
1

On Transport Layer Support for Peer-to-Peer Networks
Hung-Yun Hsieh and Raghupathy Sivakumar

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332, USA
Email:{hyhsieh, siva}@ece.gatech.edu

Abstract

TCP is the transport protocol used predominantly in the
Internet as well as in peer-to-peer networks. However, peer-
to-peer networks exhibit very different characteristics from
those of conventional client-server networks. In this paper,
we argue that the unique characteristics of peer-to-peer net-
works render TCP inappropriate for effective data transport
in such networks. Specifically, we motivate transport layer
support for multipoint-to-point connections to address the
problem of sources in peer-to-peer networks lacking server-
like properties in terms of capacity and availability. We
outline several key elements in designing a new transport
protocol for supporting effective multipoint-to-point connec-
tions. Finally, we present a case study for a multipoint-
to-point transport protocol that puts together these design
elements in practice. We thus motivate further research along
this direction.

1. INTRODUCTION

Over the last few years, the area of peer-to-peer
networking has attracted considerable attention. The
notion of end-users collaborating to create as well as
to consume a richer set of services and contents has
been quite well received. Resources shared in a peer-to-
peer network are distributed in a decentralized fashion,
and directly accessible to any host participating in the
network.

While existing works in the area of peer-to-peer
networking have typically focused on application layer
approaches with vertically integrated solutions, the
growing scale and diversity of peer-to-peer networks
have called for a common platform to facilitate the
development and interoperability of peer-to-peer ap-
plications. Several research endeavors have gone into
building generic architectures, interfaces, and protocols
that can support peer-to-peer networks more effec-
tively [1]–[3].

In this paper, we argue for transport layer support
for peer-to-peer networks. TCP (Transmission Control
Protocol) has been the predominant transport protocol
used in the Internet as well as in peer-to-peer networks.

It is designed for a unicast connection between a server
and a client. However, peer-to-peer networks exhibit
very different characteristics from those of conventional
client-server networks. On one hand, the existence of
multiple peers with replicated content provides users
with multiple potential sources to transfer data from.
On the other hand, these peers that act as sources to
supply the content typically do not exhibit “server-like”
properties due to their limited capacity and transient
availability [4]. We argue that using TCP not only pre-
vents the requesting peer from leveraging the existence
of multiple sources for achieving potential performance
improvement, but also exposes it to the non-server-
like behavior of individual sources thus causing per-
formance degradation.

Toward this end, we first motivate the benefits of
transport layer support for multipoint-to-point connec-
tions in peer-to-peer networks.1 The transport layer
plays a defining role in effective data transport between
the source and the destination. However, existing trans-
port protocols support only point-to-point and/or point-
to-multipoint (multicast) connections. We discuss the
performance benefits in enabling multipoint-to-point
data transport in Section 2. We then proceed to outline
several key components that should be considered in
designing new transport layer protocols for support-
ing multipoint-to-point connections. We discuss these
design elements in Section 3. Finally, we present a
case study for a multipoint-to-point transport protocol
called R2CP (Radial Reception Control Protocol). We
show in Section 4 that R2CP encompasses the desired
transport layer design and allows for further consider-
ation in peer-to-peer networks. We discuss issues for
multipoint-to-point transport protocols and summarize
the paper in Section 5.

1In reference to the TCP/IP protocol model, the transport layer
translates the services provided by the network (internet) layer
for use by the application. We note, however, that the argument
presented in this paper is also applicable to the session layer in the
OSI model. The solution proposed thus can build atop conventional
transport protocols, with sufficient support from the latter.

2

2. MOTIVATION

In this section, we present arguments for support-
ing multipoint-to-point connections in peer-to-peer net-
works, from the perspectives of the destination (re-
questing peer), the source (supplying peer), and the
content. While there are several existing applications
that can use multiple replicated sources for achiev-
ing better performance in terms of faster downloads
or resilient streaming at the destination [5]–[8], we
discuss why such application layer approaches cannot
effectively support multipoint-to-point communication
without any modification at the transport layer. We thus
motivate transport layer support for multipoint-to-point
connections in peer-to-peer networks.

2.1 The Destination (Requesting Peer)

From the perspective of the peer requesting the
content, the benefit of maintaining multipoint-to-point
communication is the potential for better resource
aggregation and fault tolerance by tapping multiple
sources, thus achieving higher access performance.

