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ABSTRACT
In this paper, we consider the problem of file synchronization when
a mobile host shares files with a backbone file server in a network
file system. Several diff schemes have been proposed to improve
upon the transfer overheads of conventional file synchronization
approaches which use full file transfer. These schemes compute the
binary diff of the new file with respect to the old copy at the server
and transfer the computed diff to the server for file-synchronization.
However, Lee et al. have shown that the performance of diff can
be significantly improved upon by shipping user operations as op-
posed to the data itself. Using this as motivation, we present a
purely application-unaware approach called Mimic that relies on
transferring raw user activity to the server for file synchronization.
Through a simple prototype of the proposed approach, we show
that Mimic can outperform diff under many common conditions.
We also identify conditions under which diff based approaches do
perform better than the proposed approach, but show that detection
of such conditions is straightforward, thus enabling both schemes
to be used in tandem with a mobile file system for bandwidth-
efficient file synchronization.
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D.4.3 [Operating Systems]: File Systems Management—Distributed
file systems
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1. INTRODUCTION
The bandwidth usage efficiency of the file synchronization scheme

in a distributed file system is important when the clients are con-
nected to the file server through weakly connected, low-bandwidth
links, such as in a wireless environment. An intuitive file synchro-
nization strategy for such environments is one where only the diff
or the differences between the original and updated files are sent
across to the server. The original file at the server is thus patched
with the differences. The performance of such an approach is ob-
viously better than that of a full file transfer. The low-bandwidth
file system (LBFS) is an example of a file system that uses such a
strategy [8].

However, in [5], the authors show that the performance of diff
can be improved upon considerably by adopting an operation ship-
ping strategy. Briefly, for any file created or updated through the
use of user-level shell commands, the commands, and not the diff,
are sent across to the server. The server then re-executes the com-
mands at its end to regenerate the corresponding updated files. The
authors demonstrate that the transfer size for the commands is typ-
ically much smaller than that of the diffs, and hence motivate a new
paradigm for file synchronization.

In this work, we present a similar strategy for more common
interactive desktop applications. The target class of applications
includes applications such as the Microsoft Office suite, Visio, Ac-
robat, xfig, AutoCAD, xv, etc. While the authors in [5] do iden-
tify the need for an operation shipping approach for interactive
applications, and present a solution for the same, the solution is
application-aware and requires changes to applications. In con-
trast, the strategy that we explore in this paper is fully application-
unaware, and relies on raw user-activity shipping as opposed to
activities with any higher level semantics.

The approach we present records raw user activity such as key-
board and mouse inputs at the client, maintains the records as long
as the client is disconnected from the server, ships the records to
the server during synchronization, and replays the activities at the
server. We refer to this approach as Mimic since the strategy is to
mimic the client-side user activity on the server. Mimic is not a
complete file system, but is meant to be an add-on to an underlying
file system such as LBFS or Coda [11], to reduce transfer sizes dur-
ing file synchronization. We use a simple prototype of the Mimic
strategy to show the considerable bandwidth usage benefits it can
provide when used appropriately. We also identify conditions un-
der which Mimic will not provide better performance than diff, and
hence present an integration strategy that involves both Mimic and
diff working in a loosely coupled fashion.
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Thus, the contributions of this work are twofold:

• We motivate through arguments and performance results the
need for an activity shipping based file synchronization strat-
egy for file updates performed using common interactive ap-
plications.

• We present an application-unaware strategy called Mimic that,
when loosely coupled with the file system, provides consid-
erable performance benefits in terms of file synchronization
bandwidth usage.

The rest of the paper is organized as follows: In Section 2, we
summarize the approach proposed in [5] briefly, and outline the
motivation for Mimic in the context of interactive applications. In
Section 3, we present a high level overview of Mimic, and the en-
visioned file system integration strategy. In Section 4, we describe
the key details of the Mimic approach. In Section 5, we evaluate
Mimic’s performance against that of diff. In Section 6, we discuss
some issues with the Mimic design and scope. Finally, in Section 7,
we discuss related works, and in Section 8 we conclude the paper.

2. MOTIVATION
In this section, we outline the motivation for performing activ-

ity shipping for interactive applications, and define the scope and
goals of this work. However, before we delve into the motivation,
we provide a brief summary of the operation shipping strategy pre-
sented in [5].

Note that the broad motivation for performing activity shipping,
as opposed to diff shipping, was first identified in [5]. The authors
in [5] refer to diff shipping as delta shipping or value shipping.
Moreover, the high level design of Mimic in terms of the core com-
ponents is also similar to the design presented in [5]. Through the
summary we highlight both the similarities and the differences be-
tween operation shipping and Mimic.

2.1 Operation Shipping
The authors in [5] present an application-unaware operation ship-

ping approach for non-interactive applications. The approach con-
sists of four components: (i) logging of user operations, (ii) ship-
ping of user operations to a surrogate on the server side, (iii) re-
execution of the user operations at the surrogate to regenerate the
updated file, and (iv) verify whether the regenerated file at the
server is identical to the updated file at the client.

The logging is performed by appropriately instrumenting the bash
shell [2] to notify the file system both before and after the process-
ing of the user operations. The logs such as “tar -cvf update.tar”,
are then sent across to the server side surrogate for replay during
synchronization. The surrogate replays the logs, and it is assumed
that both the software and hardware environment of the surrogate
and the client in terms of operating system, header files, and sys-
tem libraries, and other system environment variables, are iden-
tical. Once the replay is performed, the regenerated file is verified
through a fingerprinting technique [6] to ensure that it is identical to
the updated file at the client. If the first verification fails, the server
performs forward error correction (FEC) to correct non-repeatable
actions [9], [12]. Nevertheless if the second verification also fails,
the client is informed accordingly, and diff is used to synchronize
the file.

The authors also present an operation shipping strategy for in-
teractive applications, but the strategy is application-aware and re-
quires changes to the application implementation to log operations.

