
A Receiver-Centric Transport Protocol for Mobile Hosts
with Heterogeneous Wireless Interfaces ∗

Hung-Yun Hsieh, Kyu-Han Kim, Yujie Zhu, and Raghupathy Sivakumar
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

{hyhsieh, zhuyujie, siva}@ece.gatech.edu

ABSTRACT
Numerous transport protocols have been proposed in related work
for use by mobile hosts over wireless environments. A common
theme among the design of such protocols is that they specifically
address the distinct characteristics of the last-hop wireless link,
such as random wireless errors, round-trip time variations, black-
outs, handoffs, etc. In this paper, we argue that due to the defining
role played by the wireless link on a connection’s performance, lo-
cating the intelligence of a transport protocol at the mobile host that
is adjacent to the wireless link can result in distinct performance
advantages. To this end, we present a receiver-centric transport
protocol called RCP (Reception Control Protocol) that is a TCP
clone in its general behavior, but allows for better congestion con-
trol, loss recovery, and power management mechanisms compared
to sender-centric approaches. More importantly, in the context of
recent trends where mobile hosts are increasingly being equipped
with multiple interfaces providing access to heterogeneous wireless
networks, we show that a receiver-centric protocol such as RCP
can enable a powerful and comprehensive transport layer solution
for such multi-homed hosts. Specifically, we describe how RCP
can be used to provide: (i) a scalable solution to support interface
specific congestion control for a single active connection; (ii) seam-
less server migration capability during handoffs; and (iii) effective
bandwidth aggregation when receiving data through multiple inter-
faces, either from one server, or from multiple replicated servers.
We use both packet level simulations, and real Internet experiments
to evaluate the proposed protocol.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Performance

∗This work was funded in part by NSF grants ANI-0117840 and
ECS-0225497, Yamacraw, and Georgia Tech Broadband Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03, September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

Keywords
Heterogeneous wireless networks, multi-homed mobile host, seam-
less handoff, server migration, bandwidth aggregation

1. INTRODUCTION
The TCP (Transmission Control Protocol) transport layer proto-

col is a sender-centric protocol with the data sender performing all
important tasks including congestion control and reliability. The re-
ceiver participates in the operation of the protocol, but contributes
only by sending feedback in the form of acknowledgments. While
numerous TCP variants and alternatives have been proposed for
mobile hosts operating in a wireless environment, all such proto-
cols still retain the sender-centric nature of TCP [2, 3, 11, 14, 30].
Although the role of the receiver is appreciably larger in some of
the above protocols than in TCP, it is still limited to providing more
meaningful feedback, with the sender having final control over all
key tasks.

In this paper, we make the case for a receiver-centric transport
layer protocol1 for wireless packet data networks. While we present
in-depth discussions in Section 2, our arguments are based on the
following two factors:

1. Any transport protocol tailored for mobile hosts in a wireless
environment has to tackle the unique characteristics of the
“last-hop” wireless link, and the consequences of the end-
point being mobile. In fact, the common theme between
the wide variety of transport protocols proposed for differ-
ent wireless environments, is indeed the notion of address-
ing the problems induced by the wireless last-hop. Despite
the wireless-aware behavior of these transport protocols, the
congestion control and reliability mechanisms of the connec-
tion are still predominantly controlled by the sender, a remote
host in the backbone network. However, we argue that plac-
ing the transport protocol’s intelligence at the mobile host,
which is an end-point of the wireless link, can enable fun-
damentally smarter mechanisms for congestion control, loss
recovery, and power management when compared to sender-
centric approaches.

2. With the myriad of wireless networking technologies evolv-
ing to provide ubiquitous communication, a mobile user to-
day has several options for wireless Internet access. Not

1In consideration of the typically prevalent server-client nature of
traffic in the Internet, we term the protocol “receiver-centric” al-
though precisely it is the mobile host that drives the protocol oper-
ation. Note that in this paper, we define the sender and the receiver
of a connection with respect to the direction of the data flow.

surprisingly, mobile hosts are increasingly becoming multi-
homed, possessing two or more interfaces. The distinct ad-
vantages offered by the different technologies further spur
the need for mobile hosts to have multiple interfaces. For ex-
ample, wireless LANs offer high bandwidths but suffer from
low coverage areas, while wireless WANs offer larger cov-
erage areas but cannot support as high bandwidths as their
LAN counterparts. Thus mobile hosts are, or can increas-
ingly be expected to be, equipped with heterogeneous wire-
less interfaces providing access to wireless networks that can
potentially belong to even different autonomous domains.
We argue that a receiver-centric transport protocol, where the
receiver controls how much and which data to receive from
the sender, will be able to fare better than traditional sender-
centric approaches in addressing this heterogeneity at the re-
ceiver, and provide distinct advantages from the perspective
of the transport layer functionality achievable.

To understand the above factors better, in Section 2, we provide
detailed arguments for the specific benefits enabled when using a
receiver-centric transport protocol for mobile hosts in a wireless
environment.

