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ABSTRACT
Existing works have approached the problem of reliable transport
in ad-hoc networks by proposing mechanisms to improve TCP’s
performance over such networks. In this paper we show through
detailed arguments and simulations that several of the design ele-
ments in TCP are fundamentally inappropriate for the unique char-
acteristics of ad-hoc networks. Given that ad-hoc networks are typ-
ically stand-alone, we approach the problem of reliable transport
from the perspective that it is justifiable to develop an entirely new
transport protocol that is not a variant of TCP. Toward this end,
we present a new reliable transport layer protocol for ad-hoc net-
works called ATP (ad-hoc transport protocol). We show through
ns2 based simulations that ATP outperforms both default TCP and
TCP-ELFN.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Performance

Keywords
Ad-hoc networks, Transport layer, Reliability, Rate adaptation

1. INTRODUCTION
Ad-hoc networks are uniquely characterized by the several fac-

tors that differentiate them from traditional computer networks: (i)
Lack of a fixed infrastructure: Due to absence of dedicated routers,
mobile hosts in ad-hoc networks also serve as peer-to-peer relays
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for connections in the network. (ii) Mobility: All hosts in the net-
work are mobile, and hence the network topology can be highly
dynamic. From the perspective of a single end-to-end connection,
not only are the end-hosts mobile, but the intermediate “routers”
are mobile too. (iii) Shared channel: Because of the all-wireless
nature of ad-hoc networks, not only do flows in the same vicinity
contend with each other, but part of a flow traversing multiple hops
can contend with other parts of the same flow in its vicinity. (iv)
Limited bandwidth: While mobile hosts in general can be assumed
to possess fewer amounts of resources than their static (wireline)
counterparts, the wireless channel bandwidth is also scarce, result-
ing in multi-hop flows typically enjoying limited bandwidths of at
most a few hundred kilobits per second.

Not surprisingly, such constraining characteristics render tradi-
tional wireline network protocols at the different layers of the pro-
tocol stack inappropriate for use in ad-hoc networks. At the medium
access control (MAC) layer, protocols tailored for wireless environ-
ments such as carrier sense multiple access with collision avoidance
(CSMA/CA) easily outperform traditional protocols such as carrier
sense multiple access (CSMA). At the network layer, numerous
routing protocols such as dynamic source routing (DSR) [1], ad-
hoc on-demand distance vector (AODV) routing [2], etc., have been
proposed for ad-hoc networks. Since such protocols are specifically
tailored for the unique characteristics of ad-hoc networks, they sig-
nificantly outperform conventional wireline routing protocols in an
ad-hoc network environment.

At the transport layer, several works have focused on both study-
ing the impact of using transmission control protocol (TCP) as
the transport layer protocol, and improving its performance either
through lower layer mechanisms that hide the characteristics of ad-
hoc networks from TCP, or through appropriate modifications to
the mechanisms used by TCP [3–10]. Given the almost universal
use of TCP as the transport layer protocol in the current Internet,
such works are clearly warranted. However, several applications
of ad-hoc networking, including more promising ones such as mil-
itary battlefields, disaster relief operations, etc., are environments
where a completely revamped protocol stack tailored to the operat-
ing conditions is not merely feasible, but also justifiable.

In this paper, we approach the problem of providing reliable
transport over ad-hoc networks from the above perspective. We
argue that TCP or a minor variant of it is not appropriate for the
operating conditions common in ad-hoc networks. We study the
suitability of the different mechanisms used by TCP for congestion
control and reliability, for the characteristics of the target environ-
ment. We discuss why a majority of the properties and mechanisms
of TCP including window based congestion control, slow-start, loss
based congestion detection, multiplicative decrease of congestion
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Figure 1: TCP burstiness
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window, use of retransmission timeouts, and reliance on reverse
path characteristics, are not fundamentally appropriate for an ad-
hoc network.

We then present a new transport protocol called ATP (ad-hoc
transport protocol) that is tailored toward the characteristics of ad-
hoc networks. ATP, by design, is an antithesis of TCP and con-
sists of: rate based transmissions, quick-start during connection
initiation and route switching, network supported congestion detec-
tion and control, no retransmission timeouts, decoupled congestion
control and reliability, and coarse grained receiver feedback. We
present the details of the ATP algorithm and show through simu-
lation results that it significantly outperforms both TCP and TCP-
ELFN (TCP variant with explicit link failure notification) [6] under
a variety of load and mobility conditions.

The rest of the paper is organized as follows: In Section 2, we
discuss the shortcomings of the TCP design in the context of the
ad-hoc network environment. In Section 3, we outline the design
goals and key components of ATP, while in Section 4, we present
the details of the ATP protocol. In Section 5, we compare ATP with
TCP and TCP-ELFN. In Section 6 we discuss some related work,
and finally in Section 7, we conclude the paper.

2. MOTIVATION
In this section, we discuss in detail the appropriateness of the

different design elements in TCP in the context of an ad-hoc net-
work environment. Specifically, we categorize the discussion based
on the following components and characteristics of TCP: (i) Win-

dow based transmissions, (ii) Slow-start, (iii) Loss based conges-
tion detection, (iv) Multiplicative decrease, (v) Use of retransmis-
sion timeouts, and (vi) Reliance on reverse path. When necessary,
we use simulation results to substantiate and illustrate our argu-
ments. While we present details of the simulation model in Sec-
tion 5, briefly: the ns2 network simulator is used for all the simu-
lations; the network consists a 1000mx1000m network grid with
100 nodes; nodes move randomly using the way-point mobility
model with a maximum speed of 1m/s, 10m/s or 20m/s depend-
ing upon the scenario; different traffic loads of 1 flow, 5 flows, and
25 flows are used; the application generating the traffic is FTP;
source-destination pairs are randomly chosen from the 100 nodes;
dynamic source routing (DSR) and IEEE 802.11b in the distributed
coordination function mode (CSMA/CA) are used as the routing
and MAC protocols respectively1 and unless explicitly specified,
results are averaged over simulations run with 10 different random
seeds, and simulations are run for a duration of 100 seconds. We
use TCP-NewReno for all our simulations and discussions.

