on which the sink issues
commands to the actors to act on the environment.

In order to provide tight coupling between sensing and acting,
an effective coordination mechanism is required among sensors
and actors. In this context, we identify the problem of “hazards”,
which is the out-of-order execution of queries and commands due
to a lack of coordination between sensors and actors. We identify
three types of hazards and show with an example application,
the undesirable consequences of these hazards. We also identify
and enumerate the associated challenges in addressing hazards.
In this context, we discuss the basic design needed to address this
problem efficiently. We propose a distributed and fully localized
hazard-free approach that addresses the problem and the asso-
ciated challenges based on the design. Through simulations we
study the performance of the proposed solution and two basic
strategies, and show that the proposed solution is efficient for a
variety of network conditions.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have a wide variety
of applications in civilian, medical and military applications.
However, the nodes in such a network are limited to one type
of action: sensing the environment. With increasing require-
ments for intelligent interaction with the environment, there
is a need to not only perceive but also control the monitored
environment. This has lead to the emergence of a new class
of networks capable of performing both sensing and acting on
the environment, which we refer to as Wireless Sensor and
Actor1 Networks (WSAN).

The architecture for a WSAN can be seen as an extension
of a wireless sensor network where the sensors collect in-
formation of the environment and report it to the sink, which
processes the data and issues commands to the actors to act on
the environment [1]. The evolution from WSNs, which can be
thought of to perform only read operations, to WSANs, which
can perform both read and write operations, introduces unique
and new challenges that need to be addressed. In this paper,
we address one such challenge. Consider a simple example
of a WSAN that uses fire-detector sensors along with water-
sprinkler actors. Assume that the sink has issued a command

1We refer to entities that can act on the phenomenon as actors. They are
sometimes referred to as actuators in related literature.

directive2 C to the actors to sprinkle water in response to
sensor feedback about a fire. Now, after a certain period of
time t, consider the sink to issue a query directive Q to check
if the fire has been extinguished. If, for a certain region in the
WSAN, Q is delivered and executed before C by the network,
the corresponding response by the sensors - that the fire still
exists - will trigger an unnecessary reaction by the sink in the
form of more directives to the actors to sprinkle more water.
The execution of directives in an order different from what
the sink intended it to be has thus resulted in an undesired
outcome. While the undesired outcome in the above example
is merely the wastage of water, depending upon the nature of
the application, such outcomes can even be catastrophic (e.g.
poison gas actors where one dose of the gas merely invalidates
subject, but two doses can kill).

We refer to such problems where the execution order of
directives is different from what the sink intends or expects
it to be as directive hazards3. For brevity, we refer to the
problem as simply hazards in the rest of the paper. Essentially,
the inherent dependency between the actions performed by the
sensors, and those performed by the actors, imposes a need
for the sink to have control over the order in which directives
will be executed, to ensure correctness of operations.

In developing solutions to avoiding hazards, two additional
challenges need to be addressed: (i) The rate of execution of
the directives, the directives execution throughput, has to be
maximized in order to serve applications that are real-time.
Note that most WSAN applications are likely to have real-
time requirements. Revisiting the example introduced earlier,
the reporting of the fire and the turning on of the sprinklers
have to be done as quickly as possible to ensure effectiveness
of the WSAN’s application. Hence, a simplistic solution to
address hazards that involves the sink waiting to hear con-
firmation of the previous directive execution from all nodes
in the WSAN will be clearly undesirable. (ii) The solution,
while avoiding hazards and maximizing directive-execution
throughput, should also be designed with consideration to the
conservation of communication and energy resources [2] at

2We use the term directives to generically refer to both commands and
queries.

3The inspiration for the term comes from the data hazards problem when
pipelining instructions in a CPU.

the WSAN nodes4. Specifically, the solution must incur low
communication and resource overheads. In this context, we
make the following contributions in this paper:

• We first identify the different types of hazards possible
in a WSAN, and outline the associated challenges in
developing a solution to avoid them.

• We then present a distributed and localized approach
called the Neighborhood Clock Approach that addresses
the hazards and the associated challenges efficiently,
and compare its performance against that of two basic
strategies using simulations.

The rest of the paper is organized as follows: Section
II illustrates the architecture for WSAN and identifies the
problem setting with an example. Section III identifies the
hazards and describes the associated challenges and goals.
Section IV presents the design that needs to be leveraged
for hazard free operation. Section V presents a distributed
and fully localized hazard avoidance approach that realizes
the basic design. Section VI evaluates the performance of the
proposed approach with two basic strategies for a variety of
network conditions. Section VII discusses related works and
Section VIII concludes the paper.

II. MODEL AND EXAMPLE APPLICATION

A. Model

In this paper, we consider an architectural model, where
there is a sink to help in the coordination of sensors and actors.
This is an extension of the existing architecture for wireless
sensor networks, where the sink serves as the coordination
entity and issues directives to both sensors and actors. For
the above model, we focus on a generic class of applications,
where there are regional events occurring requiring several
iterations of directives.

Given the above architectural model and class of applica-
tions, we now present an example application to explain the
problem considered in this work.

B. Example Application

Consider an automated fire extinguisher system for a large,
greenhouse garden application. Let this system be equipped
with two types of sensors and two types of actors. The first
type of sensor is a temperature sensor that monitors the
average temperature in its sensing range and uses this as a
trigger to determine the presence of fire. The second type is a
humidity sensor, which determines the moisture content in the
air. The first of the two types of actors is a sprinkler, which
sprinkles water when there is a fire within its acting range,
while the second is a fan which removes moisture from the air.
One of the goals is to douse any outbreak of fire by activating
the sprinklers, without flooding the environment. The second
goal is to maintain the moisture level in the air below a certain
threshold value by activating the fans. Consider the set of
directives shown in Figure 1 issued for this fire extinguisher

4We use the terms, node and entity, interchangeably to refer to both sensors
and actors.

system in the greenhouse garden application. We will use this
set of directives to explain the hazards in WSANs.

Variables
Tc: Threshold value for detecting fire,
Hc: Threshold value for activating fans,
RD: Region of interest for the directive,
T : Average temperature of region RD ,
H: Average humidity of region RD

Directives
1 Q: Report the average temperature in Region RD

If (T > TC)
2 C: Activate sprinklers in region RD for x seconds
3 C: Activate fans in region RD for y seconds
4 Q: Report the average humidity in Region RD

If (H > Hc)
5 C: Activate fans in region RD for z seconds

Fig. 1. Set of Directives for the Fire Extinguisher System

III. THE PROBLEM: HAZARDS IN WSANS

A hazard is the out-of-order execution of directives due
to a lack of coordination between sensors, actors and the
sink that can potentially lead to undesirable changes in the
physical environment. The underlying reasons for an out-of-
order execution of a directive, even when they are issued in
the correct sequence by the sink, are mentioned below:

• Different Path lengths: For sensors and actors that are
randomly located in the even region, the paths taken and
hence the path length differ. Even for a single node, it
is possible that the paths taken by different directives are
different. The key reasons for this is when the network is
dynamic, either due to mobility or node failures, or, when
the network or sink performs explicit load balancing.
Thus the differing paths taken for delivery of a directive
is the first source of hazard.