We then propose a receiver-centric transport protocol called RCP
(Reception Control Protocol), which is a TCP clone in its gen-
eral behavior. RCP is TCP-friendly in its operations, but enables
smarter transport layer mechanisms for congestion control, loss re-
covery, and power management. Briefly, the receiver in RCP con-
trols all the key functionalities of the protocol including congestion
control, flow control, and reliability, while the sender’s role is min-
imized to that of responding to the receiver’s directions. We evalu-
ate RCP both to demonstrate its TCP-friendliness, and to highlight
its unique benefits when compared to sender-centric transport pro-
tocols. We also show why the transposition of the key function-
ality to make the protocol receiver-centric, does not impose any
appreciable increase in the CPU and energy consumption at the
resource-constrained mobile host. We provide details of the RCP
design, protocol, and its evaluation results in Section 3. While sev-
eral protocols have been proposed with increased receiver partici-
pation [8, 12, 24, 30, 33, 38], to the best of our knowledge, this is
the first effort to systematically investigate the benefits achievable
using receiver-centric protocols in wireless networks.

Finally, we propose a purely receiver-only extension to RCP
called R2CP (Radial RCP), designed specifically for multi-homed
mobile hosts. R2CP is a multi-state transport protocol that effec-
tively aggregates multiple RCP connections into one abstract con-
nection for the higher layer application. An R2CP connection has
multiple independent RCP senders communicating with their cor-
responding RCP receivers, with the receivers coordinated by R2CP.
R2CP facilitates several important transport layer functionalities for
multi-homed mobile hosts with heterogeneous wireless interfaces
including: (i) seamless handoffs, (ii) server migration, and (iii) ef-
fective bandwidth aggregation. We describe the different function-
alities, and how R2CP achieves them in Section 4. We also discuss
why these functionalities cannot be supported, or not effectively
supported, by sender-centric approaches.

The rest of the paper is organized as follows: In Section 2 we
motivate a receiver-centric approach for mobile hosts in a wireless
environment. In Section 3 we present details of the RCP proto-
col, and its performance gains. In Section 4 we extend RCP to a
multi-state protocol called R2CP that provides functionality gains
to mobile hosts with heterogeneous wireless interfaces. Section 5
discusses overheads when using a receiver-centric protocol at the
mobile host, and several RCP extensions. Finally, Section 6 dis-
cusses related work, and Section 7 concludes the paper.

2. WHY RECEIVER CENTRIC?
In this section, we discuss the benefits of using a receiver-centric

transport protocol for mobile hosts in a wireless environment. We
focus on a scenario where mobile hosts act as receivers for data sent
from servers in the backbone network, and hence we use the terms
“receiver” and “mobile host” interchangeably in the following dis-
cussions. While we explain in Section 3 various protocol func-
tionalities that can be moved from the sender to the receiver, for
purposes of discussions in this section, we assume that a receiver-
centric transport protocol controls how much data can be sent, and
which data should be sent, by the sender. The sender merely acts
based on the requests from the receiver. We first discuss the perfor-
mance gains for a mobile host by dealing with the characteristics of
the wireless last-hop, and then discuss the functionality gains when
the mobile host is equipped with multiple heterogeneous wireless
interfaces.

2.1 Tackling the Wireless Last-Hop

2.1.1 Loss Recovery
TCP assumes that all losses are due to congestion, and hence it

invokes its congestion control mechanisms when recovering from
losses. In the presence of non-congestion-related losses introduced
by wireless links such as channel errors, delay variations, black-
outs, and handoffs, TCP suffers from performance degradation due
to unnecessary window cutdowns. Hence, many approaches pro-
posed to improve the performance of TCP in wireless environments
have focused on providing TCP with information about the charac-
teristics of the wireless link for it to distinguish the causes of losses
and take appropriate actions. The information can be in the form
of loss classification (whether a loss is due to congestion or cor-
ruption), RTT sample filtering (excluding RTT samples adversely
inflated due to link retransmissions), channel states or potential link
outages (handoffs or blackouts), etc [2–4, 11].

Since the mobile host is adjacent to the wireless last-hop, it is
obviously better equipped to obtain first-hand knowledge of the
above pieces of information. In TCP, since the loss recovery (in-
cluding loss detection) is performed at the sender, the mobile host
needs to convey the requisite information to the server for it to take
“wireless-aware” actions. While this model of operation has pre-
dominantly been adopted in related work, it has some key limita-
tions: (i) Providing feedback to the sender incurs a finite overhead
in terms of the throughput consumed on the reverse path. This
can translate into degraded performance for connections, especially
when the forward and reverse traffic shares the same bottleneck
channel (as is the case for the wireless last-hop), or when the feed-
back is lost. (ii) Providing all available information as feedback
within a limited transport protocol framework can be unwieldy to
achieve. For example, some mobile hosts might use a reliable link
layer that affects the round-trip time of the connection, and hence
might choose to feedback information to filter specific RTT sam-
ples. Other mobile hosts might have an unreliable link layer, but
can provide feedback information about the reasons for losses (ran-
dom or congestion-related). If transport protocol headers need to
be changed to accommodate such information, how can the changes
be made generic enough to accommodate any possible feedback in-
formation? (iii) Along the same vein, how can a sender be designed
generically to operate with potentially a wide variety of such types
of feedback coming from mobile hosts that use any arbitrary link
layer protocol?

A receiver-centric transport protocol that performs loss recov-
ery at the receiver, however, can avoid the feedback overheads and
latency, and be responsive to the dynamics of the wireless link us-

ing the information obtained locally. Moreover, while any intelli-
gence added to sender-centric approaches requires changing both
the backbone server (for reaction) and the mobile host (for feed-
back), a receiver-centric approach involves changing only the mo-
bile host. The backbone server that is not in charge of loss recovery
does not need to be aware of the characteristics of the wireless link.