In summary, the motivation for Mimic is identical to the motiva-
tion for operation shipping identified in [5]: to exploit conditions

under which the encoded user activity for a file update is much
smaller in size than the changes to the file itself. However, the
application-unaware strategy presented in [5] applies only to non-
interactive applications, and still requires changes to meta-applications
such as the bash shell. In contrast, Mimic is fully application-
unaware, does not require any changes other than to the file system
itself, and applies to interactive applications. It is quite reason-
able to consider operation shipping and Mimic as co-existing ap-
proaches in a file system providing support for both non-interactive
and interactive applications. Mimic achieves its applications un-
aware property by shipping raw activity such as keystrokes and
mouse-clicks as opposed to application-aware cases.

2.2 Motivation
While we have provided a high level motivation for activity ship-

ping earlier in the section, we now present the key factors that con-
tribute to the motivation in the specific context of interactive ap-
plications. The identification of the factors serves to highlight the
commonality of the types of file updates for which Mimic will de-
liver better performance than diff.

We classify file updates for which activity shipping will deliver
better performance into two types: (i) updates where small amounts
of user-activity results in large amounts of content being added to
the file; and (ii) updates where small amounts of the user-activity
in large changes to the content of the file without necessarily in-
creasing the size of the file itself. In the rest of the section, we use
experimental results with Microsoft Word documents to highlight
the inefficacy of diff for the above classes of updates, and therein
motivate Mimic.

Activity description Activity size 
File size 

[bytes] 

diff size 

[bytes] 

Activity 

record size 

[bytes] 

Insert a line 98 keystrokes 29341 1543 236 

Insert a paragraph 476 keystrokes 29356 2111 848 

Copy and paste a paragraph 

from the same file 

6 keystrokes + 

12 mouse-clicks 
33449 1119 72 

Change the font type 

of a paragraph 
7 mouse-clicks 40611 1660 30 

 

Figure 1: Comparison between diff and activity record size

• The first class of updates is relatively straightforward to un-
derstand. An example of an update that results in a large
amount of content being added to files with minimal user-
activity is a copy and paste operation. In Figure 1, the ac-
tivity “Copy and paste a paragraph from the same file” thus
represents this class of updates. A paragraph in a 33 KB
Word document is copied, and pasted onto another location
in the document using keystrokes mouse operations. The diff
between the updated and original files amounts to approxi-
mately 1 KB. However, the activity itself, in terms of mouse-
clicks and locations, when encoded amounts to only 72 bytes.
We elaborate on a simple encoding of raw user activity in
Section 4.

• The second class of updates is relatively more non-intuitive,
particularly in the context of interactive applications. In Fig-
ure 1, for the activity “Insert a line” by keystrokes, a single
line of text is inserted into a 29 KB Word document. The
additional textual content added is approximately 80 char-
acters. However, the diff amounts to about 1.5 KB of data.
This phenomenon is also observed for the activity “Insert a
paragraph” by keystrokes, where a 5-line paragraph is typed
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into the Word document. While the textual content added is
approximately 400 characters, the diff amounts to approxi-
mately 2 KB. The interesting observation to be made in the
above results is that while the file size or textual content itself
does not change dramatically, there is considerable change in
the binary representation of the file despite the minimal user-
activity.

The reasons behind the observation is the complex file struc-
tures used by most interactive applications to provide the best
interface and services to the user. In the specific case of Mi-
crosoft Word, the application maintains each document in the
form of six different streams [7]. The main stream contains
the document header and all textual information in the doc-
ument, while the data stream contains information about all
non-OLE objects (such as figures and tables) in the docu-
ment, including their physical addresses in the binary repre-
sentation of the file. The object stream similarly maintains
information about all OLE objects (such as imported figures
and spreadsheets). A table stream maintains the structure
of the document itself, including the locations of the differ-
ent objects in the visual representation of the document, and
the relative dependencies between the objects (e.g. a figure
and wrap-around text). Finally, two summary information
streams maintain other information about the document in-
cluding timestamps.

In this complex representation of a Word document, a sin-
gle line of text insertion thus has the following impact: The
main stream is updated to contain the modified textual infor-
mation. In addition, the data and object streams are updated
to reflect the new addresses of the different objects in the
binary document file, with their positions altered due to the
insertion of the line of text in the main stream. Moreover,
the table stream also is updated to reflect all changes to the
visual representation of the document in terms of the relative
and absolute locations of the different objects in the docu-
ment. Finally, any resulting changes in other attributes of the
file including timestamps results in updates to the summary
streams. Such a multi-fold update of the document file, when
a single line of text is inserted, accounts for the substantial
size in the diff despite the minimal user-activity. Note that
such complex, and application tailored, binary representa-
tions of content is not specific to only Word, and is true for
most interactive applications today. In Section 5, we consider
other applications.

Finally, in Figure 1, for the activity “Change the font type of
a paragraph”, a paragraph is highlighted, and a font change is
effected through only mouse operations. It can be observed
that for such “meta” operations, the size of the activity itself
is much smaller than that of the diff. The reasons are again
similar to those described earlier in terms of updates to mul-
tiple streams within the file structure.

In summary, updates for which small magnitudes of user-
activity result in large additions or changes to the file’s con-
tent render activity shipping an attractive option for file syn-
chronization. In the rest of the section, we outline the key
goals of the Mimic approach for file synchronization.

2.3 Scope and Goals
In the next two sections, we present Mimic, a raw-activity ship-

ping strategy for file synchronization. Mimic is specifically tar-
geted toward reducing transfer sizes for files updated using interac-
tive applications. The goal of the Mimic design is to achieve such

reduction in transfer sizes while being fully application-unaware,
and requiring no changes to applications. We assume that the hard-
ware and software configurations of the client, and the surrogate
on the server end that will replay the user-activities, are identical.
For ease of presentation, we assume that the surrogate at the server
end is colocated with the server. While this can be a potential se-
curity concern because of client activities being executed directly
on the server, one solution is to decouple the surrogate from the
server just as in [5]. However, we do not consider such decoupling
in this paper. Also, we assume that Mimic can be interfaced with
the underlying file system at the client end.

3. MIMIC OVERVIEW
In this section, we first present a high level overview of Mimic,

and then describe how it loosely integrates with the underlying file
system. We defer details of the Mimic approach to Section 4.

Mimic is a fully application-unaware strategy that consists of
components at the client and the server respectively. At a high level,
Mimic captures raw user-activity at the client that pertains to shared
files, maintains such activity on a per-file basis, and ships the raw-
activity to the server during file synchronization. The server then
replays the activities to regenerate the updated files at the client.
The realization of the above functionalities in Mimic are done with
the goals of reducing the transfer file size, minimizing latencies
involved, and incurring minimal overheads in terms of usage of
system resources.