2.1 Window Based Transmissions
TCP is a window based protocol. One of the underlying moti-

vations behind such a design choice is to avoid the maintenance of
any fine-grained timers on a per-flow basis. For wireline environ-
ments, where per-flow bandwidths can scale up to several megabits

1While our arguments are agnostic to the specific underlying pro-
tocols used, we identify dependencies in the results observed, if
any.
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Figure 3: TCP slow-start

per second, such a design choice is clearly essential. However,
the use of a window based transmission mechanism in ad-hoc net-
work networks results in the critical problem of burstiness in packet
transmissions.

TCP relies on self-clocking (ACKs arriving to trigger further
transmissions) in the absence of timers. Thus, if several ACKs
arrive back-to-back at the sender, a burst of data packets will be
transmitted by the sender even if it were in the congestion avoid-
ance phase (where one packet will be transmitted for every incom-
ing ACK). Unfortunately, ACK bunching or several ACKs arriving
at the same time is a norm in ad-hoc networks because of the short-
term unfairness of the CSMA/CA MAC protocol typically used in
such networks. [11] provides a good exposition on the short term
unfairness properties of CSMA/CA. Such short-term unfairness re-
sults in the data stream of a TCP connection assuming control of
the channel for a short period, followed by the ACK stream assum-
ing control of the channel for a short period. Interestingly, such a
phenomenon will occur even when the ACK stream does not tra-
verse the exact same path as the data stream. This is because even
if the paths were completely disjoint, the vicinity (2-hop region in
the case of CSMA/CA) of the TCP sender and the vicinity of the
TCP receiver still are common contention areas for the data and
ACK streams.

Figures 1(a) and (b) show the TCP sequence number progression
(at the sender) for one TCP connection (say f1 and f25) in two
scenarios with 1 flow and 25 flows respectively. It can be seen that
the transmissions occur in periods of bursts and are interspersed
with periods of inactivity due to the arrival of ACKs. The impact
of such burstiness of traffic has two undesirable effects:

• Varying round-trip time estimates: TCP relies on an accu-
rate round-trip time (rtt) calculation to appropriately set the
timer for its retransmission timeout (RTO). Coupled with the
low bandwidths available to flows, the burstiness results in
artificially inflating the round-trip time estimates for packets
later in a burst. For example, the ith packet in a burst experi-
ences an rtt of rttbase + (i − 1) ∗ L/r, where rttbase is the
base rtt of the underlying path, L is the length of a packet,
and r is the available rate. Essentially, the round-trip time of
a packet is impacted by the transmission delay of the previ-
ous packets in the burst due to the typically small available
rates. Figures 2(a) and (b) present the rtt samples observed
by f1 and f25 over the entire simulation duration. It can be
observed that the rtt values fluctuate periodically. TCP sets
its RTO value to rttavg + 4 ∗ rttdev , where rttavg is the

exponentially average of rtt samples observed, and rttdev

is the standard deviation of the rtt samples. Hence, when
rtt samples vary widely due to the burstiness, the RTO val-
ues are highly inflated, potentially resulting in significantly
delayed loss recovery (and hence under-utilization). Figure
2(c) presents the average maximum RTO values for the con-
nections in different scenarios.

• Higher induced load: Spatial re-use in an ad-hoc network
is the capability of the network to support multiple spatially
disjoint transmissions. Unfortunately, due to the burstiness
and the short term capture of channel by either the data stream
or the ACK stream, the load on the underlying channel can
be higher than the average offered load. For example, if
a flow’s instantaneous rate is 10 packets per second, while
the ideal inter-packet separation that would allow for optimal
use of the underlying channel is 100ms, bursty transmissions
can result in higher contention at the MAC layer (recall that
downstream hops of the same flow contend with the upstream
hops due to the shared channel characteristics). We refer to
the artificially (short-term) increased load on the underlying
channel as the induced load. If the offered load is not high,
the higher induced load will not result in any major perfor-
mance degradation. However, if the offered load itself is high
(around the peak scalability of the underlying MAC layer’s
utilization curve), the utilization at the MAC layer can suffer
significantly.

2.2 Slow-start
The slow-start mechanism is used by TCP both during connec-

tion initiation and when TCP recovers from what it perceives as
heavy congestion in the network. For both cases, the goal of slow-
start is to probe for the available bandwidth for the connection.
When a connection is in the slow-start phase, TCP responds with
two data packet transmissions for every incoming ACK. While this
exacerbates the burstiness problem discussed earlier, there are two
other problems associated with the slow-start mechanism in the
context of ad-hoc networks:

• Under-utilization of network resources: Although slow-start
uses an exponential increase of the congestion window size,
the increase mechanism is still non-aggressive by design as
it can take several rtt periods before a connection operates at
its true available bandwidth. This is not a serious problem
in wireline networks as connections are expected to spend
most of their lifetimes in the congestion avoidance phase.
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Figure 4: Loss based congestion indication

However, because of the dynamic nature of ad-hoc networks,
connections are prone to frequent losses which in turn result
in frequent timeouts and hence more slow-start phases. Fig-
ure 3(a) presents the average number of times connections
enter slow-start during a 100 second simulation for different
rates of mobility and different loads. Figure 3(b) presents the
average time spent in slow-start by the connections during
the 100 second simulation. It can be observed that connec-
tions spend a considerable amount of time in the slow-start
phase, with the proportion of time going above 50% for the
higher loads. Essentially, this means that connections spend
a significant portion of their lifetime probing for the available
bandwidth in lieu of operating at the available bandwidth.

• Unfairness: TCP’s fairness properties are firmly dependent
upon the contending connections operating in congestion avoid-
ance. When connections operate primarily in the slow-start
phase, the fairness properties of TCP are more likely to be
violated. In Section 5, we show how connections experience
unfairness when using TCP in ad-hoc networks.