2.1.2 Congestion Control
The congestion control mechanism that TCP uses is designed

for wired environments, without taking into consideration the char-
acteristics of wireless environments. Related work that aims to
achieve optimal performance in various wireless environments has
proposed different congestion control mechanisms tailored to the
characteristics of the specific target environment [14,21,30,38]. For
example, WTCP [30] has been proposed for wireless WANs with
very low bandwidths and reverse path congestion, while STP [14]
has been proposed for satellite networks with highly asymmetric
links and long propagation delays.

To achieve optimal performance, a mobile host should ideally
use the congestion control mechanism (or transport protocol) de-
signed for the specific wireless network it has access to. How-
ever, in sender-centric approaches, these network specific conges-
tion control mechanisms need to be implemented at the backbone
server. While it is conceivable that a mobile host has access to only
a very limited number of wireless networks, a backbone server may
need to support a significantly large amount of connections from
mobile hosts belonging to any arbitrary wireless network. Given
the increased heterogeneity of the wireless networks, the disad-
vantages of sender-centric approaches is pronounced in terms of
its lack of deployability. Not only is it infeasible for the server
to implement all possible congestion control mechanisms designed
for various wireless environments, but it is unscalable to require
the server to change its protocol stack whenever a new congestion
control mechanism optimized to a new wireless access technology
is introduced.

A receiver-centric protocol where the receiver is responsible for
congestion control thus has unique advantages over a sender-centric
one. Since the sender is not tasked with implementing the conges-
tion control mechanism of the connection, its functionality can be
significantly simplified and made transparent to the specific con-
gestion control mechanisms used at the receiver.

2.1.3 Power Management
While a majority of work on the performance of TCP has fo-

cused on the throughput achievable, recently the energy efficiency
of TCP has also gained attention [29,37,40]. It is shown in [37,40]
that since channel errors tend to be bursty (correlated), it is energy-
conserving to cut down the window size (and hence reduce the
number of packets in flight) when wireless losses are detected. This
is because packets retransmitted immediately after wireless losses
are likely to be lost again, thus wasting the energy. While TCP-
SACK achieves better throughput performance compared to other
TCP variants, in fact it is the least energy-conserving protocol of
all when the channel error rate is high [29].

Therefore, an energy-efficient transport protocol should avoid
persistently accessing the channel when the channel condition is
hostile, as energy consumed during this period for attempting to
transmit or receive packets is likely to be wasted. Instead, it should
adjust the retransmission policy according to the channel dynam-
ics. While it is possible to implement such power management in
a sender-centric transport protocol like TCP, there are several lim-
itations to this approach: (i) While the receiver is more aware of
the channel condition than the sender, any power-saving decision

������� � �	�
���

��� ����� �	����� ��
��
������� � � ��
 ���	����� �����

�
� ������������� ��
 �

!	"�# $&%(')+*

!,"�# $&%-')/.

0 1�# "-' 1�"�#

243 ' "�$&576 6

� ����8 �������9� ��� � ���

Figure 1: A Mobile Host with Multiple Wireless Interfaces

cannot be made locally at the receiver. This is because the sender is
responsible for congestion control and loss recovery, and hence any
“unexpected” prolonged delay incurred at the receiver (that decides
to refrain from accessing the channel until the channel condition is
more favorable) in receiving data packets or transmitting ACKs can
easily cause the sender to timeout or wrongly inflate its RTT esti-
mation. (ii) Even if the receiver decides to inform the sender of the
power-saving decision, the feedback information will suffer from
the same problems that we discussed in Section 2.1.1. More im-
portantly, packets transmitted for conveying such feedback infor-
mation incur extra energy consumption – especially if the channel
condition is bad such that multiple retransmissions are required.
The overheads incurred in sending the feedback information hence
limit the granularity and effectiveness of any sender-centric power
management scheme.

On the other hand, in a receiver-centric protocol the receiver de-
cides which and how much data it needs to receive, and the sender
merely responds based on the receiver’s direction. Efficient power-
conserving decisions can be made at the receiver without triggering
any adverse reaction at the sender. Hence, the receiver has a higher
degree of flexibility to control the transmission or retransmission
decisions, without involving the sender.

2.2 Supporting Heterogeneous Interfaces
The primary reason for a mobile host to be equipped with hetero-

geneous wireless interfaces is the performance tradeoffs that differ-
ent access technologies exhibit, in terms of mobility support, cov-
erage area, network capacity, and transmission power. The avail-
ability of heterogeneous interfaces, however, has given rise to new
challenges to existing transport protocols in terms of the function-
alities they provide. In the following, we discuss the functionality
gains that a receiver-centric transport protocol can achieve to lever-
age the existence of multiple interfaces at the mobile host.

2.2.1 Seamless Handoffs
When the coverage areas of different access technologies over-

lap, it is possible to achieve seamless handoffs at the link layer.
However, such link layer handoffs do not necessarily translate into
seamless handoffs at the transport layer. Specifically, when a mo-
bile host handoffs from one interface to another with an IP address
change handled by Mobile IP, the prolonged delay for registration
with the home agent [27] can potentially introduce packet losses
after the link layer handoff has completed. To prevent TCP from
having adverse reactions due to packet losses during handoffs, the

mobile host needs to inform the sender of the handoff decision. As
we discussed in Section 2.1.1, whenever feedback information is
required, a receiver-centric protocol has advantages over a sender-
centric one due to the locality of information needed.