Mimic requires interfacing with both the underlying file system
and window manager at the client, and with the window manager at
the server end. The interfacing with the window manager, however,
does not require any changes to the operating system, and instead is
achievable through standard interfaces that most window managers
export.

Briefly, the primary components of the Mimic approach are:

1. Record: This component is responsible for the effective cap-
turing of raw-activity at the client end, classifying the activ-
ity, and maintaining per-shared-file records.

2. Replay: This component is responsible for replaying the ac-
tivity records in the fastest manner possible while ensuring
correctness.

3. Verification: Finally, this component is responsible for ver-
ifying whether the replay based re-creation of an updated
file is correct. This component includes both forward error
correction to correct non-repeatable actions (such as times-
tamps), and detecting any errors that arise due to improper
playback. Since Mimic uses a verification scheme [9] that is
identical to the one presented in [5], we do not elaborate on
this component of Mimic any further. Interested readers are
referred to [5].

While we elaborate on the realization of the record and replay
mechanisms in detail in Section 4, in the rest of the section we
present details of the assumed integration of Mimic with the under-
lying file system. For purposes of this discussion, we assume that
the underlying file system is Coda, which is in turn equipped with
a diff based synchronization strategy like the one presented in [8].
In the rest of the paper, we refer to the above file system as simply
Coda.

3.1 Integration with File System
We now describe the loose coupling that Mimic requires with the

underlying file system at the client. Mimic does not require any in-
terfacing with the file system at the server. We refer to the coupling
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open(filename,mode,process_handle)

close(filename)
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getEnvironment( )
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getClipboard( )

SystemMessage

executeDefaultApplication( )

waitForProcessIdle( )

playActivity( )

setEnvironment( )

setClipboard( )

Operating
System

Figure 2: Mimic-file system-window manager interfaces

as loose because Mimic currently relies only on informative call-
backs from the file system that is essential for its operations, and
requires minimal changes to the file system design and logic. In
Section 6, we discuss how Mimic can be tightly coupled with the
file system for more effective performance.

The interface between Mimic and the underlying file system con-
sists of six function calls (open( ), close( ), rename( ), delete( ), fin-
ish( ), and synch( )), all exported by Mimic, and invoked by the file
system. The first five functions are informative in nature, and re-
quire no logic change inside the file system other than their mere
invocation. The sixth function is used by the file system to prefer-
entially use Mimic for the synchronization process, but falls back
to its native synchronization mechanism if Mimic indicates a fail-
ure in its synchronization attempt. We now present the interface
in two stages, based upon which aspect of Mimic the functions are
useful for.

• The first set of functions which are part of the interface help
in the recording component of Mimic, and consist of open( ),
close( ), rename( ), and delete( ). All four functions are purely
informative in nature, and are used by the file system to in-
form Mimic about the corresponding actions. The open( )
function is used by the file system to inform Mimic about
the opening of a shared file, and its parameters consist of
the filename, opening-mode (read, write, or append), and the
process-handle for the process that is performing the open.
Mimic uses this information to initialize its recording activity
pertaining to that file. In Section 4, we explain the filtering
process that enables Mimic to not maintain records for files
not being updated interactively, opened in read-only mode,
etc. The close( ), rename( ), and delete( ) functions all con-
sist of the filename as the parameter (rename( ) has both the
old and new file names), and are used by Mimic to update
the activity records corresponding to the file being closed,
renamed, or deleted.

• The second set of functions that Mimic requires the file sys-
tem to use consists of the finish( ) and synch( ) functions,
which are used during the actual file system initiated syn-

chronization process. For every file that needs to be synchro-
nized, the file system preferentially calls the synch( ) function
with the filename, and the diff size as parameters. The return
value for the synch( ) call indicates to the file system whether
or not Mimic’s synchronization process was a success. Only
in the event of a failure does the file system initiate its na-
tive synchronization process. We elaborate on the specific
conditions under which Mimic will return an error in Section
4. Finally, the finish( ) function is used by the file system
to indicate to Mimic the termination of the synchronization
process, after which Mimic performs simple clean-up opera-
tions.

Due to the purely informative nature of five of the functions (ex-
cept synch( )), no changes are required in the file system logic when
the functions are called. The functions are merely invoked by the
file system when it is performing an open, close, rename, delete,
and completion of synchronization respectively. The only change
in the logic required when the synch( ) function is invoked is a
check for the return value of the function call, and conditionally
invoking the native synchronization process.

4. MIMIC APPROACH
In this section, we present the details of Mimic mechanisms at

the client and server respectively. Broadly, the recording and ship-
ping tasks are performed at the client, while the replaying and ver-
ification tasks are performed at the server. We explain Mimic’s in-
terfacing with the window manager through generic function names.
Interested readers can refer to [13] for a mapping of the generic
function names to the corresponding native function names in Mi-
crosoft Windows and X Window.

4.1 Mimic Client

4.1.1 Data Structures
Mimic maintains three key data structures at the client:

• The window-handle table is used to maintain the mapping
between window-handles and filenames. Multiple window-
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handles could potentially map onto a single filename due to
the complex windowing structures used by interactive appli-
cations today. For example, a single Microsoft Word docu-
ment window is actually comprised of several windows, in-
cluding the main text window and other menu related win-
dows. The window-handle table is populated during the ini-
tialization process we describe next, and is used to map raw
input activity to the appropriate files.

ED AD
1

AD
2

(a) FAR structure

MD
1

MD
2

MD
3

Fingerprint

MD
4

MD
5

File
Information

(b) MAR structure

Figure 3: FAR and MAR structures

• The file activity records (FARs) are used to physically record
the raw user activity. Each shared file that the user updates
has its own FAR. The structure for a FAR is shown in Figure
3. It consists of the file information including the name and
size of the file, followed by an environment descriptor (ED),
and a sequence of activity descriptors (ADs). The ED cap-
tures the initial state of the system environment in terms of
the keyboard layout, screen resolution, and color depth. Fig-
ure 4(c) illustrates the structure of the ED. Each AD consists
of the type of activity, and the value of the activity. Figure
4(b) presents the different types of ADs.