• Different Latencies: If we consider a single node, even
if the path from the sink to the node is fixed, it is
possible that the delay for two different directives is
not the same. This is because the loss pattern for the
delivery of the first directive may not be the same for
a subsequent directive. If we consider the case, where
the second directive does not incur any losses along the
path, whereas the first directive has several losses and
associated retransmissions, it is likely that the second
directive arrives before the first.

A. CAC Hazard

Command-after-command hazard happens when the order
of two sequential commands can not be guaranteed. If two
sequential commands, Command1 and Command2, are is-
sued to two different actors in the event region5, a CAC hazard
occurs if Command2 gets executed prior to Command1.
Consider the fire extinguisher system mentioned in Section
II. The directives issued to this system are shown in Figure 1.

5This definition for all three hazards can be refined further in terms the
region in which the nodes need to coordinate, as we will see in Section IV.

Now, let us focus on directives 1 − 3 in Figure 1. Consider
the case, when T > Tc, i.e., there is fire in region RD.
Consider the case when directive 3 arrives before directive 2,
that is, the directive for activation of fans (through command
path Command1 in Figure 2) arrives before the directive for
activation of sprinklers (through command path Command
2 in Figure 2). In such a case, the fire would have spread
uncontrollably to a large region (because of the fans assisting
the spread of fire), before the directive 2 for activation of
sprinklers arrives via path Command2. This may lead to
undesirable results as the fire would have spread to regions
beyond region RD, and in region RD, the order of execution
of commands is reversed possibly resulting in flooding.

CAC Hazard: Consider a set of n directives, I1,I2,...,In. Let
Ik and Ik+1 be two dependent, sequential commands sent to
two actors in the event region, Ax and Ay . Let Ek,x denote
the execution of the command Ik by actor Ax finishing at
time, T1, and Ek+1,y denote the execution of command Ik+1

by actor Ay starting at time T2. A CAC hazard occurs when:
T2 < T1

Response

Command

Active Actors

Event Region

Query and
Response path

Command Path

Query

Command 2

Command 1

Response 2

Query 1

Query 2

Sink

Response 1

Other Actors

Active Sensors

Other Sensors

Fig. 2. Hazard Illustration

B. QAC Hazard

Query-after-command hazard occurs when a query issued
after a command is executed prior to the execution of the
command. Consider the fire extinguisher example and the set
of directives as described in Figure 1. Let us focus on the
directives 3−5 in this figure. Consider the case, where after a
fire had been detected, the sink ordered the sprinklers and
later the fans to deal with this event (directives 1 − 3 in
Figure 1). Now, in order to check the relative humidity in the
region, RD, the sink sends the directive 4. Consider the case
when the directive 4 reaches the sensors (via path Query2
in Figure 2) before directive 3, which was received via the
command path Command1 in Figure 2, was executed. This
corresponds to the case, when the humidity sensors receive the
query before the fans have acted on the environment. So, the
sensors respond to the query indicating that the humidity level
is still high (because of previous action by the sprinklers).

Now, consider the case when the action is completed just
after the response has been sent. When the response arrives
at the sink, the sink may draw the wrong conclusion that the
humidity level is still high and issues a duplicate command (dir
5) to decrease the humidity in the region resulting in duplicate
actions being performed.

QAC Hazard: Let Ik and Ik+1 be two related, sequential
directives, with Ik being a command sent to an event region
containing an actor, Ax and Ik+1 being a query sent to the
event region comprising a sensor, Sy . Let Ek,x denote the
execution of the command Ik by the actor Sx completing
at time, T1 and Rk+1,y denote the response to query Ik+1

by sensor Sy initiated at time, T2. A QAC hazard is said to
have occurred when: T2 < T1

C. CAQ Hazard

Command-after-query hazard is the opposite of a QAC
hazard and happens when a command issued later than a query
is executed prior to the query. In the same fire extinguisher
application, suppose a query is sent to the temperature sensors
to detect the presence of fire (directive 1 in Figure 1). Two
responses which contains the same fire information arrive
at the sink at different times due to differing delays in the
response path. The first response comes through response path
2 (Response2 in Figure 2) based on which the sink knows
there is fire and sends out directive 2 to the sprinklers to
extinguish the fire. This command reaches the actor with a
short delay via command path 1 (Command1 in Figure 2).
After that, the other response for the directive 1 comes through
path 1 (Response1 in Figure 2) indicating the presence of fire.
In this case, the sink will not be able to distinguish whether
the response for the directive 1 is initiated before the directive
2 has been executed or after it has been executed. The sink
may arrive at the wrong conclusion that the fire is still present
and issue another command to extinguish the fire, which may
lead to duplicate issue of commands to sprinklers leading to
flooding in that region.

CAQ Hazard: Let Ik and Ik+1 be two related, sequential
directives, with Ik being a query sent to the event region
consisting of sensor, Sx, and Ik+1 being a command sent to
the event region consisting of actor, Ay . Let Rk,x denote the
response to query Ik by sensor Sx initiated at time, T1 and
Ek+1,y denote the execution of command Ik+1 by actor Sy

starting at time, T2. A CAQ hazard is said to have occurred
when: T2 < T1

While Query-after-query (QAQ) is not considered a hazard
in WSNs, it may be a potential hazard in WSANs if the
conditions have changed between the time interval for two
responses. However, this requires the presence of an external
entity to affect the environment and, hence, we do not consider
QAQ as a hazard in our future discussions.

Sink

(a) Parallel Dependency (b) Merging of Events

(I1→I2)

(I3→I5) Sink

Event A Event B

Sink

(c) Pruning of Events (d) Selective Directives

Old Event

New Event

Sink

Task A

Task B

Task C

(I6→I2,I5)

Fig. 3. Challenges Illustration

D. Challenges

So far, we have discussed the hazards in the context of single
event, where complete ordering is required. However, there are
several applications when this complete ordering of directives
is not necessary for the entire event region. We identify these
different scenarios with the following challenges.

• Parallel Dependency among Directives: Some applica-
tions may not require that all the directives for the event
region to execute in an ordered fashion. Directives should
be executed sequentially only based on the dependencies
with the previous set of directives issued. Consider the
case, where there are three sets of dependent directives for
a particular event in the network (see Figure 3 (a)). Now,
if the dependent sets of directives are completely inde-
pendent across another set, then the hazard free operation
is only necessary within the individual sets (I1 → I2 or
I3 → I5 in Figure 3 (a)). Further, if a particular directive
(I6 in Figure 3 (a)) requires synchronization with respect
to both sets, then that directive should be synchronized
with respect to both sets.

• Opportunistic Execution of Directives: Thus far, we have
considered applications, where it is absolutely essential to
address all the hazards while executing all the directives.
In certain applications, while the relative ordering of
directives is important, it may not be important to execute
previously issued directives if they arrive out-of-order.
As an example, consider the case, where the sink sends
directives I1 . . . I10 sequentially. Consider the case when
the application does not require that all the directives
be executed, but only requires that the relative ordering
between directives be maintained, if at all a directive is
to be executed. In this case, if directives I1 . . . I4 were
executed sequentially, and directive I6 arrives before I5,
then directive I6 is executed without waiting for directive
I5. When directive I5 arrives at a later instance of time,
it will be ignored to preserve relative ordering.