However, while it is possible to freeze TCP during handoffs [11],
such a stall causes connection disruption and prevents users from
enjoying seamless handoffs. One solution to avoid the handoff
latency without relying on infrastructure support [9], is to use a
mobility-enabled transport protocol for achieving end-to-end host
mobility [26]. When the mobile host decides to perform a verti-
cal handoff [34], it can create a new “data stream” for data transfer
through the new address, as soon as the new interface becomes ac-
tive. With an approach like [15], the mobile host can use multiple
TCP pipes (streams) simultaneously without experiencing any con-
nection stall as long as the link layer supports seamless handoffs.

A receiver-centric transport protocol thus has advantages over a
sender-centric one in such a scenario, since the receiver can accu-
rately control which and how much data to send through each pipe
based on the status (say, signal strength) of each interface. More-
over, as we discussed in Section 2.1.2, when the receiver decides to
switch to another interface specific congestion control mechanism
after handoffs, such decision does not need to involve the sender,
which otherwise would be tasked with, in addition to supporting
a plethora of congestion control mechanisms, the seamless transi-
tion from one congestion control mechanism to another for a live
connection.

2.2.2 Server Migration
Server migration is necessary for achieving service continuity

when a mobile host handoffs from one network to another, and
fails to connect to the original server using the new network ad-
dress. For example, consider a mobile host with both WWAN
(Network A) and WLAN (Network B) interfaces as shown in Fig-
ure 1. When it initially uses the WWAN interface to connect to the
E! Online server, it is provided access to the proxy server inside
the WWAN that mirrors the same content (e.g. consider a WWAN
service provider such as EarthLink that teams with Akamai for im-
proving the network service it provides [1]). When the mobile host
moves to within the coverage area of the WLAN and undergoes
a vertical handoff, it cannot connect to the original proxy server in
the WWAN (due to, say, firewalls). However, it may have a connec-
tion to a different server through the WLAN interface, and hence
can initiate server migration to enjoy service continuity.

Server migration may require support from the application [35]
or the transport protocol [31], to synchronize the states between
servers. A well-designed transport layer protocol can facilitate such
a synchronization process. If a sender-centric transport protocol is
used for server migration, states maintained at the server for per-
forming congestion control and loss recovery need to be transferred
from one server to another. Moreover, for TCP, after the new server
assumes control of the connection, the mobile host has to flush any
out-of-order data from its resequencing buffer, to avoid confound-
ing the server by acknowledging data that the sender has not yet
sent [31]. As much as a window’s worth of data buffered at the
receiver needs to be flushed after server migration.

On the other hand, in a receiver-centric transport protocol, since
the states maintained for protocol operations are biased toward the
receiver, overheads incurred in transferring protocol states from one
sender to another are minimized. Moreover, since the receiver has
access to the receive buffer and has control over which data to re-
ceive from the sender, there is no need to flush the buffer after mi-
gration. The receiver can simply request every “hole” in the receive
buffer from the new sender.

2.2.3 Bandwidth Aggregation
When the coverage areas of different wireless networks a mo-

bile host has access to, overlap, the mobile host can use multiple
interfaces simultaneously, with the goal of enjoying the aggregate
bandwidth available.

While approaches for achieving bandwidth aggregation on multi-
homed mobile hosts using sender-centric transport protocols have
been proposed [15, 20], they are limited to using only one server.
Such point-to-point bandwidth aggregation, however, might not be
possible or desirable in some cases. For example, as we discussed
in Section 2.2.2, some proxy servers are accessible only through
the designated wireless interface, and hence it is not possible to
achieve bandwidth aggregation using additional wireless interfaces
that have no access to the existing server. In such a scenario, a
sender-centric approach would not be desirable since it would oth-
erwise require explicit coordination between these geographically-
spaced servers. Moreover, it is possible that mobile hosts want to
leverage the existence of multiple active interfaces in an oppor-
tunistic fashion, based on the tradeoffs between different interfaces
in terms of achieved throughput, power consumption, and the cost
incurred. The decision to use or shut down an active interface thus
can be dynamic, based on the channel conditions (e.g. loss rates
and delays) and the policy of bandwidth aggregation that the mo-
bile host desires.

It is advantageous to use a receiver-centric transport protocol for
achieving different instantiations of bandwidth aggregation. For
multipoint-to-point bandwidth aggregation, since the receiver is the
center of control, it can easily coordinate the transmission of mul-
tiple senders internally, without any explicit coordination between
senders themselves. For policy-based bandwidth aggregation, any
policy can be easily implemented and updated at the receiver based
on the characteristics of the last-hop and the preference of the user.

3. RCP: RECEPTION CONTROL PROTO-
COL

We now present details of a receiver-centric transport protocol
called RCP. Briefly, RCP moves the responsibility for performing
reliability and congestion control from the sender to the receiver.
We first give a short review of the sender-receiver interaction in
TCP, and how it is transposed in RCP. We then give an overview
of the protocol operation in RCP, and present different protocol
functionalities including connection management, congestion con-
trol, flow control, and reliability. Finally, we use simulation results
to show that while RCP is indeed TCP-friendly, it achieves better
performance in wireless environments in terms of intelligent loss
recovery, scalable congestion control, and efficient power manage-
ment.

