

A Scalable Approach for Reliable Downstream Data Delivery in Wireless Sensor Networks

Seung-Jong Park Ramanuja Vedantham Raghupathy Sivakumar Ian F. Akyildiz

GNAN Research Group School of Electrical and Computer Engineering Georgia Institute of Technology http://www.ece.gatech.edu/research/GNAN/

Introduction

- WSN is a multi-hop wireless network consisting of
 - Sink: central coordination entity that sends queries
 - Sensors: monitor phenomena and reports to sink
- Applications military, environment monitoring, biomedical, other civilian applications
- Critical applications might require communication reliability
- Reliability cannot be taken for granted
 - Random wireless losses
 - Broadcast storm
 - Reverse path contention

Downstream Reliability in Sensor Networks

Problem Definition

- A sink should deliver data to static sensors reliably
- Message considerations
 - Queries, Query-data, Control Code
- Scope of delivery considerations
 - Delivery to an entire area
 - Delivery to a sub-area
 - Delivery to the minimum # of nodes
 - Delivery to p% of nodes
- Environment considerations
 - Limited energy, low bandwidth, high node density, frequent node failures, no global node identification

Efficient loss recovery solution that addresses the above considerations

Design Preliminaries

- Packet forwarding
 - How to forward packets?
 - In-sequence [PSFQ] or out-of-sequence forwarding
 - Out-of-sequence forwarding to utilize underlying capacity better
- Loss detection
 - How to request for lost packets?
 - ACK or NACK
 NACK to avoid ACK implosion
- Loss recovery
 - Who and how to recover losses?
 - Non-local or local, designated or non-designated
 - Local, designated scheme to decrease contention with packet forwarding
 Georgia Institute

Design Challenges

- Single packet delivery
 - Reliably deliver single packet messages or small size messages
- Loss Recovery
 - Determine an efficient recovery structure to recover losses
 - Determine when to request and recover lost packets
 - Prevent error propagation
- Reliability variants
 - Address the different reliability semantics

GARUDA: Accommodates the different considerations in a unified fashion while addressing the above challenges

Single Packet Delivery : The Problem

- For small messages or single packet messages
 - All the packets in a message can get lost
 - NACK cannot request for lost packets
 - ACK scheme results in ACK implosion
- Once the first packet reliability is supported, size of message is known
 NACK can be used for requesting lost packets

To realize a scheme that supports first packet reliability

WFP Overview

- WFP (Wait-for-First-Packet) pulses
 - Used only for first packet reliability
 - Short duration pulses
 - Single radio
 - Advertisement of incoming packet
 - Negative ACK
 - Simple energy detection
- Different types of WFP pulses
 - Forced pulses
 - Carrier sensing pulses
 - Piggybacked pulses

WFP Mechanism and Merits

- A sink sends WFP pulses periodically
 - Before it sends the first packet
 - For a deterministic period
- A sensor sends WFP pulses periodically
 - After it receives WFP pulses
 - Until it receives the first packet
- WFP merits
 - Prevents ACK implosion with small overhead
 - Addresses the single or all packets lost problem
 - Less energy consumption
 - Robust to wireless errors or contentions

Addressed single packet reliability

Loss Recovery : The Problem

- Designation of recovery servers
 - Construct the recovery server structure
 - Minimizes the number of recovery servers
 - Low overhead and feasible designation
- Efficient loss recovery
 - Request for losses
 - Least possible contention with forwarding
 - Reduces the latency for recovery
- Error propagation
 - Out of sequence with NACK results in NACK implosion
 - Prevent propagation of NACKs

Recovery Server Designation

- Minimize the set of recovery servers
- Ideal solution: Minimum Set Cover (MSC)
 - Minimize the number of blue nodes selected to cover all white nodes
 - Infeasible because of per-packet basis
- GARUDA: Distributed Minimum
 Dominating Set (MDS)
 - Approximation of MSC
 - Independent of loss pattern
 - Per message basis

Core Structure

Distributed MDS

- Virtual bands constructed during the first packet flood
- Nodes choose core nodes from every 3rd band
- Adjacent nodes elected as core only if required

Core Merits

- Approximation of the ideal solution, MSC
- Decentralized construction during the 1st packet delivery
- Fault tolerant
- Low maintenance overhead

Efficient Recovery Structure

19 October 2004

Georgialnstitute

Recovery Structure Summary

✓ Single packet reliability ☞ Loss recovery ✓ Efficient recovery structure ☞ Efficient loss recovery ✓ Error Propagation ✓ Reliability variants

Two-Phase Loss Recovery

- Minimize contention between loss recovery and data forwarding
- Two-phase loss recovery
 - Phase 1
 - Loss detection and recovery between core nodes
 - At the end of phase 1, all core nodes receive all packets
 - Phase 2
 - Loss detection and recovery between non-core nodes and its core node
- Two-phase merits
 - Reduces the contention between loss requests and data forwarding
 - Reduce redundant retransmissions by utilizing wireless local broadcast

Efficient loss recovery mechanism

13

19 October 2004

Georgialnstitute

✓ Single packet reliability

✓Loss recovery

✓ Efficient recovery structure

✓ Efficient loss recovery

✓ Error propagation – Availability map

Reliability variants

Variants : The Problem

- How to address different types of reliability semantics
 - Reliable delivery within a sub-region
 - Reliable delivery to minimal set of sensors
 - Reliable delivery to probabilistic subset
- Candidacy to address reliability variants
 - Easy extension of GARUDA

Candidacy

- Candidacy
 - Candidates chosen during first packet flood
- Core construction
 - Candidates participate in core construction
- Once core is established, use basic GARUDA
- If disjoint regions from sink
 - Forced candidacy
- Candidacy merits
 - Unified framework

GARUDA Recap

✓ Single packet delivery
 ✓ Candidacy
 ✓ Core construction
 ✓ A-map propagation
 ✓ Two-phase loss recovery

17

Performance Evaluation

Research Grou

Conclusions

- Motivated the necessity for reliable delivery in sensor networks
- Presented a unified approach to handle message size considerations and scope of delivery
- Identified the ideal solution and the distributed approximation for ideal designation of recover servers
- Demonstrated the effectiveness of GARUDA
- For more details, please visit our group website: http://www.ece.gatech.edu/research/GNAN/