• Merging of Events: In certain applications, it is possible
that two overlapping regions of the network experience
an event at about the same time (see Figure 3 (b)). If the
events are unrelated, then we must allow the directives
for the two set of events to proceed independently. On
the other hand, if the events are the same, the set of

directives will be dependent across the regions and so the
directives must be addressed to both event areas so that
the overlapped regions are not acted upon twice. In the
fire extinguisher example, this would correspond to two
fire outbreaks in close-by regions, that eventually spreads
and results in an overlap of event areas. If the intensity
of the fire in both regions are similar, then it should be
treated as a single event with the union of both areas.

• Pruning of Events: When an event that had occurred in
a certain region has now decreased in size, then it is
necessary that the directives addressed to this event are
only executed in the current event region (see Figure 3
(c)). In the fire extinguisher example, if suppose there is
a fire in a region and if the intensity of fire is maximum
at the center of the region, it is possible that the fire
is extinguished fully in the peripheral sub-regions of the
event area, while the center is still in flames. In this case,
any hazard among the directives issued is only applicable
in the current event region.

• Selective Directives: Given the vast nature of a WSAN
network, it is possible that various regions of the network
experience different types of event that require a different
set of tasks (see Figure 3 (d)). For example, in the fire
extinguisher system, it is possible that a certain region
may experience fire, while another nearby region, may
be experiencing flooding caused by over reacting to the
fire. In this case, the problem should be addressed in such
a way that it is possible to issue separate set of directives
for the different regions that are not related to each other.
Even if the regions overlap, as long as the events are not
related to one another, the directives for each event should
be executed independently.

E. Goals

Further, any hazard avoidance approach should also be
efficient with respect to the following important goals:

• Throughput: An important goal is to increase the rate at
which the queries and commands sent by the sink are
processed. We define a metric called directives execution
throughput, which is the number of directives processed
per unit time, and try to maximize this metric.

• Correctness and Overhead: Another critical goal is that
any approach that addresses the hazards and the asso-
ciated challenges, does so with minimal overhead. The
absence of this goal will lead to an increase in overall
traffic in the network in addition to over-utilization of the
sensor and actor resources. On the other hand, it should
not compromise on 100% hazard free operation.

IV. DESIGN

In this section, we formally present the basis for hazard-free
operation, provide the basic mechanism of our proposed solu-
tion called the Neighborhood Clock (NC) approach, and show
that NC is a hazard-free approach. We make the following
simplifying assumptions in order to make the problem more
tractable:

• Network Model:We consider the case, where sensors and
actors are both static, and are randomly distributed6 in
sensor/actor field.

• Location Information: We assume that sensors and actors
can determine their location through localization algo-
rithms [3], [4].

• Sensing, Acting and Communication Ranges: We assume
that sensing range (Rs) is the same as the communication
range for sensors (Ts), and acting range (Ra) to be the
same as the communication range for actors (Ta). Note
that this assumption is not central to our approach and is
mainly considered for clarity of presentation.

• Routing Model: We assume that there is an underlying
reliable routing protocol for delivering directives and
gathering responses [5], [6], [7].

A. Hazard Model and Dependency Region

The generic hazard-free operation goal can be described by
the following model:

Settings: Consider a WSAN network, where the sink issues
a set of directives to a set of entities7. Directives issued by the
sink are subject to a set of dependencies determined by the
sink. Let Ω denote the set of directives, ∆ denote the set of
entities, and Λ denote the dependency set. Each element, λm

(λm ∈ Λ), defines the dependency of two directives Ii and
Ij , where Ii, Ij ∈ Ω. If Ii is required to be executed before
Ij , we use Ii → Ij to denote this dependency requirement. In
order to prevent all three hazards, any two directives that are
dependent should be executed sequentially according to the
dependency.

Goal: The design goal of an efficient hazard-avoidance
approach is to determine a hazard-free execution process,
which has minimum execution time subject to Ω.

Constraints: Consider any two entities Dx and Dy in ∆
within the event region that are required to execute two
directives Ii and Ij , with dependency requirement Ii → Ij . Let
tIk·Dz

denote the time that an instruction, Ik, is executed by
an entity, Dz . To prevent a hazard, it is required that Ii → Ij

for both entities. Let A(Dx) and A(Dy) denote the execution
region8 of Dx and Dy , respectively.

If A(Dx) and A(Dy) do not have any overlap, the hazard
prevention requirement for the dependent directives, Ii and Ij ,
can be satisfied by the following set of relations:

tIj ·Dx
> tIi·Dx

(1)

tIj ·Dy
> tIi·Dy

(2)

These rules are straightforward from the definitions of the
three hazards described in Section III. Thus, as long as the
equations 1, 2 are both satisfied, Ii → Ij for the pair of
entities, Dx,Dy , is guaranteed. These equations essentially
imply that the directives need to be executed in-order by each

6We assume that the network is connected through these sensors and actors.
7We refer to both sensors and actors with the common name entity.
8The execution region for a sensor is its sensing region while that of an

actor is its acting region.

of these entities, but there is no ordering requirement across
the two entities, Dx and Dy .

When A(Dx) and A(Dy) have overlapping areas, all of the
following four hazard-avoidance rules have to be followed:

tIj ·Dx
> tIi·Dx

(3)

tIj ·Dx
> tIi·Dy

(4)

tIj ·Dy
> tIi·Dx

(5)

tIj ·Dy
> tIi·Dy

(6)

It can be shown that in order for equations (3)-(6) to be
satisfied, the directives Ii and Ij need to be ordered in the
region, A(Dx)

⋃
A(Dy) [8]. Based on the above discussion,

the following two inferences can be made:

• Any pair of dependent directives issued to entities that
do not have any overlapping execution regions can be
executed concurrently across the two entities, although
the relative ordering must be preserved within each entity.

• Any pair of dependent directives issued to entities with
overlapping execution regions needs to be ordered in the
union of the two regions.

Sensor Cover Actor CoverEvent Region

Sink Sink2 X (S
ensin

g Range

+ Actin
g Range)

4 X Actin
g Range

(a) Dependency Region for Sensor (b) Dependency Region for Actor

Fig. 4. Maximum Dependency Regions

Now, for a given entity, Dx, applying these rules pairwise
with any other entity in the event region, we can define
a region in the neighborhood of Dx called the dependency
region, where perfect ordering is necessary. For sensors and
actors that are beyond the dependency region, there is no
dependency across the two regions (even if the instructions
are dependent). The dependency region of a sensor can be
defined as the region with radius equal to the sum of sensing
and acting range (Sensing Range + Acting Range), while
that of an actor is the region with radius as twice the acting
range (2 · ActingRange)(see Figure 4).

B. Need for Neighborhood Clock

From the above discussions, we can infer that within a
dependency region, two directives (Ii and Ij) with the depen-
dency requirement Ii → Ij have to be executed atomically
in that order. This atomic ordering implies that Ij can be
executed on any entity within the dependency region only
after all the entities in the dependency region have executed
Ii. In a WSAN without synchronization, in order to achieve
this atomic ordering, the sink has to ensure that the previous
directive has been executed on all the entities within the de-
pendency region before issuing the next directive. One way to

ensure this is to wait for a significant portion of time between
successive directives so that acknowledgements are received
from all the sensors and actors about the completion of the
previous directive. However this is clearly not efficient and it
requires central coordination by the sink for each dependency
region. If the execution of directives can be synchronized on
the entities within a dependency region efficiently, it is possible
to guarantee hazard free operation in a decentralized fashion.