3.1 Transposition of Functionalities
TCP is a connection-oriented transport layer protocol that pro-

vides reliable in-sequence data delivery to the application. Its pro-
tocol operation mainly consists of the following four functional-
ities: connection management, flow control, congestion control,
and reliability. Figure 2(a) shows a schematic view of the sender–
receiver interaction in TCP, along with several state variables using
the notation introduced in [25]. The connection management is re-
quired by any connection-oriented protocol to synchronize connec-
tion states between the communicating peers. After the connection
is established, the sender in TCP controls the progress of data trans-
fer. The sender drains data from its buffer based on the amount of
data that the receiver can accept (flow control), and the amount of
data that the network can sustain (congestion control). The receiver

� � ��� ��� �

� � ��� 	�

�

� � ��� � ���

�
����

�
�
�
���� �
 �

� 	�

�

� 	
��

��� � � � � � � � � �

��� � �
� � ! � " � �

�#� ! $ � % � � � !��#� ! � " � �

% � ! &'� ()) � "

� ����� � � �

� ����� ��� �+*
� ����� 	�

�

� � % � , (� ! - � ! $ ��� ./�
����
��� ./� 	
��

" � - 01� ()) � "

2�31465 7 8�9�7 :

2�3/4;: 7 < 7 = >#7 :

?#@ A B C @ D E

F�G H H I
J K G L K @ H H

C @ D E MON P Q

C @ D E MON P Q

(a) TCP (Sender-Centric)

R S T�U R S V

R S T�U W�S V

W�X Y/U Z�[�\
W S�V�U Z�[�\

X]�Z
^

_ ` a b c d b a b e f

g#h i j ` k e b h i�g h i e l h a

l ` m n o l ` p/d q r r ` l

R S T�U W S�V+s
R S T�U ^ S�V

R S T�U R S�V
t�` i uR Z�^�U Z
[
\

k ` i u'd q r r ` l

vxw1y{z | }�| ~ �#| z

v�w1y�� | ����| z

W]
Z�^��a h �
g#h i e l h a

R S T�U ^�S V

��� � � � � ��#� � ��� � �

�#� � ��� � �

�
� � � �
� � � � � � � �

(b) RCP (Receiver-Centric)

Figure 2: Sender–Receiver Interactions

performs resequencing and acknowledges data received. Reliable
data transfer is achieved through loss detection and loss recovery
performed at the sender.

It is clear that the connection management cannot be implemented
only at one side of the connection, but needs participation of both
the sender and the receiver. For the other functionalities, while TCP
uses a sender-centric approach, RCP delegates the responsibility to
the receiver as shown in Figure 2(b). Briefly, while the receiver
in TCP merely sends back ACKs with no control over which and
in what sequence data is transmitted by the sender, in RCP the re-
ceiver explicitly controls these factors and the reliable delivery of
data. Moreover, the RCP receiver also assumes total control over
the bandwidth the connection can consume, using the same window
based algorithm employed by the TCP sender. Finally, although
flow control in TCP involves the sender, it is performed solely by
the receiver in RCP. Therefore, the receiver in RCP determines how
much data the sender can send (via congestion control and flow
control), and which data the sender should send (via reliability).

3.2 Overview
In RCP, since the control of data transfer is shifted from the

sender to the receiver, the DATA–ACK style of handshaking in TCP
is no longer applicable. Instead, to mimic the self-clocking char-
acteristics of TCP, RCP uses the REQ–DATA handshake for data
transfer, where any data transferred from the sender is preceded
with an explicit request (REQ) from the receiver. Equivalently,
RCP uses the incoming data to clock the request for new data. The
sender simply maintains the send buffer with one pointer (SND.NXT)
indicating the maximum sequence number sent thus far.

After the connection is established, the receiver requests data
from the sender based on the size of the initial congestion window.
The progression of its congestion window follows the slow start,
congestion avoidance, fast retransmit, and fast recovery phases just
like in TCP. The key difference in the operation is that any trigger
for performing congestion control is inferred based on the arrival
(or non-arrival) of data segments. For example, a loss is inferred

upon the arrivals of three out-of-order data segments – instead of
ACKs. Upon detection of a segment loss, RCP cuts down its con-
gestion window, and retransmits the corresponding REQ asking for
the lost segment. Finally, the receiver performs data resequencing,
and gives in-sequence data to the application.

3.3 Protocol
In the following, we present details of the RCP protocol in terms

of the REQ–DATA handshake, and different functionalities includ-
ing connection management, congestion control, flow control, and
reliability. For simplicity of explanation, we assume a backlogged
(network-limited) traffic source in the following discussions. We
revisit the implications of other traffic types in Section 5.

3.3.1 REQ–DATA Handshake
In the DATA–ACK handshake, TCP uses the cumulative acknowl-

edgment for achieving robustness to losses. To emulate this behav-
ior and tolerate loss in the reverse path, RCP allows the receiver
to send request either in a cumulative mode or in a pull mode, by
appropriately setting the pull flag (PUL) in the packet header. The
receiver by default uses the cumulative mode to requests for new
data, and uses the pull mode only for retransmission of requests.
When the sender receives a request with the pull flag set, it sends
only the data segment indicated in the packet header. Otherwise,
the sender cumulatively transmits data from SND.NXT that has not
been sent yet. Hence, the loss of REQ in cumulative mode has sim-
ilar impact to that of ACK loss in TCP. To protect REQ in the pull
mode from losses, RCP also uses a similar mechanism used by TCP
for protecting SACK from losses. The receiver puts the most re-
cent blocks of sequence numbers (we use three blocks as proposed
in the SACK option [23]) it requested in the REQ header. The
sender, in addition to maintaining the send buffer, also maintains a
cyclic buffer consisting of the most recent blocks of sequence num-
bers (three blocks) it sent out. Upon receiving the request from the
receiver, the sender checks the consistency between the blocks in
REQ and its cyclic buffer. Any mismatch is an indication of REQ
losses, and will be recovered by the sender. Note that a request in
the pull mode for a specific data segment will be carried in at least
four REQs. We revisit the robustness of REQ in Section 3.4.1.