Hosts participating in peer-to-peer networks are typ-
ically located at the edges of the Internet. It is reported
in [4] that more than 70% hosts in the Napster network
measured have asymmetric links via dial-up (V.90),
ADSL, or cable modems with the uplink bandwidths
significantly lower than the downlink ones. Hence it
is conceivable that a majority of connections in peer-
to-peer networks is bottlenecked at the source, and the
performance of these connections can be improved by
using multiple sources with replicated content concur-
rently. Several peer-to-peer applications [5], [6] have
started exploring along this direction to provide the
requesting peer with better download or streaming
performance. Note that, however, a key issue for the
destination to support multipoint-to-point connections
is the resequencing of data received from multiple
sources. Existing approaches have relied on using the
hard disk for offline buffering, where data resequencing
is performed only after the entire content has been
received [7], [8].2 While such approaches can be used
for content downloads, they are not applicable to most
other applications that maintain a limited buffer and
require the in-sequence delivery service from lower
layers. It has been shown in [9] that for such appli-
cations the performance achieved can be throttled by

2We note that although the resequencing delay can potentially be
reduced using smaller request blocks [7] with appropriate online
scheduling (refer to Section 3.3), the communication overheads
incurred that increase with decreasing block sizes can make such
an approach undesirable.

the slowest link in the connection if application-layer
striping is performed without transport layer support.

Using multipoint-to-point connections is not lim-
ited to bandwidth aggregation. It can also allow the
requesting peer to mitigate performance degradation
due to suboptimal peer selection and transient peer
availability. The problem of selecting the “best” source
to request data from is non-trivial, especially in peer-
to-peer networks where many peers may not be en-
countered more than once [10] or may not be uniquely
identified [11], and they may even provide inaccurate
bandwidth information [4]. Similarly, peer transience
due to dynamic peer arrivals and departures has been
shown in related work to be a serious problem causing
disrupted or even aborted communication [4], [11]. The
ability to incorporate multiple concurrent sources in a
connection thus manifests itself as an ideal solution for
these problems, since the performance of a connection
is no longer tied to the capacity or availability of
individual sources. For example, the departure of any
source(s) in the connection will not stall the content
delivery at the requesting peer as long as there is still
one source available for transmissions. Note that a
transport layer protocol supporting multipoint-to-point
connections can dynamically maintain the number of
sources in the connection, and mask such artifacts in the
peer-to-peer network from the application. However,
any application layer approach will not be able to
address these problems without exposing the same to
the application.

2.2 The Source (Supplying Peer)

From the perspective of the peer supplying the con-
tent, the benefit of participating in multipoint-to-point
communication is the potential for better load balancing
in sharing its resource, thus resulting in a lower average
load on the sources.

It has been reported in [4] that while multiple sources
may be available for content supply in peer-to-peer
networks, a significant portion of these hosts lacks
the high-bandwidth, low-latency profile of a server.
For example, in the Napster network measured, 22%
of the peers have upstream (outbound) bandwidths
that are lower than 100Kbps. Existing systems address
this problem by dropping connections or bypassing
hosts with low available bandwidths [12]. While such
an approach can effectively prevent these low-profile
hosts from becoming the bottleneck of the network, it
also prevents them from contributing resources (band-
widths) to the network, thus potentially increasing the
load on qualified sources. The inefficiency incurred

3

in utilizing low-profile hosts, however, exists only
for unicast connections where the performance of the
connection is upper-bounded by the bandwidth of the
source. A multipoint-to-point connection, on the other
hand, can allow low-profile hosts to be aggregated to
support a high-bandwidth connection. It hence makes
use of all available resources (however small) that each
host in the peer-to-peer network can provide, without
sacrificing the quality enjoyed by the requesting peer.