There are several alternatives to synchronize the execution
of directives. Based on the granularity required for synchro-
nization, the synchronization can either be time-level or event-
level. In order to perform time synchronization, an underlying
time synchronization mechanism is necessary. However, com-
munication cost and resource overhead associated with per-
forming time synchronization render this approach inefficient.
Moreover, to achieve hazard-free operation, an event-level
synchronization mechanism will suffice since the execution of
directives can be considered as events (that require synchro-
nization). In order to achieve event-level synchronization on
the directives, a node can either use a physical clock or virtual
clock. A virtual clock approach is preferred, since the physical
clocks on different entities are not a reliable means of ensuring
ordering without a careful design of the clock synchronization
algorithm and the large amount of traffic associated with it
[9]. On the other hand, a virtual clock approach only requires
synchronization at a coarse level and hence requires less
maintenance and communication overheads.

Based on these observations, we propose a localized vir-
tual clock synchronization approach called the Neighborhood
Clock (NC) approach. In this section, we consider the case of a
scalar clock, where the clock is given by a sequence number.

C. Neighborhood Clock Mechanism

In this section, we propose and describe the Neighborhood
Clock (NC) mechanism and show that it addresses all the
hazards identified in Section III. For now, we assume that
there is only one type of event in the event region and that all
the directives are addressed to the same event region. We also
assume that the set of directives for this event region are all
dependent.

NC introduces the notion of a neighborhood clock on
every sensor and actor for ordering the directives within
every dependency region. The neighborhood clock is used to
enforce synchronization between sensors and actors within
a dependency region. It does not enforce synchronization
beyond the dependency region of any sensor or actor, thereby
allowing the other nodes in the event region to execute the
directives concurrently.

When the sink learns about an event, the sink creates a
reference clock for that event, and initializes this clock to a
unique start value, denoted by NC0. This reference clock is
used to indicate the progression of directives sent by the sink.
This information is flooded throughout the event region. When
any sensor or actor in the event region receives the message,
it initializes its neighborhood clock by the initial reference
clock value. In this fashion, all nodes can synchronize their

initial neighborhood clock values. Whenever the sink sends
a directive, it increments the reference clock. The reference
clock of the sink, RCi, is piggybacked with the ith directive.
Since the RC values increase linearly for every directive sent,
the neighborhood clock is ordered according to the sequence
in which the directives were issued.

Each entity, Dx, maintains its own view of the progress
in the network, based on its neighborhood clock identifier,
NC(x), where the view number is set to be NC(x) + 1. NC
functions by synchronizing the views on all the sensors and
actors within the dependency region, which is performed by
synchronizing the NC values of all neighborhood clocks. Each
sensor and actor will move to the next view only after all other
sensors and actors have moved into its current view9. Thus,
the difference between the views of any two nodes within the
dependency region will be at most 1. Any entity, Dx, can only
execute a directive if the NC value piggybacked is the same
as the current view number. That is, if an entity is in viewi, it
is allowed to execute the directive with NC value equal to i.
By enforcing this scheme, NC can ensure the atomic execution
of every directive on all the entities. Once an entity executes
a directive, it notifies the completion of the directive to other
entities in the dependency region. The progress of views within

S1

S2

A1

Viewi
Viewi+1

Ii

Ii

Ii

Ii+1

Ii+1

Ii+1

Fig. 5. View Movement

a dependency region, which consists of two sensors and one
actor is illustrated in Figure 5. In the figure, at a certain time
all the entities have moved into viewi, as illustrated in the left
ellipse area. So all of them are allowed to execute the directive
with NC = i. After the execution, each entity notifies the
other entities about the execution of the directive. Whenever
an entity receives notifications from all other entities, it will
move to the next view, viewi+1, as illustrated in the right
ellipse area.

D. Addressing Hazards using Neighborhood Clock

We will now show that by enforcing neighborhood clock
synchronization, in the dependency regions, all the three
hazards identified in Section III can be avoided reliably. Recall
that the radius of the dependency region of a sensor is the
sum of the sensing range and acting range, and that of an
actor is twice the acting range. We present the proof for a
generic hazard, denoted by XAY hazard, where Y and X are
successive directives issued to the event region.

9While this assumes that there are no node failures between the execution
of two directives, our approach addresses this issue by having a timeout-based
mechanism. We do not present the details of this mechanism due to lack of
space.

Proof: For any pair of entities Dx and Dy , let us use
d(Dx,Dy) to denote the distance between them. Consider two
sequential directives, I1 and I2, with NC values i and i +
1, respectively. Now suppose at a certain time I1 has been
executed by an actor Dx; we can infer that Dx must be in
the viewi, as in the NC mechanism an entity can execute a
directive only when the NC value piggybacked equals the
view number.

For a XAY hazard in this context to happen, based on
our observations in Section IV-A, it has to be the case that,
say, the entity Dx executes directive I2 before another entity
within the dependency region, say Dy , executes directive I1.
Allowing Dx execute directive I2 before Dy executes I1

implies that Dx must be in viewi+1. But this is impossible in
the Neighborhood Clock mechanism, since without receiving
the notifications for the completion of directive I1 from all the
entities within the dependency, Dx can not move to viewi+1.
Therefore, any generic XAX hazard cannot occur within the
dependency region using the Neighborhood Clock mechanism.

Now, using this proof, we observe that all three hazards are
addressed by the Neighborhood Clock mechanism.

• CAC hazard avoidance: In this case, Dx and Dy are
both actors, while I1 and I2 are both commands, with
the dependency requirement, I1 → I2. Using the above
proof, it can be observed that within a dependency region
for any actor defined by a region with radius, 2 ·Ra, there
are no hazards. Moreover, based on the two observations
made in Section IV-A, there are no hazards beyond the
dependency region. Thus, CAC hazard can be completely
avoided using the Neighborhood Clock mechanism.

• QAC hazard avoidance: In this case, Dx is a sensor
and Dy is a sensor, while I1 is a command and I2

is a query. Again, the above proof shows that there
are no hazards within a dependency region with radius,
Rs+Ra. Thus, there is no possibility of a QAC hazard as
the Neighborhood Clock enforces ordering within every
dependency region.

• CAQ hazard avoidance: Here, Dx is an actor and Dy is
a sensor, while I1 is a query and I2 is a command, with
the dependency requirement, I1 → I2. Again, using the
above proof, there are no hazards within a dependency
region with radius, Rs + Ra. Thus, there are no CAQ
hazards in the NC mechanism.

V. APPROACH

In Section IV, we had presented the basic Neighborhood
Clock mechanism with scalar neighborhood clocks and de-
scribed how it addresses the different hazards. In this section,
we present the Neighborhood Clock (NC) approach in detail
and show that it addresses the challenges identified in Section
III.

A. The Neighborhood Clock Approach

1) Construction of Dependency Regions: When an event
has occurred, the sensors in the event region detect and report

the event to the sink (either automatically or after they are
probed). In this fashion, the sink knows the presence of the
event in the region. We assume as part of the initial set up
of the network that there is an underlying 2-hop neighbor
discovery mechanism so that each node can advertise their
node locations to its 2-hop region. In [10], the authors discuss
an approach for local broadcast of beacons in order to transmit
location information of the node as a basic step to ensure
sensor coverage. This technique can be extended to a 2-hop
neighborhood in order to transmit the location information.
The neighbor discovery mechanism will allow each sensor
and actor in the network to learn about all the other sensors
and actors within the dependency region. This knowledge of
neighbors will allow every sensor and actor node to construct
a routing structure instantaneously when it receives the first
directive as we will see later in this section. We will now
describe the neighborhood clock structure that will be used
for synchronization and describe the operations at the sink
and each node in the event region.