3.3.2 Connection Management
Just like in TCP, either the RCP sender or the receiver can ini-

tiate the connection setup. The setup process consists of the same
SYN – SYN+ACK – ACK handshake as in TCP. However, once the
connection is established, instead of the sender sending the first
data segment, the RCP receiver transmits the first REQ with the
initial sequence number. The sender then transmits the first data
segment upon receiving the REQ. The connection teardown in RCP
also follows that in TCP.

3.3.3 Congestion Control
In RCP, the receiver performs congestion control and maintains

the congestion control parameters including the congestion win-
dow CWND and round-trip time information. Since RCP is a TCP
clone, it adopts the window based congestion control used in TCP.
The slow start, congestion avoidance, fast retransmit, and fast re-
covery phases are triggered and exited in the same fashion as in
TCP. Note that while the same window adaptation algorithm (ad-
ditive increase, multiplicative decrease) can be implemented either
at the sender or at the receiver for performing congestion control,
the semantics of the congestion window and the trigger for window
increase or cutdown are different. In TCP, the size of the conges-
tion window limits the amount of unacknowledged DATA in the

network, and the sender uses the return of ACKs to trigger the pro-
gression of the congestion window. In RCP, the size of the conges-
tion window limits the amount of outstanding REQs in the network,
and the receiver uses the return of DATA to trigger the progression
of the congestion window.

3.3.4 Flow Control
Flow control allows the receiver to limit the amount of in-transit

data to the available buffer space at the receiver – when waiting for
the application to read (and purge) in-sequence data, or waiting for
the arrivals of out-of-order data. In RCP, a request is sent out only if
the corresponding data, once received, does not cause buffer over-
flow at the receiver. This can be achieved by creating a “dummy”
sk buff [6] (that does not contain any data) in the receive buffer
for each data segment requested. New requests are issued as long
as new space is created in the buffer. Note that the sender in TCP
relies on the window advertisement from the receiver to perform
flow control. However, in RCP since the receiver maintains the re-
ceive buffer, and has total control over how much data the sender
can send, flow control is internal to the receiver. Interestingly, RCP
also needs a window field (SEG.DEQ) in the packet header to inform
the sender of the highest in-sequence data received so far (which
can be calculated at the sender using SEG.REQ - SEG.DEQ), thus
allowing the sender to purge such data from its send buffer. The
window scale option [17] used in TCP can also be applied to RCP
in the same fashion.

3.3.5 Reliability
As Figure 2(b) shows, in RCP the resequencing and reliabil-

ity functionalities are collocated at the receiver. Upon receiving
a data segment from the sender, the receiver enqueues the data in
the corresponding sk buff (created when its request was transmit-
ted), and updates RCV.NXT after the resequencing process. In TCP,
since reliability is performed at the sender while resequencing is
performed at the receiver, RCV.NXT is conveyed as the cumula-
tive ACK to the sender for it to perform loss detection. However,
RCV.NXT conveys limited information about the state of the receive
buffer, and hence early implementations of TCP that rely on the
cumulative ACK for performing loss detection, suffer from recov-
ering at most one loss per round-trip time, in addition to incurring
frequent timeouts [10]. The SACK option is proposed to address
this limitation, using which the TCP sender aims to construct the
bitmap of the receive buffer in the “scoreboard” data structure [23].
However, in RCP the receiver has direct access to the receive buffer,
and hence it can timely and accurately perform loss detection and
loss recovery without relying on the use of SACK.

While RCP can use any loss recovery algorithm optimized to
the wireless environment, in the current implementation of RCP
we adopt the algorithms proposed in [5, 22]. Briefly, (i) the same
threshold in terms of the number of out-of-order arrivals is used for
detecting all holes (not just the first one) in the receive buffer; (ii)
RCP does not incur a timeout when a retransmitted segment is lost;
and (iii) there is no need to clear the receive buffer upon a timeout
(whereas a TCP sender using SACK should clear its scoreboard due
to the possibility of receiver reneging [23]).

3.4 Performance Gains
In this section, we show through simulations the performance

gains of a receiver-centric transport protocol over a sender-centric
one. We first show that RCP is indeed a TCP clone and is friendly
to TCP in the wired environment. We then show that in the wireless
environment, RCP achieves better performance than TCP in terms
of loss recovery, congestion control, and power management.

��� ���
���	��

�������������

���

� � �

� �

� � �

������ "!$#
%�&'#

�(���� (!)#
*+&�#

,.-0/�,�1+2

�.3

���� "!$#
4)5�&�#

Figure 3: Network Topology

We use the ns-2 network simulator [36] and a dumb-bell network
topology shown in Figure 3 for performance evaluation. For fair
comparisons between sender-centric and receiver-centric protocols,
we modify the implementation of TCP-SACK in ns-2 to include
better loss recovery mechanism such as better estimation of the pipe
size [22], and prevention of timeouts due to lost retransmissions
(refer to Section 3.3.5). Unless otherwise specified, each data point
in the figures is an average of 10 samples using random seeds, and
each sample is run for 300s.