• Finally, the meta activity record (MAR) is used to record any
system configuration related activities. Specifically, when
the user performs activities that change the system config-
uration such as the keyboard layout and screen resolution,
such activities are recorded in the the MAR through meta
descriptors (MDs). Note that any meta activity performed
can also be realized through adding EDs to all FARs. How-
ever, the MAR allows for a more effective way of register-
ing known meta activity, as only the concerned environment
variable state needs to be recorded.

4.1.2 Initialization
When a file is opened through a file system call, the file system

invokes the open( ) function. When Mimic receives the call, and
finds the file to have been opened in the write or update modes,
it maps the process handle to the corresponding set of window
handles through a processToWindowHandles( ) call to the window
manager. It then registers the returned window handles in the window-
handle table with the corresponding file name.

If Mimic is unable to retrieve the window handles because the
file is not being processed with an interactive application, Mimic
simply ignores the open( ) call. This implicitly ensures that Mimic
does not handle such files. Note that any updates to such files will
be handled by the native file synchronization strategy of the under-
lying file system.

Once the window-handle table is populated, Mimic also creates
the FAR for the file if the FAR does not exist. If the FAR exists
but is currently closed, it is re-opened. If the corresponding FAR
is already opened, Mimic infers an error and aborts maintenance
of the FAR for the file. Once the FAR is opened, an ED is cre-
ated by fetching the state of the environment variables through a

getEnvironment( ) call to the window manager. This concludes the
initialization phase for the file in Mimic.

4.1.3 Recording
Whenever user activity is performed, the activity is encoded in

the form of system messages, and inserted into the system message
queue. Mimic registers with the window manager through the trap-
SystemMessage( ) interface to receive all dequeued messages from
the queue. By default, without the trapping of the messages, the
messages will be dequeued by the window manager, demultiplexed
based on the window handle, and queued onto a thread-queue that
is maintained on a per-window basis. An example format of the
input system message called EVENTMSG in Windows operating
systems is presented in Figure 4(a) [7].

When Mimic intercepts system messages, it passes the message
onto the message monitor or the environment monitor based on
whether the message corresponds to a specific file, or is a meta
level system configuration message. Note that every system mes-
sage is tagged with this information in the Windows operating sys-
tem. However, this is not mandatory for the operational correctness
of Mimic since all system environment messages will arrive with a
window handle of zero, and hence can be detected accordingly.

When the message monitor receives a message, it looks up the
corresponding filename in the window-handle table, and if success-
ful in the lookup appends the message in the format of an AD into
the corresponding FAR as shown in Figure 4(b). If the window-
handle is not found in the table, Mimic skips the record phase, and
directly queues the message onto the corresponding thread-queue.
When the environment monitor receives a message, it appends the
message to the MAR in the format of an MD as shown in Figure
4(c). In addition, a pointer to the MD is appended to every open
FAR.

Finally, a special type of message that needs to be handled uniquely
in Mimic is a paste message, as the message requires to be cap-
ture along with the corresponding clipboard information. The en-
vironment monitor thus, upon detecting a system paste message,
obtains the clipboard information through the getClipBoard( ) win-
dow manager function call, and forwards the content to the mes-
sage monitor, which then appends it to the FAR. Although Mimic
handles clipboard-based paste operations in the above manner, in
Section 5, we show that Mimic is efficient only for those paste op-
erations for which the content is copied or cut from the same file,
and thus the clipboard content is not essential.

4.1.4 Bookkeeping
The rename( ), close( ), delete( ), finish( ) interface function calls

invoked by the file system triggers appropriate bookkeeping oper-
ations in Mimic. For the close( ) and delete( ) calls, the actions
involve closing and deleting the corresponding FARs respectively.
The rename( ) function call, however, is handled differently. If the
rename is for a file created since the last synchronization, Mimic
renames the filename in the corresponding FAR. However, if the
rename is for an already existing file, Mimic disables the FAR
maintenance for the file, and allows the native file synchronization
process to handle the file. Note that the FAR is a record of the in-
cremental activity performed since the file was opened. Hence, if a
FAR is maintained for a file fa, and fa is later renamed to fb, the
server cannot recreate the updated fb by replaying the FAR for fa

on the original copy of fb.
Finally, when the finish( ) call is received from the file system

signifying the end of a synchronization session, Mimic cleans up its
data structures by deleting all the FARs and the MAR, and clearing
up its window-handle table.
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Figure 4: EVENTMSG and descriptor structures

4.1.5 Shipping
When Mimic receives a synch( ) call from the file system, it goes

through a two stage check to see if it can proceed with the syn-
chronization. It first checks to see if a FAR has been maintained
for the file. It then checks to see if the size of the FAR is less than
that of the diff the file system will have to send as part of the native
synchronization process. If the answer to either of the two checks
is negative, Mimic returns a SYNCH FAIL message back to the file
system. The file system, as outlined in Section 4, will then proceed
with its native synchronization strategy.

If both checks are successful, Mimic ships the corresponding
FAR and MAR to the server. Note that the MAR needs to be
shipped exactly once for a synchronization session. When Mimic
attempts the synchronization, it forwards the result of the server
side verification process as the return value for the synch( ) call.

4.2 Mimic Server
Each replaying at the Mimic server requires the FAR correspond-

ing to the file being synchronized, and the MAR since the last syn-
chronization.

4.2.1 Initialization
During the initialization phase of the playback, Mimic uses the

ED at the head of the FAR to set the environment variables at the
server. Once the environment variable is set, Mimic invokes the
interactive application corresponding to the file through the execut-
eDefaultApplication( ) interface to the operating system.

4.2.2 Replaying
Once the initialization process is complete, the system focus is

then shifted to the application’s window, the ADs read one record
at a time, and played through the playActivity( ) interface of the
window manager. Recall that a single FAR can have multiple in-
stances of EDs interspersed between multiple ADs. Such a phe-
nomenon will occur when a file is opened-updated-closed multi-
ple times between two synchronization sessions. For every open,
Mimic’s record component would have appended a new ED to the
FAR. When the replay process thus encounters EDs in the FAR, it
processes it just like the first ED and appropriately resets the envi-
ronment variables.