Event A
2 2→4

Event B 1→-2→3

1 1→3

Directive List

1

DependenciesTask

Fig. 6. Example showing the Event List for Two Events

2) Need for a Vector Neighborhood Clock: In Section
IV we had mentioned the need for a scalar neighborhood
clock and described how it can be leveraged to support
synchronization within the dependency region. The design of
a neighborhood clock limits the scope of synchronization to
a single event over all the sensors and actors in the event
region. Further, it also assumes complete ordering is neces-
sary between all the directives. As we had described in the
challenges in Section III, there are several applications when
this complete ordering of directives is not necessary for the
entire event region. For these cases, the scalar neighborhood
clock is too restrictive and will be either inefficient or will not
be able to provide the desired ordering.

Vector neighborhood clock extends the idea of a scalar
neighborhood clock to include an array of clocks based on
the number of dependency lists between directives for each
type of event, where a dependency list is defined by the
chain of dependencies for all previous directives. Thus, if there
are k different events and a maximum of j dependency lists
corresponding to any event, a vector clocks will be a two
dimensional array of size kXj. Consider the example shown
in Figure 6, where there are two events happening in the same
region. Associated with Event A, there are two dependency
lists, while there is only one dependency list associated with
Event B. The vector clock for this example, would be of
size 2X2, where each row represents the set of clocks for
that particular event. Note that, while it may be beneficial to
maintain a list of clocks instead of an array if there are varying
number of dependency lists across different events, we have
not presented it here for clarity of presentation.

3) Operations at the Sink: We consider a real-time model10

for issuing directives, where the sink does not know the list
of dependencies apriori. After the sink has received responses
from all the sensors in the event region, the sink creates a
vector reference clock11 for the event. Additionally, the sink
also creates an event identifier (Event ID) and records the
event region corresponding to a particular Event ID. When
the sink learns about an event based on the responses received,
the sink initially sets its reference clock by initializing the
array of scalar reference clocks. This would correspond to
one row in the reference clock array. The sink then sends a
START () control message, where the Event ID and the
(vector) reference clock to all the sensors in the event region
using the underlying delivery mechanism. When any sensor or
actor in the event region receives the message, it also creates
an identical vector clock array. We refer to this clock array
maintained at the entities as the vector neighborhood clock12.
In this fashion, all nodes can synchronize their initial vector
clock values to that of the reference clock. In the example
considered in Figure 6, for the Event A, the initial reference
clock would correspond to (A,0,0) (assuming that the initial
clock values are 0). For now, we present our approach in the
context of a single event, for clarity of exposition. We revisit
our approach later in this section and present how the NC
approach can address multiple events.

Event
ID

Directive
ID RCk(sink)…...

Optional
Event

Region

Clock ID

of
Clocks S P RC1(sink)

Clock ID

S P

Per Clock Information Per Clock Information

Fig. 7. Format of Header for a Directive

When the sink wants to send the ith directive (query or
command), and if this directive belongs to the jth dependency
list, then the corresponding scalar reference clock is updated
by the following equation:

RCj(sink) = RCj(sink) + 1 (7)

The event identifier, directive identifier and the number of
clocks, which this directive depends on, and the information
regarding these clocks is piggybacked along with the ith
directive. Figure 7 shows the format for each directive sent
by the sink. The per clock information includes the clock
identifier, the value of the reference clock and the service
model (denoted by S and P symbol), which we will discuss
later in this section. Here, the event region is sent as an option
only if the directive is sent to an event that has increased or
decreased in size or merged with another event.

10While the NC approach is equally effective even for an off-line model,
we believe this represents a more generic and practical setting for directive
initiation in WSANs. For this reason, we have tailored our mechanisms to
address this model.

11We refer to vector reference clock as reference clock from now on.
12We refer to the vector neighborhood clock as vector clock for brevity

Since the RCj values increase linearly for every directive
sent from a particular directive list, the scalar reference clock
combination is ordered according to the sequence in which the
directives were issued from a particular dependency list, which
will be leveraged to address the different types of hazards. The
directives that need not be ordered are maintained by separate
individual neighborhood clock values. We will now describe
the actions at the sensors and actors when a directive reaches
the event region.

4) Operations at the Sensors/Actors: As we had mentioned
earlier, the START () message received by a sensor or actor
will serve as a trigger for this instantaneous construction
of routing structure in the dependency region. In the NC
approach, every node in the event region constructs a shortest
path tree [11] to every sensor and actor in the dependency
region13 and uses a hop-to-hop reliability mechanism in the
case when there are losses. This structure is efficient as one
of our primary objectives is to increase the throughput in the
execution of directives.

The sequence of operations in each sensor or actor in the
event region is shown in Figure 8. When the sink sends the kth

directive, a node in the event region performs the following
sequence of operations:

• If the clock list piggybacked with the directive requires
synchronization with respect to neighborhood clock,
NCm(i), and RClm(k) = NCm(i)+1 (mth clock in the
list of reference clocks, RCl(k)), the action is performed
and an ACK() message is sent to all neighbors in
the dependency region (lines 14-17, 40-47 in Figure 8).
Additionally, if the node is a sensor, it responds to the
directive (which will be a query) (line 42 in Figure 8).

• If the neighborhood clock, NCm(i), is at least 2 less than
the reference clock identifier of the sink RCl(k) (lines
34-39, 18 in Figure 8), the directive is queued and no
action is taken (line 19 in Figure 8).

• If an acknowledgement, ACK(), is received from any of
the nodes in the dependency region for that directive,
the node identifier is first added to a list maintaining
all the nodes from which acknowledgements have been
received for every neighborhood clock that this directive
is dependent on (lines 22-25 in Figure 8). Additionally,
the node checks if it has received ACKs from all nodes
with in the dependency region14 for that directive and
increments all the neighborhood clocks corresponding to
the different dependency lists the directive belongs (lines
26-29 in Figure 8).

In this fashion, any sensor or an actor will update its vector
clock only after it has received the same vector clock values
corresponding to the dependency lists to which the directive
belongs from all the nodes. After it receives all the notifica-
tions, it will increment the corresponding set of clocks for this

13The nodes in the periphery of the event region will construct the routing
structure for the nodes (within the dependency region) that are part of the
event region.

14For the peripheral nodes, this region is the intersection of the event region
and the dependency region for that node.