2.3 Loss Based Congestion Indication
TCP uses the occurrence of losses (inferred either through re-

ceipt of three duplicate ACKs, or occurrence of a timeout) to detect
congestion. While congestion is by far the main source of losses
in wireline networks, it is well known that this is not the case
in wireless networks. In conventional cellular wireless networks,
non-negligible random wireless channel error rates also contribute
to losses, and considerable amount of research has been done to-
ward either hiding such losses from TCP through link-layer reli-
ability [12], or enhancing TCP with mechanisms that can distin-
guish congestion losses from random errors [13]. In ad-hoc net-
works, in addition to congestion and random wireless errors, mo-
bility serves as another primary contributor to losses perceived by
connections. Random wireless errors are addressed to some extent
through the use of a semi-reliable MAC layer such as CSMA/CA
that uses a positive ACK after data reception to indicate success-
ful reception of a packet. Interestingly, CSMA/CA does not dis-
tinguish between whether a link is down because of the other end
moving out of range, or because of high contention at the receiver.
In either case, after attempting to transmit to a receiver for a fi-
nite number of times, the MAC layer concludes a link failure and
informs the higher layers accordingly. Most routing protocols de-
signed for ad-hoc networks [1, 2] rely on such MAC feedback to
trigger route-failure notification to the source.

Losses in ad-hoc networks can be classified into either link fail-
ure induced, or congestion induced (interface queue overflows).
Figure 4(a) presents the percentage of the number of losses due to
route (link) failures for different rates of mobility and loads. It can
be observed that in all the scenarios, more than 80% of the losses
in the network are due to link failures. Note that a link failure can
be inferred by the MAC layer even when it is not able to reach a
neighbor due to severe congestion. However, irrespective of the
true cause of link failure inference, the source will be notified of a
route failure and a new route computation will be performed. Fig-
ure 4(b) shows the percentage of time when the old route is again
chosen by the route computation mechanism. It can be observed
that about 90% of the time, a different route is chosen.

Essentially, most losses in ad-hoc networks occur as a result of
route failures (in reality, the MAC and routing layer perceive most
of the losses as due to route failures), and hence treating losses as an
indication of congestion turns out to be inappropriate. We elaborate
on this factor further in our discussion of the LIMD mechanism
used by TCP.

2.4 Linear Increase Multiplicative Decrease
The linear increase phase of TCP has the same drawback of slow-

start – slow convergence to the optimal operating bandwidth, and
hence vulnerability to route failures before the optimal bandwidth
is attained. The multiplicative decrease on the other hand is in-
appropriate for the reasons discussed in Section 2.3. Essentially,
most loss events in an ad-hoc network are due to route failures, or
are perceived to be due to route failures by the underlying layers.
Hence, more often than not, a loss event experienced by a con-
nection is followed up by a route change (see Figure 4(b)). While
TCP’s multiplicative decrease is an appropriate reaction to conges-
tion, it is definitely not an appropriate action to take when a route
change has occurred. Ideally, when a route change occurs, TCP
should enter its bandwidth estimation phase as its old congestion
window state is not relevant to the new route.

When TCP-ELFN is used, the state of the TCP sender is frozen
till a new route is computed. While this prevents undesirable time-
outs from occurring, the ELFN mechanism still suffers from the
drawback of an inappropriate use of the old congestion window
state.

2.5 Dependence on ACKs
TCP relies on the periodic arrival of ACKs both to ensure relia-

bility and to perform effective congestion control. Most implemen-
tations of the TCP receiver send one ACK for every two packets



0

5

10

15

20

25

30

35

40

0 5 10 15 20

N
u

m
b

e
r 

o
f 

R
R

E
R

s

Mobility (m/s)

Average # of RRERs on ACK/Data path: 1 Connection: TCP-default

# RRERs on DATA path
# RRERs on ACK path

(a) 1 Flow

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

N
u

m
b

e
r 

o
f 

R
R

E
R

s

Mobility (m/s)

Average # of RRERs on ACK/Data path: 1 Connection: TCP-default

# RRERs on DATA path
# RRERs on ACK path

(b) 25 Flows
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received. This dependence on ACKs results in two problems for
ad-hoc networks: (i) Due to the overhead (about 100 bytes) associ-
ated with the request-to-send (RTS), clear-to-send (CTS), and ACK
packets used by the CSMA/CA protocol, TCP ACKs sent from the
receiver to the sender can amount to 10-20% of the data stream rate.
If the forward and reverse paths happen to be the same,2 the ACK
traffic in the reverse path will contend with the data stream on the
forward path and reduce the rate enjoyed by the data stream. (ii) If
the forward and reverse paths are not the same, the progress of the
TCP connection will be dependent on both the forward path and
reverse path reliability. Thus, the chances of a connection stalling
increase when different paths are used. Note that even if the for-
ward and reverse paths are different, due to the shared channel in
the vicinity of the sender and the vicinity of the receiver, the data
and ACK streams will still contend with each other. Figures 5(a)
and (b) show the number of times the data stream and the ACK
stream experience independent path failures for the 1 flow scenario
and the 25 flows scenario respectively. It can be observed that the
forward and reverse paths experience the same order of magnitude
of failures.

3. THE ATP DESIGN
In this section, we outline the key design elements of the pro-

posed ad-hoc transport protocol (ATP). For each element, we relate
the element to problems identified in Section 2.

3.1 Layer Coordination
One of the emerging trends in adapting protocols for wireless

networks in general and ad-hoc networks in particular is a more in-
volved coordination between different layers of the protocol stack.
For example, most routing protocols designed for ad-hoc networks
rely on MAC layer information to detect link (and hence path) fail-
ures. Mechanisms to further improve performance of routing pro-
tocols with additional MAC layer information have been proposed
in related work [14]. A further degree of coordination possible in
ad-hoc networks is the explicit coordination between the different
nodes in the network to improve end-to-end performance. For ex-
ample, TCP-ELFN uses link failure notification from the interme-
diate routers to freeze TCP’s state at the sender.