Multipoint-to-point support in peer-to-peer networks
not only allows low-profile hosts to contribute, but
also encourages participation from hosts with relatively
high bandwidths. This is because any content search
in peer-to-peer networks typically results in the host
with the “highest” bandwidth being chosen. Although
it can be argued that hosts are willing to share unused
resources [13], overloads in the uplink direction can
potentially delay the acknowledgment packets sent by
the downlink TCP traffic, thus decreasing the maximum
utilization achievable in the downlink and increasing
the disincentive to share [14]. It has been shown
in [4] that hosts tend to deliberately misreport their
bandwidths, so as not to serve too many requests
from other peers. In a system with multipoint-to-point
support, however, such “hot spots” can be alleviated,
since the requesting peer, by aggregating resources
from the runners-up, can achieve the same performance
as that using the best source.3 Note that a key issue for
the source to support multipoint-to-point connections is
that no data is redundantly transmitted across multiple
sources to the destination. Application layer approaches
that perform content coding at the sources have been
proposed in content distribution networks [6], [8].
Although these approaches free the requesting peer
from involving in coordinating the transmissions of
multiple sources, they are not applicable to peer-to-
peer networks, since they require the number and
distribution (or characteristics) of the sources used
to be known a priori for performing content coding
or reducing the reception inefficiency. Moreover, it is
difficult, if not impossible, to enforce source coding
at all autonomous peers. On the other hand, as we
discussed in Section 2.1, approaches such as [7] where
the receiving application dynamically requests ranges
of data from individual sources can suffer from high
communication overheads and application complexities
without transport layer support.

3We note that load balancing using multipoint-to-point connections
is different from that using unicast connections, since the latter
uses only the “second-best” host and hence can potentially result
in decreased performance otherwise enjoyed by the requesting peer
without load balancing.

2.3 The Content
From the perspective of the content itself, the benefit

of using multipoint-to-point communication is the abil-
ity to preserve the integrity of the content better as it
is propagated through the peer-to-peer network, which
will in turn benefit both the sources and destinations.

Existing transport layer protocols provide a spectrum
of reliability services, including unreliable, partially
reliable, and fully reliable services, that can be used
by different applications. However, an important issue
in distributing the content and thus amplifying the
capacity of a peer-to-peer network is reliable content
replication. Consider a scenario where a video clip is
streamed from one host to another, and the requesting
peer later becomes the supplying peer serving other
hosts. Since streaming applications typically choose
timeliness over reliability, it is possible that the re-
questing peer has a lossy replication of the original
video clip after the streaming is complete. If the lossy
copy is streamed to another host without the missing
information being restored, the quality of the video will
continue to degrade after each replication – eventually
rendering the clip unusable. An obvious approach to
address this problem is for the application to open a
reliable connection after streaming, and retrieves the
missing information from the source. However, such
an application layer approach increases implementation
complexities (the application needs to implement loss
detection and recovery) and communication overheads
(consider the overheads incurred in TCP when re-
trieving data in a non-contiguous fashion). While it
is non-trivial to design a transport protocol that can
support 100% reliability without degrading the applica-
tion performance otherwise attainable using a partially
reliable transport protocol (since the bandwidth used
for recovering the lost data may be wasted as far as
the application is concerned), such functionality can
be easily implemented in the context of multipoint-
to-point connections. A transport protocol supporting
multipoint-to-point connections can open one more
source (in addition to the original data source) dedi-
cated to loss recovery. Such out-of-band loss recovery
allows loss recovery to take place without consuming
the precious bandwidth available along the data path.
In this way, the application can continue to receive
data in a timely, partially reliable fashion, but when
the connection completes, the data will be reliably
replicated to the receiver.

3. TRANSPORT LAYER DESIGN

We have thus far motivated the benefits of trans-
port layer support for multipoint-to-point connections

4

in peer-to-peer networks. In this section, we dis-
cuss several key components in designing a transport
layer protocol that can support effective multipoint-to-
point connections. We assume that the multipoint-to-
point transport protocol needs to support the same in-
sequence data delivery semantics as TCP.

3.1 Multiple States

TCP is designed for point-to-point connections
where it assumes a single path between the source
and the destination. TCP captures the characteristics of
the path it traverses such as bandwidth and latency in
the form of TCB (Transmission Control Block) state
variables such as congestion window and round-trip
time, for determining the send rate of the connection. In
a multipoint-to-point connection, packets from different
sources traverse different paths to the destination. Since
hosts in peer-to-peer networks can exhibit a very high
degree of heterogeneity in terms of the connection
bandwidth and latency [4], maintaining only one set
of TCB variables (single state) in a multipoint-to-
point connection can render the send rate and hence
the achieved throughput suboptimal. Therefore, a key
design in a multipoint-to-point transport protocol is to
maintain multiple states in accordance with the number
of sources (paths) used in the connection. In the context
of TCP, multi-state design allows TCP to maintain one
TCB for each path, and hence different sources can use
different send rates (depending on the characteristics
of the underlying path) for transmitting packets to
the destination. Note that out-of-order arrivals at the
destination due to packets traversing multiple paths
will not trigger unnecessary window cutdown in such a
multi-state TCP, since congestion control is performed
on a per-path basis. Vanilla TCP with single state, on
the other hand, will fail to utilize even the slowest path
in the connection when operated over multiple paths.