Variables:
1 i: Node id,
2 NC0(i) . . . NCk(i): Array of Neighborhood Clocks, E(i): Event ID,
3 RCl(k): List of enclosed clocks in the kth directive,
4 DIR(. . . , RCl(k), . . .): Directive with Clock List RCl(k),
5 MSGRCV −TY PE : Type of message received,
6 Flag: Execute or not flag,
7 DIRE(i): Queue of waiting Directives
8 L(i): List of 2-hop neighbors,
Receive(i)
9 If (MSGRCV −TY PE == (START () or SYNC())
10 For (j=1:k)
11 NCj(i) = NCj(sink)
12 End for
13 E(i) = E(sink)
14 If (MSGRCV −TY PE==DIR(. . . , RCl(k), . . .))
15 Check(i, RCl(k))
16 If (Flag==TRUE)
17 Execute(i)
18 Else
19 add DIR to DIRE(i)
20 end Else
21 end If
22 If (MSGRCV −TY PE == ACK from k)
23 For every NCl(i) ∈ NCl(k)
24 Update NCl(i)
25 End for
26 For every enqueued directive DIRn ∈ DIRE(i)
27 Check(i, RCl(k))

28 If (Flag==TRUE)
29 Execute(i)
30 Else add DIR to DIRE(i)
31 If (MSGRCV −TY PE == REQ − ACK)
32 Reply with its Neighbor Clocks
33 Return
Check(i, RCl(k))
34 Flag=TRUE
35 For every NCm(i) ∈ RCl(k)
36 If (RClm(k) �= NCm(i) + 1)
37 Flag=FALSE
38 End for
39 Return Flag
Execute(i)
40 If (MSGRCV −TY PE==QUERY)
41 Perform Sensing Task
42 Send (i, Response) to Sink
43 Else if (MSGRCV −TY PE==COMMAND)
44 Perform Acting Task
45 If (Ordering Required for DIR)
46 Notify(i, NCl(k))
47 Return
Notify(i,NCl(k))
48 Send ACK to all entities in L(i)
49 Return
RequestACK(i, RCl(k))
50 Send REQACK to L(i)
51 Return

Fig. 8. The NC Approach at Each Node for One Event Type with Multiple Dependency Lists

directive. If on the other hand, it receives a directive that is
not dependent on any of the previous directives, it steps into
the next view directly by incrementing a separate clock.

A NC1=1 NC2=0
B NC1=0

A-1

Directive Sent NC Format

A NC1=1 NC2=1
B NC1=0

A NC1=2 NC2=1
B NC1=0

A NC1=2 NC2=1
B NC1=1

A-2

A-3

B-1

A-4 A NC1=2 NC2=2
B NC1=1

…... …...

Event A
2 2→4

Event B 1→-2→3

1 1→3

Directive List

1

DependenciesTask

Pr
og

re
ss

(a) Event List

(b) NC progress

Fig. 9. NC Approach Progress for the Example Considered

Figure 9 shows the progress of the neighborhood clocks for
two events with dependency lists as indicated. Consider the
progress of the vector clock corresponding to Event A. The
nodes maintain separate clocks for the two dependency lists
as shown in the figure. When directive 1 arrives, the directive
is executed and the neighborhood clock, NC1, is incremented

as it is the first directive. Subsequently, when the directive
2 arrives, since it has no dependency with directive 1, the
directive is executed immediately. A separate neighborhood
clock, NC2, corresponding to this second dependency list is
created and the value of NC2 is incremented. When directive 3
arrives, the execution of the directive is only determined based
on the clock, NC1, as this directive is only dependent on the
first directive. If NC1 = 1, that is, directive 1 has already been
executed, directive 3 is executed, and the corresponding clock
value, NC1 is incremented. Thus, we can see that the progress
of the execution of directives in NC approach is stalled only
when there are dependency requirements (within a dependency
list).

We will now describe the mechanisms in the NC approach
that address the different challenges identified in Section III.

B. Parallel Dependency between Directives

This challenge pertains to independent and concurrent ex-
ecution of directives when the directives belong to different
dependency lists.

In the NC approach, the use of the vector clock allows it
to only maintain the last executed directives corresponding
to each dependency list. The vector clock in NC is an array
of neighborhood clocks based on the number of dependency
lists, where each list has a separate clock. For every directive,
the sink encodes the dependency information in the list of

clocks piggybacked along with the directive. When a node
receives the directive, it only synchronizes its vector clock
with respect to the list of clocks mentioned in the directive.
Therefore, the nodes do not unnecessarily wait for directives
that are not related to this directive, even if they were prior to
this directive. Consider the event, Event A, in the example
shown in Figure 9. The progress of the individual clocks is
only determined based on the dependency requirements within
each dependency list.

C. Opportunistic Execution of Directives

Thus far, we have considered applications, where it is
absolutely essential to execute all the directives in order if
they are dependent. In certain applications, it is not necessary
to execute all the directives but only ensure relative ordering
between the directives that are executed.

The NC approach addresses this challenge by using directive
sequence numbers for scalar neighborhood clocks. Initially,
when the START () control message is sent, the sink will
include a special control bit to include the mode of directive
execution to be in the opportunistic mode. In this mode, the
nodes will only ensure that the progress of the neighborhood
clock array is monotonically increasing. When a directive
is executed, the list of clocks on which the directive was
dependent on, are all incremented by the sequence number
of the directive. If at a later instant a lower sequence number
directive, which has a dependency on any one of the clocks
updated, is received, it will be dropped as the neighborhood
clock value(s) will be higher than the ones listed in the
directive. For Event B in the example shown in Figure 9,
consider the case when directive 3 was received and executed
before directive 2. In the opportunistic mode of directive
execution, directive 2 will be ignored if it is received at a
later instant.

D. Merging of Events

This challenge pertains to the ordering of directives issued
to identical types of event with overlapping event regions. In
this case, the set of directives should be ordered with respect
to the entire merged region.

In the NC approach, the format specified in the directive
header and the SY NC() control message can be leveraged
to address this challenge (see Figure 7). Consider the case
when an event region, RegionA is executing a directive with
sequence number x and another event region, RegionB , is
executing a directive corresponding to sequence number y
(y > x). When the sink learns from the responses that the
two event regions have merged, the sink issues a SY NC()
command to synchronize the clocks of both event regions.
This SY NC() message, which is similar to the START ()
message, will be sent to RegionA, where the initial vector ref-
erence clock is set to the reference clock corresponding to the
event with the higher directive sequence number15 (RegionB).

15Note that it is equally possible to choose the reference clock for the event
corresponding to the lower sequence number directive

In this fashion, nodes in RegionA can synchronize its vector
clock to that in RegionB .

E. Pruning of Events

This challenge concerns the region to which the hazard
free operation is necessary. If an event that has occurred in
a certain region has now decreased in size, then only a part
of the original region needs to be addressed for hazards.

In the NC approach, the options field in the directive format
can be leveraged to let the sensors and actors know the change
in the event region. Based on the responses received from
the event region, the sink can identify that the current event
region has shrunk in size. Any directive issued by the sink
after this instant, which will still be delivered to the entire
event region, will include the current area information in the
options field in the directive header format (Figure 7). Thus,
each node in the event region can identify if it is part of the
current event region. If a node is within the event region, it
does synchronization according to the mechanisms in the NC
approach. The nodes that are outside but within an execution
range distance from the boundaries of the current event region,
will also synchronize as their sensing or acting ranges may
overlap with the current event region. However, nodes that
are beyond this region merely increment their corresponding
neighborhood clock without actually executing the directives
or synchronizing their clock values. In this fashion, if at a
later instant, a directive is sent to the original event region, it
is still possible for the nodes outside the current event region
to execute the directive and perform clock synchronization.

F. Selective Directives

This challenge corresponds to the different set of directives
(tasks) issued to different regions of the network, where the
set of directives may or may not be dependent across regions.