Also, when an AD is a pointer to an MD in the MAR, the cor-
responding MD in MAR is looked up, and the corresponding en-
vironment variable is set appropriately. Thus, the time-wise inte-

gration of the FAR and MAR activities happens implicitly through
the explicit pointers from the FAR to the appropriate entries in the
MAR.

A critical issue with the Mimic synchronization process is the
replay time at the server. At worst, the replay time for a file will
be equal to the real time taken by the user to update the file at the
client. Obviously, this is undesirable. At the same time, playing
the records too fast can result in the skipping or mis-interpretation
of user activity in the replay process. Specifically, problems may
arise when the application is fed with inputs at a rate greater than
the rate at which the actual user inputs were performed. This can
be explained as follows. Inputs to an application can be thought of
to change the state of the application. Also, certain inputs might be
relevant to the application only for particular states, or might be in-
terpreted differently for different states. Thus, when the replay rate
is faster than the actual user input rate, inputs might be either ig-
nored by the application, or might be wrongly interpreted. Consider
an example with the following sequence of user-activities: (i) user
right-clicks mouse in a Word document, (ii) moves pointer mouse
to “Paste”, and (iii) left-clicks on “Paste”. The correct application
state for the latter two inputs are: “application with the appropriate
pop-up window open”, and “application with the pop-up window
open, and mouse focus on Paste”, respectively. If the replay is per-
formed faster than the rate of change of application state, the latter
two inputs might be delivered to the application before the pop-up
window is opened, in which case the correct activities will not be
executed.

Thus, the challenge is to replay the records as fast as possi-
ble without introducing errors due to activity skipping, or mis-
interpretation. Mimic addresses this challenge by explicitly mon-
itoring the process CPU utilization after every message playback
through the waitForProcessIdle( ) interface to the operating system.
Only when the relevant process is idle does Mimic playback the
next AD. In Section 5 we show how Mimic’s latency is thus quite
reasonable given the bandwidth usage benefits.

4.2.3 Verification
After all ADs in the FAR are played back at the server, the cor-

responding application is terminated, and the verification process
is begun. The verification process, as mentioned in Section 4, is
identical to the three phase - file size check, forward error correc-
tion, and fingerprinting - verification process presented in [5], and
hence we do not delve into it any further. If the verification pro-
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cess fails, the Mimic server returns a SYNCH FAIL message to the
Mimic client, which then propagates it to the local file system.

5. PERFORMANCE EVALUATION
In this section, we use a simple prototype of Mimic on Microsoft

Windows platform to evaluate its performance against that of diff.
We primarily focus on the transfer size overheads and latency as
the metrics for the comparison.

5.1 Experimental Setup

• Network: We consider wireless wide area networks (WWANs)
as a representative of weakly connected networks in our ex-
periments. The client is connected to the network through
a CDMA2000-1X cellular network. The measured effective
data rate on the WWAN interfaces is about 17 Kbps, and
the round-trip time between the client and the server is about
300ms.

• Hosts: The mobile client used in the experiments is a HP
Pavilion N5430 laptop computer with a 850 MHz AMD Duron
CPU, 128 MB RAM, and a Sprint PCS Merlin C210 WWAN
network interface card. The server is a Dell Dimension 4400
desktop computer with a 1.6 GHz Intel Pentium IV CPU,
256 MB RAM, and a 3COM 10/100 Mbps 3C905CX-TXM
NIC, and it runs Windows 2000 Advanced Server operating
system. Both the client and the server are equipped with Mi-
crosoft Office 2000.

Application 

Index 
Content Feature Application 

W1 text-based keyboard intensive Word 

W2 text + other keyboard and mouse PowerPoint 

W3 structured text keyboard and mouse Excel 

W4 graphics mouse intensive Visio 

 

Figure 5: Application index for experiments

• Applications: We use Microsoft Office suite of applications
for the experiments. Specifically, we use Word, PowerPoint,
Excel, and Visio for word-processing, presentation, spread-
sheet, and graphic editing, respectively. Figure 5 shows the
task labels that are used later in this Section for convenience.
Figure 6 describes the different operations and the corre-
sponding indices which will be used in the subsequent re-
sults.

• Metrics: For all the experiments, we use 1024×768 (XGA)
screen display resolution. We measure the transfer size and
latency as performance metrics. Note that the total synchro-
nization time of Mimic is composed of three components: (i)
the transfer latency for the FARs and MAR, (ii) the playback
time, and (iii) the verification time. On the other hand, the
synchronization time of diff is composed of (i) the time taken
by diff to compute the differential patch, (ii) the transfer la-
tency for the patch, and (iii) the time take at the server to use
the patch to recreate the updated file.

• Other information: Windows operating systems uses Object
Linking and Embedding (OLE), which provides means for
integrating objects from diverse applications [7]. An object is
a block of information that could come from a word proces-
sor, a spreadsheet, a graphic content, an audio clip, or an ex-
ecutable program itself. To provide compatibility with other

applications, the content copied to the clipboard is stored in
the form, which supports OLE taking much larger space than
the original content in the memory. However, when the ob-
ject is integrated with an application file, it undergoes com-
pacting whereby the size of the file becomes significantly less
than that in the memory. We assume that all data except diff,
which is already compressed by its own algorithm, are com-
pressed before being transmitted.

In the experiments, we assume that there is no environmental
change while recording and replaying.

5.2 Transfer Size Performance

5.2.1 Impact of User Activity Type
Figure 7 presents the experiment results of the transfer size for

various user activity types in (W1-W4).

• Insert: In Figure 7, it can be seen that the transfer size in
Mimic is usually equal or smaller than that for diff when an
insertion (A1-A3) is performed. It is because each user input
activity is translated into more complicated operations within
the applications, and as a result the size of binary change
becomes much larger than the input activity size.

The figures also show that the update size in Mimic is always
proportional to the magnitude of insertion in any application,
while the diff size is unpredictable in text-centric applications
(W1-W2). As explained in Section 2, word-processing and
presentation applications have much more complicated file
structures in order to embed various types of external ob-
jects. Hence, regardless of user activity size, each insertion
affects the entire file structure. For example, the location of
an insertion is one of the main factors that decides the magni-
tude of file structure change. When a character is inserted in
the first page of a document, its diff overhead can be several
times larger than that of a similar insertion in the last page of
the document.

