A Fair Medium Access Control Protocol for Ad-hoc Networks with MIMO Links

Karthikeyan Sundaresan
Raghupathy Sivakumar
Mary Ann Ingram
Tae-Young Chang

GNAN Research Group, Georgia Tech

http://www.ece.gatech.edu/research/GNAN/
Introduction

- Multiple Input Multiple Output (MIMO) is an antenna technology that provides high spectral efficiencies
- MIMO is the key to handle multipath efficiently!
- Related works have addressed the problem of medium access control with switched beam antennas in ad-hoc networks [Choudhury et al. Mobicom 2002, Ramanathan et al. Mobihoc 2002]
- We address the problem of medium access control in ad-hoc networks with MIMO links
Outline

- Characteristics/capabilities of MIMO links
- Optimization considerations for the MAC protocol
- Centralized SCMA (Stream Controlled Medium Access) protocol
- Conclusions
Characteristics of MIMO links

- Do not require LOS and can operate in rich multipath environments
- Capable of diversity and spatial multiplexing gain
- Spatial multiplexing provides a linear increase in asymptotic capacity unlike the logarithmic increase with array and diversity gain
- Spatial multiplexing gain increases the link capacity
- Independent streams are transmitted simultaneously
- Diversity gain reduces error probability on link to increase reliability during fading
- Introduces dependency amongst transmitted streams
Capabilities of MIMO links

- Adaptive resource usage
 - Number of elements correspond to “degrees of freedom” (DOFs) or “resources” at a node
 - Data transmitted on the different elements is given the abstraction of “streams”
 - Resources can be used for transmission or interference suppression

- Flexible interference suppression
 - Can suppress as many interfering streams as the number of DOFs in uncorrelated fading

- Capacity-Range tradeoff
 - Diversity increases link reliability and consequently provides increased range
 - Spatial multiplexing increases system capacity
Outline

- Characteristics/capabilities of MIMO links
- Optimization considerations for the MAC protocol
- Centralized SCMA (Stream Controlled Medium Access) protocol
- Performance evaluation
- Conclusions
Simple CSMA/CA extension

- Is there a simple extension to CSMA/CA that can exploit spatial multiplexing?
- Yes, with appropriate tuning of timers and other constants
- CSMA/CA that spatially multiplexes on “k” elements is referred to as CSMA/CA(k)
- CSMA/CA(k) can provide close to “k” fold improvement
- Is this the best performance we can expect?
Optimization considerations (1)

- **Stream control**

 A → B
 Link 1
 200 m

 C → D
 Link 2
 200 m

 CSMA/CA(k)

 Link 1, $C_{L1} = 100$ Kbps

 Link 2, $C_{L2} = 100$ Kbps

 Stream controlled MAC

- **Consideration 1:** Multiple interfering links operating simultaneously using stream control achieve overall better throughput performance
Optimization considerations (2)

- **Flexible interference suppression**
 - Number of independent interfering streams important
 - Lesser number of DOFs required if interfering streams are highly correlated or arrive with very low power
- **Consideration 2:** Flexible interference suppression in conjunction with stream control helps create additional resources and hence additional gain

![Diagram showing network topology and stream control](image)
Optimization considerations (3)

- Passive receiver overloading

Consideration 3: Receivers belonging to multiple contention regions must not perform stream control
Outline

- Characteristics/capabilities of MIMO links
- Optimization considerations for the MAC protocol
 - Stream control
 - Flexible interference suppression
 - Passive receiver overloading
- Centralized SCMA (Stream Controlled Medium Access) protocol
- Performance evaluation
- Conclusions
Centralized SCMA

- **Goals**
 - Maximize network utilization subject to a proportional fairness model, by leveraging the optimization considerations

- **Key insights**
 - To eliminate passive receiver overloading problem, links belonging to multiple contention regions ("red" links) must operate on all resources
 - Stream control must be leveraged only by links belonging to single contention region ("white" links)
 - Flexible interference suppression can be leveraged by white links in conjunction with stream control
Components (1)

- Graph generations
 - Network topology is represented as a network graph
 - Contention between active links is captured in the flow contention graph

![Node graph](image1)

![Flow contention graph](image2)
Components (2)

- Clique identification, ranking and coloring
 - Maximal cliques in flow contention graph correspond to contention regions in the network
 - Ranking is done based on tuple (clique degree, max clique size)
 - Bottleneck links are colored red based on rank and non-bottleneck links are colored white
Components (3)

- Dual-level scheduling
 - Red links are scheduled first based on their rank
 - White links are scheduled next and perform stream control

Flow contention graph

```
<table>
<thead>
<tr>
<th>Slot</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Recap

- **Step 1**: Obtain the network graph and hence the flow contention graph.
- **Step 2**: Identify all maximal cliques in the flow contention graph and color bottleneck necks as “red” and non-bottleneck links as “white”.
- **Step 3**: Perform dual scheduling with white links alone exploiting stream control.
Conclusions

- Highlighted the characteristics and capabilities of MIMO links
- Identified optimization considerations to leverage the PHY layer capabilities
- Proposed centralized and distributed protocols for medium access control exploiting the optimizations
- Leverage the different gains in an efficient manner to propose joint MAC and routing protocols for ad-hoc network with MIMO links
- http://www.ece.gatech.edu/research/GNAN/