In the NC approach, this challenge can be addressed by
leveraging the format of the directive header and using the
SY NC() control message. If the different tasks are unrelated,
irrespective of whether the task regions overlap, the vector
clock associated with each task will have separate event iden-
tifier (treated as separate events). However, if events are related
and the dependency regions of any two nodes corresponding to
the two task regions do not overlap, the nodes in those regions
will still be assigned different event identifiers (see Section
IV). If on the other hand, the regions are overlapping and if
the tasks are dependent, then strict synchronization between
these two task regions can be imposed by the mechanisms for
merging. This is also done for the case when the task regions
for two dependent events are within twice the acting range of
one another.

VI. PERFORMANCE EVALUATION

This section evaluates the performances of the proposed
approach (NC approach) with two basic strategies: (i)Wait-
For-All (WFA), and (ii) Bounded Delay (BD). In Wait For All
(WFA) strategy, the sink issues the next directive only after
it receives all the responses or notifications for the previous

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4Total Traffic per Directive vs. Event Region Size

Event Region Size(m)

Tr
af

fic
 (K

B)

NC
WFA
BD

(a) Total Traffic per Directive

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Directive Execution Throughput vs. Event Region Size

Event Region Size(m)

Th
ro

ug
hp

ut

NC
WFA
BD

(b) Directives Execution Throughput

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Hazard Probability vs. Event Region Size

Event Region Size (m)

H
az

ar
d

Pr
ob

ab
ilit

y

NC
WFA
BD

(c) Correctness

Fig. 10. Performance under event region size

directive. For instance, if the sink sent out a command, it will
wait for acknowledgements from all the actors before it issues
another query or command. The Bounded Delay (BD) strategy
works by striking a balance between the degree of correctness
for avoiding hazards and the efficiency of event processing.
In BD, after issuing a query, the sink waits for time TWs

before issuing the next directive. Similarly, after a command
is sent, the sink waits for at least TWa

prior to sending another
directive.

The performance metrics considered are the total traffic per
directive, directives execution throughput and correctness. We
study the performance of the three approaches for a variety of
network conditions by varying the size of event region, sink-
to-event distance and percentage of directives that are queries.

A. Simulation Environment

For all simulations, sufficiently large number of sensors and
actors are randomly placed on a 2000m×2000m square area
to ensure connectivity. The sensing range and communication
range of sensors is set to be 30m, and the acting range
and communication range of actors is 60m. Thereby, for the
NC approach, the neighborhood range for a query is 90m
(30m+60m), while for a command, it is 120m (60m +60m).
When an event is detected, a minimum sensor cover [12]
and actor cover is formed. When the sink sends directives
to the corresponding sensors or actors in the event region,
the directives are first sent to the closest sensor or actor in
the corresponding cover set. The closest sensor or actor then
forwards the directives to the entire cover set. We assume
CSMA/CA as the MAC protocol, with a retransmission time of
1 second when there are losses. The retransmission is repeated
until successful delivery is achieved.

The events considered in the simulation are regional events
with varying radius ranging from 50m to 500m. In the follow-
ing results, if not specified explicitly, the distance from the sink
to the event center is 1000m, the radius of event region is 200m
and the loss rate per hop is 10%. Amongst the directives issued
by the sink, the probabilities of queries and commands are both
50%. When a command is received by an actor, we consider a
default value for the event-processing time, TEP = 2 seconds.
For BD, TWs

= TEP and TWa
= 2 · TEP . All results are

averaged results on 10 different runs, and for each run, 100

directives are sent out and executed. The message size for
all messages (directives, responses, notifications) are assumed
to be 1KB, and the total amount of traffic is computed as
the total KB used to execute a directive, including directive
delivery, responses, and notification. The directives execution
throughput is defined as the number of directives executed per
second, and the correctness is measured by the probability of
hazard occurrence. Note that the correctness of NC and WFA
are both 100%.

B. Varying the Event Region Size

Figures 10 shows the performance results of the three
approaches under varying event region size. As shown in
Figure 10(a), with increasing event region size, the traffic
per directive of all three approaches increases. In BD, this
is mainly because of the increase in the number of nodes in
the event region. While the BD achieves the best performance
in terms of overhead (in fact no overhead), it is only at the
expense of correctness and throughput. For NC, aside from
this reason, since each node has to receive notifications from
all other nodes within its dependency region, the overhead is
relatively large. For the WFA strategy, since the acknowledge-
ments to each directive has to be sent by all nodes to the sink,
the traffic is very large. Figure 10(b) shows the throughput
variation for increasing event size. As we can observe, NC
has the largest directives execution throughput when compared
with the basic approaches because the dependency region is
just the 2-hop neighborhood region. Both NC and BD have
constant throughput values since their mechanisms are not
affected by the region sizes, while WFA’s throughput drops
slightly due to the fact that it must wait for more time to
receive all the acknowledgements before issuing the next
directive. Figure 10 (c) shows that NC and WFA are both
hazard-free, while BD has increasing hazard probabilities with
larger event region. The hazard probability increases from 1%
to almost 75% when the event radius varies from 50m to 500m.
As we do not consider QAQ to be a hazard in our simulations,
the maximum hazard probability is 75%. In BD, since the sink
waits for a longer time after issuing a command, QAC and
CAC hazards happen with a low probability. However, a CAQ
hazard is more likely to happen as the sink only waits for a
smaller amount of time after issuing a query.

100 200 300 400 500 600 700 800 900 1000
500

1000

1500

2000

2500

3000

3500

4000

4500
Total Traffic per Directive vs. Distance of Event Region

Distance from the sink to the event (m)

Tr
af

fic
 (K

B
)

NC
WFA
BD

(a) Total Traffic per Directive

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Directive Execution Throughput vs. Distance of Event Region

Distance from the sink to the event (m)

Th
ro

ug
hp

ut

NC
WFA
BD

(b) Directives Execution Throughput

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25
Hazard Probability vs. Distance of Event Region

Distance from the sink to the event (m)

H
az

ar
d

P
ro

ba
bi

lit
y

NC
WFA
BD

(c) Correctness

Fig. 11. Performance under different sink-to-event distance

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000
Total Traffic per Directive vs. Percent of Query

Percent of Query (%)

Tr
af

fic
 (K

B
)

NC
WFA
BD

(a) Total Traffic per Directive

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
Directive Execution Throughput vs. Percent of Query

Percent of Query (%)

Th
ro

ug
hp

ut
NC
WFA
BD

(b) Directives Execution Throughput

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25
Hazard Probability vs. Percent of Query

Percent of Query (%)

H
az

ar
d

P
ro

ba
bi

lit
y

NC
WFA
BD

(c) Correctness

Fig. 12. Performance under different percent of queries

C. Varying the Distance from the Sink to the Event Center

Figure 11 shows the performance results of the three ap-
proaches for varying sink-to-event distances. We can see that
in WFA has a much higher overhead in dealing with far-
away events due to the fact that all the sensors and actors
in the event region are required to respond back to the sink.
As shown in Figure 11(a), both BD and NC have (almost)
constant traffic, which only increases slightly with increasing
sink-to-event distance. This is because the average traffic in
delivering the directive is almost a constant. Additionally in
NC, the traffic generated within the dependency region will
always be a constant. Figure 11(b) shows that NC has largest
throughput. The throughput of WFA drops because the waiting
time for issuing a directive increases with increasing sink-
to-event distance. Unlike WFA, the throughput of NC and
BD do not change with the sink-to-event distance, since the
latency between the execution of successive directives does not
depends on the distance of the event from the sink. Similar
to that of increasing event region size, the hazard probability
of BD is higher for a farther away event, which is shown in
Figure 11(c).