One of the key cornerstones of the ATP design is the use of lower

2Routing protocols in ad-hoc networks may or may not choose the
same path in two directions.

layer information and explicit feedback from other network nodes
to assist in the transport layer mechanisms. Specifically, ATP uses
feedback from the network nodes for three different purposes: (i)
initial rate feedback for start-up rate estimation, (ii) progressive rate
feedback for congestion detection, congestion avoidance, and con-
gestion control, and (iii) path failure notification. While any node
coordination can potentially constrain the scalability of a protocol,
ATP does not require any per-flow state maintenance at the inter-
mediate nodes, and hence is highly scalable.

3.2 Rate Based Transmissions
ATP uses rate based transmissions in lieu of the window based

transmissions performed by TCP. Rate based transmissions aid in
improving performance in two ways: (i) They avoid the drawbacks
due to burstiness identified in Section 2, and (ii) Since the trans-
missions are scheduled by a timer at the sender, the need for self-
clocking through the arrival of ACKs is eliminated. The latter ben-
efit is used by ATP to decouple the congestion control mechanism
from the reliability mechanism, and also to alleviate the impact of
reverse path characteristics on the performance experienced by the
data stream on the forward path.

While an obvious limitation of rate based schemes is the timer
overheads incurred at the sender, the timer granularity required for
the limited bandwidths in an ad-hoc network is large enough to be
realized without significant overheads. For example, with a rea-
sonable load in the network, say 10 flows (or 25 flows), a packet
size of 512 bytes, and a raw channel capacity of 2Mbps, the timer
granularity required is 40ms (or 125ms).

3.3 Decoupling of Congestion Control and Re-
liability

Unlike in TCP where the congestion control and reliability mech-
anisms are tightly coupled through dependence on ACK arrival, in
ATP the two mechanisms are decoupled. Congestion control, as
introduced earlier, is performed using feedback from the network,
while reliability is ensured through coarse grained receiver feed-
back and selective ACKs. While we elaborate on the details of the
mechanisms in Section 4, briefly:

• To facilitate congestion control, the intermediate nodes in
the network provide congestion information in terms of the
available rate. The feedback is piggybacked on the data pack-
ets in the forward path, and the ATP receiver consolidates
such information and sends back the collated feedback infor-
mation.



• For reliability, the receiver also uses selective ACKs to report
back to the sender any new holes observed in the data stream.
Unlike in TCP where the SACK information is complimen-
tary to the cumulative ACK scheme, ATP relies solely on the
SACK information.

3.4 Assisted Congestion Control
ATP’s congestion control protocol relies on feedback from the

intermediate nodes traversed by the connection to adapt the send-
ing rate. Briefly, each node in the network maintains two parame-
ters: Qt (an exponential average of the queuing delay experienced
by packets traversing that node), and Tt (an exponential average
of the transmission delay experienced by the head-of-line packet at
that node). Tt is influenced by the contention experienced between
packets within nodes in the same contention vicinity, while Qt is
influenced by the contention between packets belonging to differ-
ent flows at the same node. For every packet that passes through a
node, the node stamps the sum Qt +Tt if the already stamped sum
on the packet is smaller than its current value. The receiver of an
ATP connection further performs an exponential averaging of the
values stamped on the incoming packets. For every epoch period,
the receiver sends rate feedback to the sender using the exponen-
tially averaged value. The sender, based on its current rate, and the
rate specified in the feedback determines whether to increase, de-
crease, or maintain its rate. The maintain phase in ATP is a critical
difference from the states that a TCP connection can be in. In ad-
dition, the increase and decrease operations performed by ATP are
more accurate because of the network feedback received.

3.5 TCP Friendliness and Fairness
TCP friendliness is not a constraint under which ATP is de-

signed, since it is targeted for ad-hoc network environments where
network nodes will possess a dedicated protocol stack. However,
fairness among ATP flows is still of key concern just as in TCP.
Since ATP relies on the intermediate network nodes for feedback
on congestion, we show in Section 5 that ATP exhibits good fair-
ness properties.

4. THE ATP PROTOCOL
In this section, we elaborate on the specific mechanisms used by

ATP. Briefly, just as in TCP, ATP primarily consists of mechanisms
at the sender to achieve effective congestion control and reliabil-
ity. However, unlike in TCP, ATP relies on feedback not just from
the receiver, but also from the intermediate nodes in the connection
path. In terms of specific functionality, the intermediate nodes pro-
vide congestion feedback to the sender, while the receiver provides
feedback for both flow control and reliability. The receiver also
acts as a collator of the congestion information provided by the
intermediate nodes in the network before the information is sent
back to the sender. The receiver provides the reliability, flow con-
trol, and collated congestion control information through periodic
messages. The sender on the other hand, is responsible for connec-
tion management, start-up rate estimation (with network feedback),
congestion control, and reliability.

In the rest of the section, we start with describing the role of
the intermediate nodes. We then describe the mechanisms at the
ATP receiver for providing rate feedback and sending SACK infor-
mation to the sender. Finally, we describe in detail the different
components of the ATP sender for start-up behavior, congestion
control, and reliability.

4.1 Intermediate Node
ATP relies on the intermediate nodes that a connection traverses

to provide rate feedback information. Intermediate nodes in the
network maintain sum of the average queuing delay (Qt) and the
average transmission delay (Tt) experienced by packets travers-
ing through them. While Tt at a node is impacted by the con-
tention between the different nodes in the vicinity of that node, Qt

is impacted by the contention at that node between different flows
traversing the node.

Note that the values Qt and Tt are computed over all the packets
traversing the node, irrespective of the specific flow the packets
belong to. Thus, Qt and Tt are maintained on a per-node basis, and
not on a per-flow basis. For every outgoing packet, an intermediate
node updates its Qt and Tt values. The values are maintained using
exponential averaging as follows:

Qt = α ∗ Qt + (1 − α) ∗ Qsample

Tt = α ∗ Tt + (1 − α) ∗ Tsample

where Qsample and Tsample are the queuing delay and transmis-
sion delay experienced by the outgoing packet. We use a value of
0.75 for α in our simulation results. In addition, each packet con-
sists of a rate feedback field D (note that the rate will actually be
an inverse of D) that consists of the maximum Qt + Tt value at the
upstream nodes the packet has traversed through. When the packet
is dequeued for transmission, the intermediate node checks to see
if D is smaller than the Qt + Tt value at that node. If D is smaller,
the intermediate node updates the D on the packet to its Qt + Tt

value.
When the receiver receives a packet, the D field in the packet

indicates the maximum (average) delay experienced by packets at
any of the intermediate nodes it traversed through.