3.2 Decoupling of Functionalities

To incur minimum overheads resulting from the
multi-state design, transport layer functionalities should
be divided between those associated with individual
paths and those pertaining to the aggregate connection.
For example, congestion control estimates the band-
width of the underlying path, and hence should be
performed for each path in the connection. On the other
hand, buffer management handles the socket buffer, and
hence should not be repetitively implemented across
multiple states. While the reliable delivery of data can
be considered either as a per-path functionality (packets

are reliably delivered along each path) or as a per-
connection functionality (packets lost on one path can
be recovered through retransmissions on another path),
there are several advantages in designing reliability as
a functionality of the aggregate connection: (i) Since
loss recovery can take place along a path different from
the one traversed by the lost packet, path shutdown
due to the departure of an active source (e.g. peer
transience or failure) does not interfere with the reliable
delivery of data. (ii) One path can be dedicated to loss
recovery, while the others provide only unreliable (or
partially reliable) service. In this way, packets lost along
the unreliable paths will be recovered “out-of-band”
without stalling the progression of data delivery along
these paths.

3.3 Packet Scheduling
Since packets traverse different paths from multiple

sources to one destination in a multipoint-to-point con-
nection, a key issue in providing in-sequence data de-
livery to the receiving application is packet scheduling.
Out-of-order arrivals not only call for a large resequenc-
ing buffer at the receiver, but can also introduce head-
of-line blocking. It has been shown in [9] that head-of-
line blocking can cause significant performance loss
in terms of achieving the aggregate bandwidth. As
we mentioned in Section 3.1, different paths in a
multipoint-to-point connection can exhibit very differ-
ent characteristics in terms of bandwidth/latency mis-
matches and fluctuations. A scheduling algorithm that
schedules packets based on a pre-determined bandwidth
ratio of different paths [15] will apparently suffer from
bandwidth fluctuations. Moreover, since different paths
can exhibit latency mismatches by more than a factor
of four [4], a scheduling algorithm based purely on
the bandwidth ratio without taking into consideration
the latency mismatch will fail to achieve the optimal
performance in peer-to-peer networks. Note that the
scheduling algorithm should also handle the dynamic
arrivals and departures of sources in a multipoint-to-
point connection.

3.4 Receiver-Driven Operation
While any data source may come and go, in a

multipoint-to-point connection the invariant is the des-
tination (receiver). Moreover, since the receiver is the
common point of different paths in a multipoint-to-
point connection, it manifests itself as an ideal loca-
tion for coordinating packet transmissions of individual
sources. Note that the role of the receiver is not
limited to performing packet scheduling. The reliability

5

and congestion control functionalities of the transport
protocol can also be driven by the receiver. If the
receiver is primarily responsible for the reliable delivery
of data from the sources, any failure at the source
(e.g. due to peer departure) will have minimal impact
on the connection. On the other hand, if congestion
control is receiver-driven, the receiver will have instant
knowledge of the congestion control parameters such as
bandwidth and latency that can be used by the packet
scheduling algorithm. In this way, the receiver controls
when, which, and how much data should be sent from
individual sources. Adding or deleting any source from
the connection thus has the mere effect of increasing or
decreasing the bandwidth available to the connection,
without causing any other undesirable disruptions or
stalls. Since the intelligence of the transport protocol is
primarily located at the receiver, whenever server mi-
gration is possible and desirable, the overheads incurred
in synchronizing the states maintained (if any) between
the old and the new supplying peers will be minimized.

We have thus far identified multiple states, de-
coupling of functionalities, packet scheduling, and
receiver-driven operation as the four key design ele-
ments in a multipoint-to-point transport protocol. We
hasten to add that there do exist several additional
transport layer elements for which an argument can be
made in the context of peer-to-peer networks. Exam-
ples of such elements include run-time peer selection,
server load distribution, and forced reliable replication.
Consideration of these other elements is part of our
ongoing work.