D. Varying the Percent of Queries

Figure 12 shows the performance for varying probabilities
of queries and commands in the set of directives issued. In
these figures, the percents of queries vary from 10% till 100%.
In Figure 12 (a), the traffic required per directive for WFA and
BD increase, while NC experiences an slightly dropping traffic

overhead. For WFA and BD, the queries are sent to the sensors
in the sensor cover set, while the commands are sent to the
actors in the actor cover set. Since we assume that the sensing
range is smaller than the acting range, it is expected that the
size of sensor cover set is larger than that of actor cover set.
Thereby, a larger portion of directives being queries results
in an increasing amount of traffic. However, in NC approach,
sensors and actors always send execution information across
their dependency region, where the dependency region for a
sensor (Rs+Ra) is smaller than that of an actor (2·Ra). Hence,
an increase in the percentage of queries in the directives issued
results in a lower traffic overhead for NC.

Figure 12 (b) shows that the directives execution throughput
increases for all three approaches. For NC, the throughput
increases because of the decrease in both the average execution
time of a directive and the size of the dependency region.
For BD, the throughput only increases slightly because of
the decrease in average execution time of a directive, while
for WFA, it remains a constant as the sink anyway waits
for acknowledgements in this strategy. Figure 12 (c) shows
the hazard probability for all three approaches. In BD, CAC
and QAC hazards rarely happen in our simulation environment
because of the relatively large waiting time chosen for com-
mands and the sink-to-event distance. Thereby, initially when
the query percent increases, (only) the CAQ hazard probability
increases resulting in a higher hazard probability. However,
as the query percent continue to increase, the overall hazard
probability begin to drops, since the percent of QAQ ordering

is larger (and QAQ is not considered a hazard).

VII. RELATED WORKS

A. Pipelining

The problem considered in this paper shares some simi-
larities to pipelining of instructions in the computer architec-
ture domain [13]. Pipelining is a very popular practice for
increasing instruction level parallelism, provided the under-
lying instruction set has a minimum set of dependencies. In
order to resolve any dependencies within the instruction set
several techniques have been proposed including instruction
re-ordering and register re-allocation. This is philosophically
similar to what we have tried to achieve in our approach in
terms of increasing the parallelism in issuing directives by
having directives that are not dependent executed between
dependent directives. However, in WSANs, we not only have
to maximize the directive level parallelism but also region-
level parallelism.

B. Parallel Programming

The hazards described in this work has some resemblance
to the synchronization problem in the context of multipro-
gramming in the operating systems domain [14]. In order
to ensure sequential access of the critical section of a piece
of code, synchronization is a necessary condition. In parallel
programming, software primitives such as semaphores and
monitors are used to bring about synchronization. However,
these approaches are not suitable in the context of WSANs.

C. Distributed Systems

The NC approach proposed in this paper shares some
ideas from the distributed systems area. A distributed system
consists of a set of processes that cooperate to achieve a
common goal, but do not share a common global memory. To
capture the causality relationship between events, both logical
clock and vector clock models are used [15]. The sequence
numbers enclosed in the directives in NC serve as the logical
clocks, and the directive dependencies determined by the sink
share similarities with the causalities. Unlike in distributed
systems, where the goal is to achieve global ordering for a set
of processes, NC addresses the hazard problems only within
the dependency region of an entity.

VIII. CONCLUSIONS

In this paper, we have identified the problem of hazards
in the context of a wireless sensor and actor network, and
described the associated challenges. We have discussed the
basic design philosophy needed to address hazards in an
efficient fashion. We have also proposed a localized and
fully distributed approach based on the design philosophy that
addresses this problem effectively. Finally, we have performed
extensive simulations to understand the trade-offs between the
proposed solution and two basic approaches that can also be
used for addressing hazards.

ACKNOWLEDGMENT

This work was funded in part by the National Science
Foundation under grants ECS-0225497, ECS-0428329, ANI-
0117840, and CCR-0313005.

REFERENCES

[1] I. H. Kasimoglu I. F. Akyildiz, “Wireless Sensor and Actor Networks:
Research Challenges,” in Ad Hoc Networks Journal, 2004.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey
on Sensor Networks,” in IEEE Communications Magazine, Aug. 2002,
vol. 40, pp. 102–116.

[3] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost Outdoor
Localization for Very Small Devices,” in IEEE Personal Communica-
tions, Special Issue on Smart Spaces and Environments, Oct. 2000, pp.
28–34.

[4] N. Bulusu, J. Heidemann, and D. Estrin, “Adaptive Beacon Placement,”
in Proceedings of the Twenty First International Conference on Dis-
tributed Computing Systems (ICDCS-21), Apr. 2001.

[5] S.J. Park, R. Vedantham, R. Sivakumar, and I.F. Akyildiz, “A Scalable
Approach for Reliable Downstream Data Delivery in Wireless Sensor
Networks,” in Proceedings of the international symposium on Mobile
Ad Hoc Networking and Computing (ACM MOBIHOC), May 2004.

[6] C-Y. Wan, A. Campbell, and L. Krishnamurthy, “PSFQ: A reliable
transport protocol for wireless sensor networks,” in Proceedings of the
international Workshop on Sensor Networks and Arch. (WSNA), Sept.
2002, pp. 1–11.

[7] Y. Sankarasubramaniam, O.B. Akan, and I.F. Akyilidiz, “ESRT: Event-
to-Sink Reliable Transport in wireless sensor networks,” in Proceedings
of the international symposium on Mobile Ad Hoc Networking and
Computing (ACM MOBIHOC), June 2003, pp. 177–188.

[8] R. Vedantham, Z. Zhuang, and R. Sivakumar, “Hazard Avoidance in
Wireless Sensor and Actor Networks,” in Technical Report, Dept. of
ECE, Georgia Inst. of Technology.

[9] W. Yuan, S. V. Krishnamurthy, and S. K. Tripathi, “Synchronization of
Multiple Levels of Data Fusion in Wireless Sensor Networks,” in IEEE
GLOBECOM, 2003.

[10] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava,
“Coverage Problems in Wireless Ad-hoc Sensor Networks,” in Pro-
ceedings of the IEEE conference on Computer Communications (IEEE
INFOCOM), Apr. 2001.

[11] Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides,
“Energy-efficient broadcast and multicast trees in wireless networks,”
Mobile Networks and Applications, vol. 7, no. 6, 2002.

[12] H. Gupta, S. Das, and Q. Gu, “Connected Sensor Cover: SelfOrganiza-
tion of Sensor Networks for Efficient Query Execution,” in Proceedings
of the international symposium on Mobile Ad Hoc Networking and
Computing (ACM MOBIHOC), June 2003.

[13] J.L. Hennessy and D.A. Patterson, Computer Architecture - A Quanti-
tative Approach, Third Edition, Morgan Kaufmann, 2002.

[14] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System Concepts,
Sixth Edition, John Wiley and Sons, Inc., 2001.

[15] George Coulouris, Jean Dollimore, and Tim Kindberg, Distributed
Systems: Concepts and Design, Addison-Wesley, 2001.