When a connection starts-up or a probe packet is sent by the
sender, the intermediate node behavior is the same except when
there is no other traffic around the node. When the node observes an
idle channel, it uses η∗(Qt +Tt) as the delay instead of the normal
Qt + Tt. The reasoning for this behavior is as follows. When the
channel around the intermediate node is idle, the Qt+Tt values will
be determined by the actual queuing delay and transmission delay
experienced by the probe packet. However, when the actual data
flow begins, packets belonging to the flow, at every hop in the path,
will contend with other packets belonging to the same flow at both
upstream and downstream nodes. Intermediate nodes project this
rate by appropriately setting η. For CSMA/CA the typical value
for η is 3. (In a linear chain, every third node can transmit, but for
a large number of hops it can be as high as 5 for a path of length 5.)

Note that ATP’s requirement for node-coordination thus consti-
tutes only the maintenance of two parameters Qt and Tt, and ap-
propriately stamping packets being forwarded. Also, the only ad-
ditional field in the ATP header for the forward (data) path, besides
the other fields in the TCP header, is the rate feedback field D.

4.2 ATP Receiver
The ATP receiver provides periodic feedback to the sender to as-

sist in its reliability and flow control mechanisms. In addition, it
also collates the rate feedback information provided by the inter-
mediate nodes (through the D field on the packets), and sends it
back to the sender. In order to send the feedback periodically, the
receiver runs an epoch timer of period E. Note that the period E
should be larger than the round-trip time of a connection, but at the
same time must be small enough to track the dynamics of the path
characteristics. E is empirically chosen to be one second in our
simulations.



4.2.1 Rate Feedback
For every incoming packet belonging to a flow, the receiver per-

forms an exponential averaging of the D value specified in the
packet:

Davg = β ∗ Davg + (1 − β) ∗ D

After every epoch timer expiry, the receiver provides the Davg

value at that time as feedback to the sender. The exception is when
the flow control rate determined by the receiver (see Section 4.2.3)
is smaller than the rate projected from the Davg value. We use a
value of 0.75 for β in all our simulations.

4.2.2 Reliability Feedback
The ATP receiver uses selective ACKs (SACKs) for providing

information about losses in the data stream received. Since the
feedback is not provided for every incoming data packet, but rather
on a periodic basis, ATP uses a larger number of SACK blocks
than TCP-SACK. While TCP-SACK uses only 3 blocks per ACK,
ATP uses 20 SACK blocks in its reliability feedback. For the typ-
ical channel data rate of 2Mbps, the average per-flow rate is about
100Kbps even when there are only 5 connections in the network
(see Section 5). For an epoch period of 1 second and a packet size
of 512 bytes, the rate translates into about 25 packets per second.
Hence, using 20 SACK blocks, most if not all of the losses in an
epoch can be identified. However, unlike in TCP where the SACK
blocks on ACKs progressively identify newer holes, in ATP the
SACK blocks always identify the first sequence of 20 holes in the
data stream. This is because ATP does not use a retransmission
timeout at the sender and hence has to rely on the feedback from
the receiver to perform correct error recovery.

In terms of the reverse path overheads, for the above example,
TCP-SACK can be shown to incur an overhead of 2.4Kbps for the
SACK blocks (one ACK for every two data packets, three blocks
per ACK, two sequence numbers per block, and 4 bytes per se-
quence number), while ATP would incur an overhead of 1.28Kbps
for an epoch period of one second. However, the overhead of ATP
can be shown to be considerably smaller if the overall header costs
at the transport layer, and at the lower layers are accounted for.
This is because ATP aggregates its feedback into one packet, while
TCP-SACK will send feedback for every two data packets. A sim-
ilar notion of feedback optimization is also used in [15], albeit in a
different context.

We address how suffix losses (that SACK information cannot
identify) are handled at the sender in Section 4.3.3.

4.2.3 Flow Control Feedback
Unlike in TCP, where the flow control is achieved through ap-

propriate window advertisements, ATP performs flow control by
observing the rate Rapp at which the application is processing in-
sequence data from the receive buffer. When rate feedback is being
sent to the sender, if the application read rate (Rapp) is smaller than
the rate feedback, the rate feedback information is replaced with the
Rapp.

The receiver in its periodic feedback message to the sender (once
every epoch), sends both the rate and reliability feedback. We elab-
orate on the sender side mechanisms that use the feedback provided
by the receiver in the next section.

4.3 ATP Sender
The ATP sender, like in TCP, consists of most of the driving

mechanisms of the transport layer protocol. Specifically, the ATP
sender consists of the components for the following functionality:

(i) quick-start, (ii) congestion control, (iii) reliability, and (iv) con-
nection management. In the rest of the section, we elaborate on the
different components.

4.3.1 Quick-start

Initial Rate Estimation:
Sender
1 send probe packet

Intermediate node
2 Compute Qt + Tt for packet
3 if(Avg(Qt) + Avg(Tt) > ε)
4 Avg(Qt) = α ∗ Avg(Qt) + (1 − α) ∗ Current(Qt)
5 Avg(Tt) = α ∗ Avg(Tt) + (1 − α) ∗ Current(Tt)
6 if (Avg(Qt) + Avg(Tt) > stamped D)
7 stamped D = Avg(Qt) + Avg(Tt)
8 else
9 Dprojected = i ∗ (Current(Qt) + Current(Tt))
10 if(Dprojected > stamped D)
11 stamped D = Dprojected

Receiver
12 Set Avg(D) = Current(D)
13 send packetfeedback to sender with Avg(D)

Sender
14 packetfeedback received with Avg(D)
15 compute rate R = 1

Avg(D)

16 send rate S = R
17 start epoch timer()
18 send packet()

Figure 6: Pseudo-code for quick-start

During connection initiation, or when recovering from a timeout,
TCP’s slow-start mechanism will take a few round-trip times before
it can converge on the available bandwidth for a flow. As we show
in Section 2, due to the frequent path failures and resultant time-
outs in an ad-hoc network, a TCP connection can end up spending
a considerable portion of its lifetime in the slow-start phase, thus
degrading network utilization.