On the contrary, the diff update size in graphic and spread-
sheet applications (W3-W4) shows more modest performance
improvements for Mimic. It is because those applications
employ relatively simpler file structures and each insertion is
translated simply as an addition of objects, paving the way
for reasonable overheads when using diff.

• Modify: Files can be modified by changing either the at-
tribute of the content such as font type, or the content it-
self. In the following experiments, we consider only the lat-
ter. This modifications consist of a combinations of multiple
deletions and insertions. The former type of file modification
is classified as meta data change, and explained later.

In Figure 7, it is shown that the Mimic overhead is smaller
than that of diff for most modification operations (A4-A5).
However, the diff size in (W1-W2) does not increase linearly
with the amount of activity as is the case with Mimic’s record
size for the same reason provided for the effect of insertions.

On the other hand, the modifications in (W3-W4) show quite
different results from those of insertions. Especially in (W4),
the diff update size of modifications is even larger than that
of insertions, while the Mimic overhead has the same size.
This is because in graphic applications the size of an object
is proportional to the complexity of the object.
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Size of Change Activity 

Type 

Activity 

Index 
W1 W2 W3 W4 

Initial file state 5 full pages with 176 lines 8 full slides 83 rows 1 page with 10 small graphs 

A1 1 line (0.6%) 1 new blank slide 1 row (1.2%) 1 new blank page 

A2 1 paragraph (3%) 1 paragraph (6%) 10 rows (12%) 1 small graph (10%) Insert 

A3 1 full page (20%) 1 text slide  (17%) 50 rows (60%) 1 large graph (17%) 

A4 1 paragraph (3%) 1 paragraph (6%) 1 row (1.2%) 1 small graph (10%) 
Modify 

A5 1 full page (20%) 1 slide (17%) 10 rows (12%) 1 large graph (17%) 

A6 1 paragraph (3%) 1 paragraph (6%) 10 rows (12%) 1 small graph (10%) 
Delete 

A7 1 full page (20%) 
1 slide with a large picture 

(17%) 
50 rows (60%) 1 small graph (17%) 

A8 
1 paragraph from the same 

file (3%) 

1 paragraph from the same 

file (6%) 

1 row from the same file 

(1.2%) 

1 small graph from the same 

file (10%) 

A9 
1 full page from the same 

file (20%) 

1 page from the same file 

(17%) 

10 rows from the same file 

(12%) 

1 large graph from the same 

file (17%) 

A10 
1 page of an external file 

(20%) 

1 page with a picture from 

an external file (17%) 

1 row from an external file 

(1.2%) 

1 small graph from an 

external file (10%) 

Copy 

and 

paste 

A11 
1 picture from an external 

file 

1 picture from an external 

file 

10 rows from an external 

file (12%) 

1 small picture from an 

external file 

Meta 

data 
A12 

Change the font type of a 

paragraph 

Change the font type of a 

slide 

Change the font type of a 

row 

Change the font type of a 

graph 

 

Figure 6: User activity index for experiments

• Delete: When a user performs a delete or copy operation
(A6-A7), the file structure can be dramatically changed even
for a few number of deletes. Content deletions can be cat-
egorized into two types, full paragraph deletion and partial
paragraph deletion. Generally, within the file structure, file
contents are stored in paragraphs with each paragraph having
its own content attributes. Therefore, if only some parts of a
paragraph are removed, the file size reduction is not as large
as that in full paragraph deletions. However, both cases are
considered in the experiments.

Figure 7 shows that Mimic’s overhead is significantly smaller
compared to the diff size in all the applications (W1-W4).
This is because the deletion operations incur relatively large
changes in the file structure while Mimic’s overhead is pro-
portional only to the activity size.

• Copy and Paste: Copying content means converting the con-
tent, which exists inside the file itself or externally, into an-
other form that have compatibility with any other applica-
tions and loading it into the memory as a form of meta data.
Once the content is copied into the clipboard, it can be pasted
into any application.

In the figure, the Mimic overhead for internal copying and
pasting (A8-A9) is considerably smaller than that of diff in
all applications (W1-W4). The reason is as follows. When an
object that exists inside the same file is copied, Mimic does
not have to send the content of the clipboard to the server,
and instead it lets the object to be copied automatically at the
server through the user activity itself. Therefore, it eliminates
the clipboard overhead as seen in Figure 7.

However, if the object is copied externally (A10-A11), the
Mimic overhead is significantly increased in (W1-W4). This
is because Mimic captures and compresses the content of the

clipboard as binary data, and then transmits it to the server
along with the FAR. However, the copied objects that follow
the OLE format have much larger size in the memory than
the originally generated objects. In this scenario, diff usually
shows better performance than Mimic due to large overheads
for transferring the clipboard content.

• Meta Data: A user may change the configuration of textual
information such as the font size or font type instead of the
text content itself.

In the experiments, modifications to meta data (A12) change
the file structures drastically even though the file size change
itself is small. It can be seen that Mimic shows much better
performance than diff in all the applications (W1-W4). This
is because changes to meta data are similar in nature to sim-
ple text insertion (both affect the entire file structure), with
potentially a larger impact.

5.2.2 Impact of Application Type

• Word-processing: Word-processing applications are basically
text-centric programs that are able to embed various types of
external objects such as pictures, graphs, tables, and equa-
tions. Hence, the file structure consists of a large number of
data objects and their corresponding links. In Figure 7(a),
diff in (W1) shows somewhat unpredictable performance re-
sults in (A1-A5) than Mimic due to its complicated file struc-
ture. Again, for activities (A6-A9,A12), the improvement
brought about by Mimic is considerable. However, when a
user copies a picture from another program, due to the clip-
board problem discussed earlier, Mimic’s overhead is dra-
matically increased.
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• Presentation: Presentation programs are popular applications
for visual presentation where a user intends to present vari-
ous types of data. Copying objects from other applications is
one of the most important functions in addition to text edit-
ing. In Figure 7(b), in most cases of text editing and meta
data change, Mimic shows equal or better performance than
diff.