3.4.1 TCP Friendliness
We introduce 20 flows between S0...19 and D0...19 with different

proportions of TCP and RCP flows, to study the impact of RCP on
existing TCP flows. We vary the number of RCP flows from 0 to 20
(the others are TCP flows), and observe for each scenario the short-
term and long-term behaviors of all flows in the network. As shown
in Figure 4(a) and Figure 4(b), we plot the mean and coefficient of
variation of the per-flow throughput at different time instants after
the simulation starts. The coefficient of variation (CoV) is obtained
by dividing the standard deviation of the throughput by the mean
throughput [13]. Note that for clarity of presentation, the direc-
tion of the time-axis in Figure 4(b) is reversed. We can find from
both figures that the impact of introducing RCP flows on existing
TCP flows in terms of the throughput re-distribution is minimal, as
evident from the “flat” curve across different proportions of RCP
flows. Specifically, since CoV is an index of unfairness in the net-
work, it is clear from Figure 4(b) that TCP flows do not suffer from
unfairness in the presence of RCP flows. (Otherwise, CoV would
have increased with increasing number of RCP flows.)

To profile the robustness of the request mechanism used in RCP,
we consider a scenario where there is significant loss in the reverse
path. As indicated in Figure 3, we introduce 0 to 100 on/off UDP
flows in the reverse direction of the bottleneck link to emulate the
flash crowds (e.g. WWW-like traffic) in the Internet [13]. These
on/off flows generate traffic based on the Pareto distribution, where
the shape parameter is set to 1s, the mean idle time is set to 2s, the
mean burst time is set to 1s, and the data rate during the burst period
is set to 500Kbps. Such flash crowds introduce significant packet
drops (to ACK or REQ) in the reverse path. For example, with 100
on/off traffic sources, each of the TCP (or RCP) flows experiences
a packet drop rate of approximately 40% in the bottleneck link. We
introduce 20 RCP flows in the forward path, and compare the per-
flow throughput achieved against that of using 20 TCP flows. As
Figure 4(c) shows, despite the heavy losses in the reverse path, the
performance of RCP closely tracks that of TCP. This substantiates
our argument made in Section 3.3.1 that the design of the cumula-
tive request and the use of cyclic buffer help RCP tolerate losses in
the reverse path.

Thus far we have compared the performance of TCP and RCP
only in a wired environment. In the following, we consider a mo-
bile host with wireless access to the backbone network. As shown
in Figure 3, the wireless link between the mobile host MH and
the access point D0 has a bandwidth of 2Mbps, and access delay
of 15ms. It allows the mobile host to connect (using either TCP

T
hr

ou
gh

pu
t (

K
bp

s)

0
5

10
15

20Number of RCP Flows
1

10

100

Time (sec)

30

40

50

60

70

(a) Mean Throughput

C
oV

0
5

10
15

20Number of RCP Flows

1

10

100 Time (sec)

0

0.5

1

1.5

(b) CoV

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

Number of On/Off Traffic

TCP
RCP

(c) Reverse Path Loss

Figure 4: RCP is Friendly to TCP

or RCP) to the backlogged traffic source S0 for, say, file download.
We introduce random packet losses from 0.01% to 10% in the wire-
less link (in both directions), and use the achieved throughput and
power consumption at the mobile host to compare the performance
of the two protocols.

3.4.2 Intelligent Loss Recovery
Information from lower layers about the characteristics of the

wireless link allows the transport layer protocol to identify the cause
of losses, and hence to intelligently perform loss recovery. As we
discussed in Section 2.1.1, a key motivation for using receiver-
centric protocols at the mobile host is to avoid the feedback over-
heads and latency seen in sender-centric protocols, and to allow
more flexible layer coordination without being limited by the for-
mat of the packet header. While it is not the focus of this paper
to provide assorted instantiations of wireless-aware transport pro-
tocols leveraging such benefits, we use the following example to
show the performance gain achievable when the information used
for loss recovery is locally available.

Explicit loss notification (ELN) [3] has been proposed as a TCP
option that allows TCP to distinguish wireless random losses from
congestion losses. Mobile hosts, with or without the assistance
from the base station [3, 4], keep track of packet drops due to
wireless errors. When cumulative acknowledgments indicating the
packet lost due to wireless errors are generated, the ELN flag in the
packet header is set by the mobile host. Upon detecting a hole
with the ELN flag set, the TCP sender retransmits the lost segment
without cutting down its congestion window. As we can see in Fig-
ure 5(a), the performance of TCP improves substantially for loss
rates between 0.2% and 2% when ELN is used. However, when
the loss rate increases beyond 2%, the performance gain decreases
rapidly. This is because the ELN bit allows the sender to identify
only one wireless error, and hence when multiple wireless losses
occur in one round-trip time, ELN fails to provide the sender with
the necessary loss classification information, making the perfor-
mance of TCP-ELN degrade to that of vanilla TCP.

RCP with ELN, on the other hand, shows a much better per-
formance even when the loss rate is high. The primary reason is
that the wireless loss information maintained at the mobile host is
directly accessible to RCP. Hence RCP has accurate information
about the cause of losses for all holes in the receive buffer, which
allows it to recover from each loss intelligently. While it is possi-
ble to couple SACK with ELN, and redesign the TCP packet header
such that each un-SACKed segment has its own ELN flag, this ap-
proach in fact exposes the limitations of sender-centric protocols
that we mentioned earlier in this section. We note from Figure 5(a)

that even in the absence of ELN, RCP constantly achieves better
performance than TCP, with the performance gain increasing as the
packet error rate increases. The reason, as we discussed in Sec-
tion 3.3.5, is because loss recovery and resequencing in RCP are
collocated at the receiver. The effectiveness of the SACK blocks in
helping the TCP sender construct the bitmap of the receive buffer, is
impaired when both the data segments and ACKs suffer from high
loss rates (recall that we introduce random losses in both directions
of the wireless link).