ATP uses a mechanism called quick-start to probe for the avail-
able network bandwidth within a single round-trip time. Figure 6
presents the pseudo-code for the quick-start mechanism. Essen-
tially, during connection initiation, ATP uses a TCP-like SYN -
SYN+ACK exchange between the sender and the receiver. The in-
termediate nodes, when they forward the SYN packet, stamp on
the packet the Qt + Tt delay in the manner described in Section
4.1 (lines 2-11 in Figure 6). When the receiver responds back with
an ACK, it piggybacks onto the ACK the Qt + Tt value that was
stamped on the incoming SYN packet (lines 12-13). The sender,
upon receiving the ACK, starts using the rate value obtained based
on the feedback (lines 14-18).

ATP performs the quick-start operation both during connection
initiation and when the underlying network path traversed by the
connection changes. The motivation for performing quick-start
when a path change occurs is straightforward. When a new path is
used, the connection is not aware of the available bandwidth on the
path. Hence, performing bandwidth estimation once again allows
the connection to operate at the true available bandwidth instead of
either over-utilizing or under-utilizing the resources available along
the new path.



4.3.2 Congestion Control

Normal Operation:
Intermediate node
1 Compute Qt + Tt for packet
2 if(Avg(Qt) + Avg(Tt) > ε)
3 Avg(Qt) = α ∗ Avg(Qt) + (1 − α) ∗ Current(Qt)
4 Avg(Tt) = α ∗ Avg(Tt) + (1 − α) ∗ Current(Tt)
5 if (Avg(Qt) + Avg(Tt) > stamped D)
6 stamped D = Avg(Qt) + Avg(Tt)

Receiver
7 Avg(D) = β ∗ Avg(D) + (1 − β) ∗ Current(D)

On epoch timer expiry
8 stamp Avg(D)on packetfeedback

9 send packetfeedback to sender

Sender
10 packetfeedback received with Avg(D)
11 Compute new rate R = 1

Avg(D)

Rate Adjustment:
12 if sendrateS < R − φ ∗ S

13 S = S + R−S
k

14 else if S > R
15 S = R
16 elsemaintainS
17 start epoch timer()
18 send packet()

Figure 7: Pseudo-code for normal operation

Unlike TCP, which has a two-phase congestion control protocol
with an increase-phase and a decrease-phase, ATP uses a three-
phase congestion control protocol consisting of increase, decrease,
and maintain phases. One of the key differences between TCP’s
congestion control mechanisms and that of ATP’s is the network
feedback that ATP’s mechanisms use. Since TCP does not rely on
any network support, it probes for more bandwidth by linearly in-
creasing the congestion window size at the sender. Similarly, when
a loss occurs, since TCP does not know the true extent of con-
gestion, it conservatively performs a multiplicative decrease of the
congestion window size.

ATP, on the other hand, relies on feedback from the intermediate
network nodes. Hence, its increase can be more aggressive than
that of TCP, decrease can be less conservative than that of TCP, and
more importantly can operate in a maintain phase when network
conditions do not change. We now elaborate on each of the phases
in more detail:

• Increase phase: When the feedback rate from the receiver is
greater than the current rate S by a threshold φ∗S, the sender
enters the increase phase (lines 12-13 in Figure 7), where φ is
a small constant used to prevent fluctuations. The threshold
is kept as a function of the current rate in order to allow con-
tending flows with lower rate to increase more aggressively
than the flows with larger rates. Once an increase decision
is taken, flows increase their rates only by a fraction k of the
potential increase amount. We choose a value of 5 for k in
the simulations due to following rationale: When the rate of
a flow is increased by one packet per second, the induced
load (when the underlying MAC scheme is CSMA/CA) in
the network can increase by up to five packets per second.
For example, consider a path A-B-C-D-E-F. Even when the
rate of a flow traversing this path increases by one packet per

second, a transmission on the link C-D will contend with all
the other four packet transmissions on the path.

• Decrease phase: On the other hand, when the feedback rate
is smaller than the current rate, the sender performs the de-
crease phase (lines 14-15) merely adjusting its current rate to
the feedback rate.

• Maintain phase: If the available rate R lies within (S, S +
φ ∗ S), the sender maintains its rate. Thus, unlike in TCP
which has to be either in the increase or decrease phases,
ATP, given stable network conditions, can operate in a state
of equilibrium. We demonstrate this behavior in Section 5.

Note that the above congestion control decisions can be taken
by the ATP sender only when it receives the rate feedback from
the receiver correctly. It is possible that the rate feedback from the
receiver is lost due to path failures on the reverse path. ATP ad-
dresses this issue by performing a multiplicative decrease of the
sending rate for every epoch it does not receive feedback from the
receiver, up to a maximum of two epochs. If it does not receive any
feedback at the end of the third epoch, the ATP sender goes into
its connection initiation phase, sending one probe every epoch till
it hears back from the receiver. Note that once it hears from the
receiver, it will use the rate on the feedback packet for its transmis-
sions as part of its quick-start mechanism.

4.3.3 Reliability
As described in Section 4.2, the receiver as part of its periodic

feedback sends information about any holes in the data stream it
has received. The ATP sender treats the SACK information just as
in TCP by maintaining a SACK scoreboard data structure. Data
marked to be retransmitted are sent with a higher preference than
new data. Note that the congestion control mechanism in ATP is de-
coupled from the reliability mechanism. Hence, while the conges-
tion control protocol determines the rate at which the sender should
be sending, the reliability mechanism ensures that packets queued
for retransmission are sent preferentially when the send timer ex-
pires. In other words, the retransmissions are performed within the
regular transmission rate determined by the congestion control al-
gorithm.