• Spreadsheet: A spreadsheet file consists of hybrid objects
that are numerical values and graphs. In the experiment, we
consider only the former type of data. Figure 7(c) shows the
transfer size per user activity in Excel. Again, several activi-
ties including (A6-A9), and (A12) result in Mimic exhibiting
large benefits in the transfer file size.

However, Mimic in (W3) does not show the best performance
for insertions and modifications (A1-A5) due to lots of re-
dundant messages. Basically, a spreadsheet file visually con-
sists of lots of cells, and a user usually moves the cursor to
another cell using mouse-clicks. This is the reason why the
Mimic size in (W3) is relatively much larger that that in (W1-
W2) even though (W3) is a text-based application.

While the external copy activities are detrimental to Mimic’s
performance as usual, the results for activity C3 is also in-
teresting. Based on the results in the figure, it can be ob-
served that when the degree of user activity is a substantial
portion of the actual content of the file (20% in these experi-
ments), Mimic’s performance will start equaling that of diff,
and sometimes even become worse.

• Graphic: In Figure 7(d), the performance of Mimic is al-
ways significantly better that that of diff. This is because
graphic editors manage various complicated objects that in-
clude large number of environmental data. For example,
when a user draws a circle, the circle has many parameters
related to its setting such as display priority with a respect to
the other objects or grouping with the other objects. Further
its binary level complexity is much higher than text based
data.

5.2.3 Impact of Update Interval
Figure 9 shows the overhead results with different update in-

tervals when a user accesses multiple files (W1,W4) spending the
same time per file, and performs various input activities. The input
rate is about 200 operations per minute for (W1) and 85 operations
per minute for (W4). The dominant operations used are insertions.

It can be observed that both Mimic and diff overhead increases
in proportion to the update interval for mixed activities. This is
because the overall overhead is dominated by the transfer size of
(W4), whose overhead is increases almost linearly with a larger
interval. Thus, as the interval becomes larger, the overhead differ-
ence is also increased linearly. In the experiments, Mimic reduces
the size of overhead by about 40%.

5.2.4 Summary
In Figure 7, it can be seen that the transfer size in Mimic is gen-

erally equal or smaller than that in diff except when copying from
outside the file. Overall performance in diff and Mimic can be char-
acterized as follows.

Generally, Mimic’s overhead is proportional only to the activity
size. However, there are some exceptions, in which even Mimic
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Figure 9: Transfer size for large-scale user activity

overheads do not seem to be proportional to the magnitude of user
activity, such as copying and pasting from an external source. Sim-
ilarly, delete or modify operations can incur smaller overheads than
their insert counterparts for the same magnitude of user activity.

Equally interestingly, the single line insertion (A1) in diff con-
sumes more bandwidth than a single paragraph insertion (A2) in
Figure 7. This phenomenon is again due to the impact of application-
specific storage semantics as discussed in Section 2.

5.3 Latency Performance
The synchronization latency of Mimic generally depends on the

playback performance, which is decided by overall system capabil-
ity such as CPU processing power. In the experiments, we assume
that a user types about 200 characters per minute. The CPU idle
check based playback mechanism in Mimic results in a maximum
replaying speed of approximately 90 times the original speed in the
experiments. If the server is equipped with more processing power,
the maximum playback speed can further be increased, and the la-
tency thus reduced. Figure 8 is the latency results for (W1-W4)
when the synchronization is performed over a WWAN.

5.3.1 Impact of User Activity Type
In the experiments, for small insertions, deletions, internal copies,

and meta data changes (A1,A6-A9,A12), Mimic performs better in
terms of latency. Even though the latency in Mimic includes its
playback time besides transmission time, its total update time does
not exceed that of diff because the benefit of small transfer size for
those operations is larger than playback overhead.

However, for the remaining types of activities such as large inser-
tions, modifications, and external copies (A3-A5,A10-A11), Mimic
performs worse than diff in latency in (W1-W3). Especially, mod-
erate insertions (A2) in Mimic shows larger latencies even though
its overhead is smaller because the playback latency becomes rel-
atively large. Hence, if the transfer size itself in Mimic is already
larger than that of diff, Mimic cannot show better latency perfor-
mance.

This brings out an interesting trade-off: Can increase in laten-
cies be tolerated if it reduces the total transfer size? For WWANs
especially, where users may have to pay on a per-MB basis, this is
arguably so.
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5.3.2 Impact of Application Type
In the experiments, the latency performance in Mimic follows

the trend of the transfer size performance approximately because
the latency is closely relevant to the transfer size.

Finally, in Figure 8(d), Mimic shows overall better performance
than diff, and it is because of both the lower transfer sizes, and the
faster replaying speed used by Mimic. Hence, Mimic brings signif-
icantly larger benefits for such a mouse-centric graphic application
that has a large ratio of file change to activity size.

5.4 System Overheads
Recording and CPU utilization monitoring are important com-

ponents in Mimic. However, Mimic subsystems consume only a
negligible portion of the system resources. In our experiments, the
average CPU utilization for the recording process is less than 1%,
and memory usage is about 4 MB. This is small compared to the
memory used by an application such as Microsoft Word that can
occupy up to 20 MB of memory and up to 50% of CPU utilization,
when active.

6. OPEN ISSUES

• The Mimic approach currently works for applications, for
which every file processing window has its own unique win-
dow handle. However, for applications where a single win-
dow can contain multiple file processing contexts, Mimic
will simply revert back to the native file synchronization (al-
ready open FARs will be indexed, and hence the condition
detected). While most interactive applications do not fall un-
der this category of applications, there do exist applications
which exhibit this phenomenon. Examples include the emacs
text editor where multiple files can be manipulated within
the same window, and it is the application that keeps track
of which file is currently in context. Another class of appli-
cations that Mimic currently does not handle is one where
the applications, in the context of a single thread, manipu-
late multiple files. This condition would again be detected
when already opened FARs need to be opened again, and
the synchronization of the files will be handled by the native
synchronization process. We currently investigate how such
applications can be handled.