4. CASE STUDY: THE R2CP PROTOCOL

We now present a case study for a multipoint-to-
point transport protocol called R2CP (Radial Reception
Control Protocol) that puts together the design elements
outlined in Section 3 in practice. R2CP was originally
proposed in [16] for mobile hosts with heterogeneous
(such as 3G and WiFi) wireless interfaces. In the
following, we provide a synopsis of the R2CP protocol,
and show that R2CP encompasses the desired transport
protocol design, allowing it to be considered for peer-
to-peer networks.

1. R2CP is a receiver-driven, multi-state transport
protocol that supports multipoint-to-point connections.
The R2CP destination (receiver) maintains multiple
states, each of them corresponds to the single state
maintained by individual sources (senders) in the con-
nection. Figure 1 shows the architecture of the R2CP
protocol.

2. R2CP is built atop a single-state, point-to-point
transport protocol called RCP (Reception Control Pro-

������� � �	��
 � ���

 �

� � � ��� � � � � �
� � � � � � � � � � ����� � � � � �

 � � !
� � � �

� � � ����" � � � � �

$ % &' # () $

* + , - # $ + .(, - /�0) , 0)

 � � " 1��
243��65 7 8��	8�� 9:8�7 ;

2=< 3>�?5 8���@�� ��8�;

A (B &	(B C
%�B D

, $�B &	(B C
% +) (. $

$�+ . E A 0 F F $�#

�G����� � �:��
 � ���

 �

$ % &' # () $

+ , - # $ + .(, - /�0) ,�0)

243��65 H:8���I�8�7 ;

J $�B & E A 0 F F $�#

Figure 1. R2CP Architecture

tocol). RCP is a TCP clone in its general behavior,
including the use of the same window-based conges-
tion control mechanism. However, RCP transposes the
intelligence of TCP from the sender to the receiver
such that the RCP receiver is primarily in charge of
the congestion control and reliability. The RCP receiver
drives the progression of the connection, while the RCP
sender merely responds to the instructions sent by the
receiver. It is shown in [16] that RCP is indeed TCP-
friendly.

3. Multiple RCP pipes in an R2CP connection are
coordinated by the R2CP engine at the receiver. The
R2CP engine is responsible for buffer management,
flow control, and the reliable delivery of data to the
application, while individual RCPs implement conges-
tion control. Note that although RCP by itself is a
reliable protocol like TCP, R2CP allows data recovery
to occur along the RCP pipe different from the one data
was sent. This is achieved in R2CP through dynamic
binding of the application data (to be requested) and
the RCP packets using the binding data structure
(see Figure 1). Effectively, individual RCPs control how
much data to request from each sender, while the R2CP
engine control which data to request from each sender.

4. The R2CP engine performs packet scheduling to
coordinate packet transmissions along individual RCP
pipes. R2CP uses an RTT-ranked, CWND-based packet
scheduling algorithm to minimize out-of-order arrivals
at the receiver. Upon receiving the send() call from
any RCP pipe that has space in its window for packet
requests (note that each RCP pipe is self-clocked like
TCP), the R2CP engine uses the rank data structure to
determine which data to request from the corresponding
source such that the data requested will arrive in
sequence. Since R2CP provides in-sequence data deliv-
ery to the application, minimizing out-of-order arrivals
can also minimize head-of-line blocking at the receive
socket buffer (head-of-line blocking occurs when R2CP
is unable to bind more data to any RCP pipe for

6

requests due to the buffer being filled up). It has been
shown in [16] that such a packet scheduling algorithm
allows R2CP to effectively aggregate the bandwidths
available along individual paths with bandwidth/latency
mismatches and fluctuations.

While we refer interested readers to [16] for a more
detailed presentation of the R2CP protocol and its
performance, it is clear from the above discussion that
R2CP follows the design elements outlined in Section 3,
allowing it to address the unique characteristics of
peer-to-peer networks such as peer heterogeneity and
peer transience. Our ongoing work includes developing
R2CP to support load balancing, peer selection, and
reliable replication mechanisms for use with peer-to-
peer networks.