In addition to the receiver informing the sender about losses,
when there is a path failure, the ATP sender uses explicit link fail-
ure notification from the appropriate intermediate node. When such
feedback is received, the ATP sender immediately enters the con-
nection initiation phase as part of its recovery mechanism after a
route switch. In the connection initiation phase, the ATP sender,
for every epoch, sends a probe packet to the receiver. The probe
packet is piggybacked on the next in-sequence data packet queued
for transmission. Even if there are suffix losses due to the path
failure, the subsequent periodic probe packets sent by the sender
serve to elicit a feedback packet from the receiver containing the
appropriate SACK information.

Note that the ATP sender will typically receive the link-failure
notification before (if at all) it receives SACK information from the
receiver. This is because the SACK information from the receiver
will be generated only when there are no suffix losses because of
the path failure. However, suffix losses will be the norm unless
some route salvaging is done by the intermediate nodes. Even if
both the link-failure notification, and the receiver’s periodic feed-
back packets are lost, the sender will eventually enter the probe
phase due to lack of feedback from the receiver and hence recover
from any losses.
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Figure 9: Congestion window/rate progression vs. time [25 Flows]

5. PEFORMANCE EVALUATION

5.1 Environment
We use the network simulator ns2 for all our simulations. The

setdest tool in ns2 is used to generate the random topologies for the
simulations. The mobility model used for topology generation is
the random waypoint model. All the simulations are performed for
a 1000m × 1000m grid consisting of 100 nodes, distributed ran-
domly over the two-dimensional grid. The source-destination pairs
are randomly chosen from the set of 100 nodes in the network. We
consider speeds of 1 m/s (pedestrian), 10 m/s and 20 m/s (vehic-
ular) in our simulations. We also study the effect of load on the
network by investigating scenarios with 1, 5 and 25 connections
respectively. FTP is the application that we use over TCP for all
the flows in the network, including those flows in the results that
were presented in Section 2. The packets generated are of size
512 bytes in all the simulations. The performance of ATP is evalu-
ated and compared against default TCP and TCP-ELFN for typical
network scenarios outlined above. The metrics that we employ to
measure the performance of the new transport protocol are instan-
taneous throughput, aggregate throughput and normalized standard
deviation. By instantaneous throughput we refer to the congestion
window progression for default TCP and TCP-ELFN, and the rate
progression for ATP. The aggregate throughput is measured in kbps
and reflects the number of packets successfully received at the des-
tination. The normalized standard deviation measures the standard
deviation between the individual flow throughputs in a particular
scenario normalized to the average throughput for that scenario.
Thus, the normalized standard deviation is a representative mea-
sure of the global fairness that is provided by the transport proto-

col. All the simulations are run for 100 seconds. Every flow in the
network exists for the entire simulation run, and each data point on
the graph is averaged over 10 simulation runs.

5.2 Results

5.2.1 Instantaneous Throughput
We present snapshots of instantaneous throughput results for de-

fault TCP, TCP-ELFN and ATP for a single connection and a 25-
connection scenario for a speed of 20m/s in Figures 8 and 9 respec-
tively. The instants of route failures are also indicated on the plots.
TCP invariably experiences a timeout and performs a slow-start
even on a route failure since it does not distinguish between con-
gestion losses and mobility losses. We have already demonstrated
in Section 2 that around 90% of the time the routes recomputed
on route failures are new ones, and hence TCP’s multiplicative de-
crease is unwarranted. We make the following three key observa-
tions with respect to ATP’s rate progression: (i) Since ATP does not
use loss as an indicator of congestion, it does not decrease its rate
on route failures unless dictated by its rate adaptation mechanism
to do so. (ii) Owing to its quick-start mechanism of aggressively
catching upto the available bandwidth, even when it experiences a
route failure and is forced to decrease its rate, it is able to catch
up to the available bandwidth on the recomputed route in a shorter
time duration. (iii) Even though ATP aggressively tries to catch
up to the available bandwidth, once it does reach the available ca-
pacity, it tries to maintain a steady rate without large fluctuations.
Hence the rate adaptation mechanism stabilizes once the available
capacity has been reached. This can be observed from Figure 8 (c)
and Figure 9 (c).
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Figure 10: Instantaneous throughput dynamics [2 Flows]

While the scenarios discussed thus far comprise of static traf-
fic loads, to investigate the performance of ATP’s rate adaptation
mechanism in the event of network traffic dynamics, we consider a
simple topology consisting of a five-hop linear chain with two flows
F1 and F2. F1 exists between [0, 90]s, while F2 exists between
[30, 120]s. The instantaneous rates of the two flows are presented
in Figure 10(a). Both flows achieve an aggregate average rate of
about 100 pkts/s. As can be seen, after the arrival of F2, the two
flows converge to the fair share of the available channel capacity
almost instantaneously. Also when F1 leaves, F2 is able to catch
up to the total available capacity in a short time. The corresponding
instantaneous throughput dynamics for two TCP flows is shown in
Figure 10(b). It can be seen that the convergence to the fair share
for the TCP flows F1 and F2 is slow and oscillatory. Further when
F1 leaves, F2 is unable to catch up to the available capacity quickly
unlike in the case of ATP. This can be attributed to the fact that ATP
uses explicit rate feedback, while TCP relies on its “blind” linear
increase mechanism to ramp up to the available rate.

5.2.2 Aggregate Throughput
For the single connection scenario, we observe in Figure 11(a)

that for a typical network topology, the throughput achieved by
ATP is almost 100% more than the protocols under comparison.
TCP-ELFN is able to provide an improvement of around 20-25%
over default TCP. Since ATP uses smarter start-up and rate based
congestion control mechanisms, in a lightly loaded scenario as this
one, it is able to utilize the underlying network bandwidth more ef-
ficiently. The appropriate reaction of ATP to mobility related losses
prevents it from any performance degradation.