• Mimic currently does not support synchronization of files,
the updates of which depend on the updates of other shared
files. As an example, consider the following sequence of ac-
tivities: (i) the user opens shared file A, which is a Word
document, and begins updating it; (ii) without closing file A,
the user then opens shared file B, which is a Visio graphic
file, and updates it, saves it, and closes it; (iii) the user then
returns back to file A, and inserts the Visio graphic file as
an embedded object in the Word document. When such file
inter-dependencies exist, the replay of the dependent files
should be done simultaneously and chronologically. How-
ever, the challenge is to be able to detect such inter-dependencies
even as they are created. While a time-ordered playback of
all FARs at the same time would not require such detection,
we are currently investigating ways of detecting the depen-
dencies so that only dependent files need to be played back
together. A more difficult problem is when such dependen-
cies exist between shared and non-shared files. Mimic does
not handle such dependencies either.

• In Section 3, we described the interface between Mimic and
the underlying file system. Even though Mimic has been de-

signed to be loosely coupled with the file system, it is con-
ceivable that a tightly coupled integration with the file system
can actually improve performance. For example, decisions
between FARs and diffs can be taken at a smaller granular-
ity than between two consecutive instances of file synchro-
nization. Our ongoing work is investigating such a tightly
coupled integration with the file system.

• The Mimic design requires that the operating environment at
the client and the server be the same in terms of the operat-
ing system, system settings such as screen resolution decided
by the hardware, and application types and versions. This is
because of the fact that the interpretation of raw user activ-
ity in terms of keyboard and mouse inputs interpretation is
closely dependent on the operating environment of the sys-
tem. There are multiple levels of complexity in tackling en-
vironment synchronization:

1. The initial environment of the client and the server is
the same before any user-activity begins, and the user’s
activity is restricted to solely the context of the file,
and no changes are made to the operating environment.
This is the simplest scenario where operating environ-
ment need not be captured for accurate playback of user
activity. The FAR is sufficient to tackle this class of up-
dates.

2. The next level of complexity is when the user changes
not just the file’s content, but also the settings of the
application that is used to update the file. An example
of the latter class of updates can be a reorganization or
customization of the application menus. Such activities
in Mimic are also captured as part of the FAR, and are
replayed as is at the server.

3. The third level of complexity is when the user changes
the operating environment beyond the scope of the file’s
content or the processing application. A good example
of such an update is a change of the keyboard layout,
or the screen resolution. Such changes in Mimic are
recorded as part of the MAR, as the changes are inde-
pendent of any specific file, and will impact all files
that are updated from that point onward. The time-
wise integrated FAR/MAR replay at the server ensures
that such meta-activities are also reflected in the correct
recreation of files.

4. Finally, the most complex scenario is when the initial
desktop environment settings are different at the client
and the server. This requires the synchronization of the
environment before starting the Mimic process in the
first place, so that subsequent FAR/MAR playbacks can
successfully recreate any activities at the client. Most
operating environments have system defining files (eg.
Word.pip, PowerPoi.pip, etc.) that can be shipped of-
fline to the server to achieve such synchronization.

• Conflict resolution is necessary for environments where a
single shared file can be manipulated by different clients at
the same time. While simple conflict resolution techniques
can involve prioritized merging (where one client is given
priority over the others), or latest update merging (where the
latest update is given preference), most conflict resolutions
might have to be performed through manual intervention. We
believe that Mimic’s user-activity replay technique is more
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amenable to such manual conflict resolutions. This is be-
cause of the fact that conflict decisions can now be performed
at a semantic level that is understandable by the user (e.g. do
I cut this paragraph or not?), as opposed to at a binary level.
We are currently exploring these benefits of Mimic in more
detail.

• The Mimic file synchronization scheme is not necessarily ap-
plicable only for upstream synchronization (client to server),
and can be used for downstream synchronization (server to
client) as well. However, two issues render the use of Mimic
less attractive in the downstream direction when compared to
the upstream direction: (i) The downstream bandwidths are
typically much larger than the upstream bandwidths in most
WWAN environments, rendering the savings in bandwidth
the Mimic delivers less critical; and (ii) The computational
and latency overheads of Mimic might be less tolerable when
the replaying is performed by the client itself. Note that when
the replay processing is ongoing, the user will be unable to
actively work on the client.

• We have used Microsoft Office suite of applications for eval-
uating the performance of Mimic. These are representative of
binary file formats and we have shown that Mimic achieves
smaller overhead compared to diff based schemes for such
file formats. For other file formats such as text-based formats
(eg. XML), Mimic will not achieve such high improvements
as in the case of non-text based formats such as Microsoft
PowerPoint.

7. RELATED WORKS
While we have discussed the operation shipping strategy pro-

posed in Section 2, we now briefly discuss two other related works
that pertain to the problem studied in this paper.

The Low-bandwidth network file system (LBFS) [8] exploits
cross-file similarities between files just as the Unix command diff
does for text files. It exploits the fact that updated files often con-
tain a number of segments in common with previous versions of
the same files. But, the patching algorithm is different. The LBFS
file server divides the files into chunks and indexes a large persis-
tent file cache. When transferring a file, LBFS identifies chunks of
data that the server already has. Then, the client sends only non-
overlapped chunks to the server. Off-the-shelf software packages
that compute diffs are also available, and examples include xDelta
[14], .RTPatch [10], exeDiff [1], and BSDiff [3]. However, all such
strategies will have the same limitations identified earlier in the pa-
per for diff based approaches.

The Prayer file system (PFS) [4] also performs differential up-
dates, but requires applications to store data in a pre-specified file
format. Once applications are adapted to store data as records with
a given template, synchronization is performed by shipping only
records that have been updated. However, the strategy requires full
application support, and the authors do not explore whether or not
the proposed approach is feasible beyond simple applications such
as e-mail.

8. CONCLUSIONS
In this paper, we consider the problem of file synchronization

when a mobile host shares files with a backbone file server in a
network file system. We show that diff based file synchronization
schemes incur substantially more overheads than necessary. We
then propose an application-independent approach called Mimic
that relies on transferring user activity records to the server, where

the new file is recreated through a playback of the user activity on
the old copy of the file. We show that Mimic performs much better
than diff in most scenarios in terms of the transfer file sizes. The
trade-off is that the latency incurred by Mimic due to its replay
mechanism can be larger than the overall latency incurred by diff
schemes. We also identify some conditions under which Mimic
incurs more transfer size overheads than diff. Despite the trade-
offs, we conclude that Mimic can be used in tandem with diff to
substantially improve file synchronization performance, especially
when the bandwidth available on the network connection is low and
expensive.
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