5. ISSUES AND SUMMARY

While we have made a case for transport layer
support for multipoint-to-point connections in peer-to-
peer networks, there are several issues that need to
be addressed such as potential server overload and
network overload due to the greedy use of multipoint-
to-point connections. In particular, the need for a sound
fairness model to avoid network overload can be of
importance when the bottleneck occurs in the backbone
of the network. Related work [17] has investigated this
issue and proposed several fairness models for use with
multipoint-to-point connections – with no consensus
reached yet. Note that the design elements outlined in
Section 3 allow the fairness model to be seamlessly
incorporated in a multipoint-to-point transport proto-
col. For example, the receiver is the ideal location to
enforce the fairness model across multiple pipes. The
“decoupling of functionalities” design allows different
congestion control mechanisms such as [18] to be used
for secondary pipes such that the aggregate connec-
tion does not exceed its fair share. We recall from
Section 2 that even when the fairness model prevents
the requesting peer from enjoying higher throughput
than that achievable using a point-to-point connection,
a multipoint-to-point transport protocol can still provide
significant performance benefits.

In this paper, we argue for transport layer support
for peer-to-peer networks. We focus on the benefits of
enabling multipoint-to-point communication from the
perspectives of requesting peers, supplying peers, and
content replication. We first show that existing applica-
tion layer solutions cannot effectively address the chal-
lenges in peer-to-peer networks and support multipoint-
to-point communication, whereas a multipoint-to-point
transport layer protocol can be a power building block

in peer-to-peer networks. We then present several
design components for developing a transport layer
protocol with multipoint-to-point support. Finally, we
present a multipoint-to-point transport protocol called
R2CP that shows potential in addressing the unique
characteristics of the peer-to-peer networks. We hence
motivate further investigation along this direction.

REFERENCES

[1] Global Grid Forum, http://www.gridforum.org.
[2] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica,

“Towards a common API for structured peer-to-peer overlays,”
in Proceedings of International Workshop on Peer-to-Peer
Systems (IPTPS), Berkeley, CA, USA, Feb. 2003.

[3] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “PeerNet:
Pushing peer-to-peer down the stack,” in Proceedings of
International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, USA, Feb. 2003.

[4] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Proceedings of
SPIE Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, USA, Jan. 2002.

[5] Kazaa, http://www.kazaa.com.
[6] CenterSpan, http://www.centerspan.com.
[7] P. Rodriguez and E. Biersack, “Dynamic parallel-access to

replicated content in the Internet,” IEEE/ACM Transactions
on Networking, vol. 10, no. 4, pp. 455–464, Aug. 2002.

[8] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple
mirror sites in parallel: Using Tornado codes to speed up
downloads,” in Proceedings of IEEE INFOCOM, New York,
NY, USA, Mar. 1999.

[9] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach
for achieving aggregate bandwidths on multi-homed mobile
hosts,” in Proceedings of ACM MOBICOM, Atlanta, GA,
USA, Sept. 2002.

[10] D. Bernstein, Z. Feng, B. Levine, and S. Zilberstein, “Adaptive
peer selection,” in Proceedings of International Workshop on
Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, Feb. 2003.

[11] R. Bhagwan, S. Savage, and G. Voelker, “Understanding
availability,” in Proceedings of International Workshop on
Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, Feb. 2003.

[12] LimeWire, http://www.limewire.com.
[13] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

D. Werthimer, “SETI@home: An experiment in public-
resource computing,” Communications of the ACM, vol. 45,
no. 11, pp. 56–61, Nov. 2002.

[14] M. Feldman, K. Lai, J. Chuang, and I. Stoica, “Quantifying
disincentives in peer-to-peer networks,” in Proceedings of
Workshop on Economics of Peer-to-Peer Systems, Berkeley,
CA, USA, June 2003.

[15] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava,
“On peer-to-peer media streaming,” in Proceedings of IEEE
ICDCS, Vienna, Austria, July 2002.

[16] H.-Y. Hsieh, K.-H. Kim, Y. Zhu, and R. Sivakumar, “A
receiver-centric transport protocol for mobile hosts with het-
erogeneous wireless interfaces,” in Proceedings of ACM MO-
BICOM, San Diego, CA, USA, Sept. 2003.

[17] P. Karbhari, E. Zegura, and M. Ammar, “Multipoint-to-point
session fairness in the Internet,” in Proceedings of IEEE
INFOCOM, San Francisco, CA, USA, Apr. 2003.

[18] A. Kuzmanovic and E. Knightly, “TCP-LP: A distributed
algorithm for low priority data transfer,” in Proceedings of
IEEE INFOCOM, San Francisco, CA, USA, Apr. 2003.