For multiple connections, we find that the aggregate throughput
achieved by ATP is around 25-30% more than that of default TCP
and TCP-ELFN for the case of 5 and 10 connections as shown in
Figures 11(b) and (c), while it is about 10% for the 25 connec-
tions scenario as shown in Figure 11(c). The performance of TCP-
ELFN degrades for the multiple connection scenarios and is less
than that of default TCP. This has already been pointed out in ear-
lier works [7]. From these results it can be observed that though
the absolute performance of ATP is always better than that of de-
fault TCP and TCP-ELFN, its margin of performance improvement
decreases as the load on the network increases. We attribute the
following reason to this observation: As the load on the network
increases, though some flows undergo performance degradation,
there are other flows in the network that can potentially utilize the
underlying bandwidth at the cost of the degrading flows. Thus
the overall utilization of network capacity becomes better which

in turn decreases the room for performance improvement for ATP.
However, fairness will remain a concern even at higher loads. We
present the fairness properties of ATP in Section 5.2.3.

5.2.3 Fairness
In order to address the degree of global fairness provided by

ATP in comparison to the protocols under consideration, we present
the normalized standard deviation results in Figures 12(a), (b) and
(c) for 5, 10 and 25 connections respectively. This metric can be
thought of as being representative of an unfairness index. Hence
the higher the normalized standard deviation the higher is the de-
gree of unfairness in the network. It is evident from the results that
ATP is able to decrease the degree of unfairness by as high as 40%.
The reason being that when an intermediate node servicing several
flows experiences congestion, it sends back feedback of congestion
to all the sources of the flows being serviced by it. The sources re-
spond in an identical manner to this congestion indication thereby
leading to a higher degree of fairness in the network.

5.3 Summary
To summarize, we have shown the effectiveness of ATP’s rate

adaptation mechanism in this section. Further, we have evaluated
the performance of the proposed transport protocol under different
mobility and load conditions. The results clearly indicate the sig-
nificant performance improvement that ATP provides over default
TCP and TCP-ELFN. In addition ATP also achieves a higher de-
gree of global fairness in the network.

6. RELATED WORK
TCP performance over cellular wireless packet-data networks

has been the focus of research for a number of years, but recently,
the focus has shifted to studying its performance on mobile ad-hoc
networks. Proposals that address the problem of TCP performance
over cellular wireless networks are typically of three types: (i) Im-
proving the reliability at the link layer [16], (ii) Introducing TCP
aware smarts at a central entity like the base station [12], and (iii)
Split connection methods [17], which distinguish between the wire-
less and the wired domains in wireless networks. These approaches
improve performance by keeping the TCP sender unaware of the
loss characteristics of the wireless link, and thus preventing those
from affecting the congestion control mechanisms of TCP. Such
techniques cannot be deployed over ad-hoc networks because they
require infrastructure support, and do not address the issue of losses
due to route failures.

Several research works have attempted to identify factors affect-
ing the performance in cellular and multi-hop wireless network sce-
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Figure 11: Throughput vs. Mobility

narios [4, 5, 14]. [4, 14] study the effect of routing and link layer
mechanisms on TCP performance. Cache management strategies
are investigated and the effect of link layer re-transmissions on TCP
throughput is discussed in [4]. However, the study is conducted on
a static wireless network. While [14] comprehensively identifies
the problems with TCP in dynamic multi-hop wireless networks,
the mechanisms proposed at the media access and routing layers
do not address all the issues.

Recent work [6–10] discusses the effect of mobility on TCP
performance and suggests various transport layer mechanisms to
solve the problems caused due to mobility. [6] evaluates an ex-
plicit link failure notification technique (ELFN) in the context of
improving TCP performance over multi-hop mobile ad-hoc net-
works. They study the effect of link failures due to mobility on
throughput and show through simulations that ELFN improves the
performance of TCP. However, the focus is on a single connec-
tion and lightly loaded scenario. [7] also studies the performance of
ELFN on static and dynamic networks and corroborates the results
obtained in [6]. [8] discusses a mechanism called TCP-Feedback,
which uses route failure and re-establishment notifications to pro-
vide feedback to TCP, and thus reduce the number of packet re-
transmissions and TCP back- offs during route calculation, to im-
prove throughput. However, this mechanism is not evaluated in a
mobile ad-hoc network environment. [9] studies the performance
of TCP on three different routing protocols and proposes a heuris-
tic called fixed RTO, which essentially freezes the TCP RTO value
whenever there is a route loss. They also evaluate the effectiveness
of TCP’s selective and delayed acknowledgments in improving the
performance. [10] provides a transport layer solution to improving
TCP performance. It introduces a thin layer between the transport
and underlying routing layers, which puts TCP into persist mode
whenever the network gets disconnected or there are packet losses
due to high bit error rate. Thus, this thin layer acts as a shield to
TCP, protecting it from the underlying behavior of an ad-hoc net-
work.

In a different context, the NACK-oriented reliable multicast pro-
tocol (NORM) [18] provides NACK based reliability and is similar
to ATP since it employs rate based transmissions. However the
other fundamental differences that exist between TCP and ATP in
terms of the start-up behavior, congestion control and reliability
mechanisms, still hold true for NORM and ATP.

Finally, while several approaches have been proposed to leverage
multi-path routing in ad-hoc networks [19, 20], ATP is designed
for single path connections. Note that TCP is also designed only
for single-path connections and will also suffer drastically if multi-
path routing. However, a transport layer framework such as [21]
can be used in tandem with ATP to effectively support connections
traversing multiple paths.

In summary, most of the related research aims at either augment-
ing TCP with some mechanism or protecting TCP from the nuances
of the ad-hoc network, so as to improve performance. ATP on the
other hand is not a TCP-variant and is tailored specifically to suit
the characteristics of ad-hoc networks.

7. CONCLUSIONS
The behaviour of TCP over ad-hoc networks is studied exten-

sively in this paper. We infer from the results that a majority of
the components of TCP are not suitable for the characteristics of
ad-hoc networks. Various reasons are discussed, and the insights
gained from the study are used to motivate a new transport proto-
col called ATP, which is better suited for ad-hoc networks. The
protocol addresses all the problems that TCP faces when deployed
over ad-hoc networks, and thus shows considerable performance
improvement over TCP and TCP-ELFN.
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