3.4.3 Scalable Congestion Control
As we mentioned in Section 2.1.2, various congestion control

mechanisms have been proposed for use with different wireless en-
vironments. Until a unified congestion control framework is avail-
able, to achieve optimal performance, a mobile host needs to use
the congestion control mechanism designed for the specific wire-
less network it has access to. In sender-centric protocols, since con-
gestion control is implemented at the sender, the backbone server is
overloaded with supporting a plethora of congestion control mech-
anisms for all possible wireless networks mobile hosts might con-
nect from. In this section, we present how a receiver-centric trans-
port protocol like RCP can address this problem in a scalable way.

To start with, we consider a satellite environment with long prop-
agation delay and highly asymmetric links, compared to the terres-
trial wireless networks. The authors in [14] show that TCP (SACK)
fares badly in such an environment. They propose a new transport
protocol called STP (Satellite Transport Protocol) with improved
performance. However, STP is a sender-centric protocol like TCP,
and hence a mobile host using the satellite network to access the
backbone server, cannot use STP unless it is implemented in the
protocol stack of the concerned server. Now, by using the algorithm
presented in [14], and the technique of functionality transposition
discussed in Section 3.3, we transform STP into a receiver-centric
protocol called RCP-STP. By virtue of the simple sender design in
receiver-centric protocols, while STP uses a fundamentally differ-
ent congestion control algorithm from TCP, the RCP-STP sender
uses the same algorithm as the RCP sender. Hence, the backbone
server as an RCP sender can communicate with any mobile host
acting either as an RCP receiver, or as an RCP-STP receiver – de-
pending on the access network the mobile host uses.

We use the same network topology and scenario used in [14] for
evaluating the performance of STP, RCP-STP, TCP and RCP (RCP-
NewReno). Briefly, the network topology resembles the dumb-bell
topology in Figure 3 with the source (S0) and destination (D0) sep-
arated by a satellite link (link R1 −R2). The satellite link is the
bottleneck link with a bandwidth of 1.5Mbps, and propagation de-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.01 0.1 1 10

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Error Rate (%)

RCP (ELN)
TCP (ELN)
RCP
TCP

(a) Loss Recovery

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500 550

T
hr

ou
gh

pu
t (

M
bp

s)

RTT (ms)

RCP-STP
STP
RCP (RCP-NewReno)
TCP

(b) Congestion Control

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

P
ow

er
 (

W
)

TCP
RCP

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Mean Bad-State Duration (sec)

TCP
RCP

(c) Power Management

Figure 5: Performance of RCP

lay ranging from 50ms to 250ms. Link asymmetry is emulated
using backlogged TCP flows in the reverse direction. Four HTTP
traffic sources are introduced in each direction to emulate the back-
ground traffic. As evident from Figure 5(b), the NewReno style of
congestion control used in TCP (and RCP) does not perform well
in the satellite environment, while STP and RCP-STP achieve a
much better performance. We can make the following observations
from the results: (i) the performance difference between TCP and
STP substantiates the need to use network specific congestion con-
trol for achieving optimal performance; and (ii) the performance
difference between STP and RCP-STP reinforces the benefits of
receiver-centric protocols over sender-centric ones.

3.4.4 Efficient Power Management
We now show the performance of RCP in terms of facilitating

power management at the mobile host. As we described in Sec-
tion 2.1.3, when the channel condition is severe, it is not energy-
efficient for a mobile host to persevere with persistent retransmis-
sions. Since the mobile host is an end-point of the wireless last-
hop, it is aware of the channel condition (via, say, measuring the
signal strength in the received packets or beacons from the access
point). Upon detecting a hostile channel state, the mobile host can
save the battery power by reducing the amount of data in transit or
refraining from transmissions. However, note that while significant
energy savings can be achieved by operating the wireless interface
card in the sleep mode, doing so without the sender being aware of
such energy-conserving tactics may cause adverse reactions at the
sender and cause performance degradation [19]. A receiver-centric
protocol such as RCP does not have this problem since the mobile
host has full control over how much data the sender should send.

To evaluate the performance benefits in power consumption, we
use the IEEE 802.11b wireless card as a case study. The IEEE
802.11b card consumes 1.65W, 1.4W, and 0.045W when operated
in the transmit, receive, and sleep modes respectively [19, 28]. We
consider a two-state Markov error model for varying the channel
condition of the wireless link [2]. The packet error rate in the good
state is set to 0.01% and that in the bad state is set to 10% (for deep
fades). The mean duration of the good state is set to 10s, while that
of the bad state varies from 1s to 10s depending on the scenario.
We assume an energy-frugal mobile host that enters the sleep mode
whenever it detects the channel is in the bad state. Once in the
sleep mode, all data transmissions and receptions are suspended
(hence all packets in transit that arrive during this period are lost).
The mobile host wakes up periodically every 100ms to listen to the
beacons from the access point [16], during which it also measures
the channel state using the received signal strength. The duration

of the beacon is 2ms, and the power consumed for receiving the
beacon is based on the value assumed for the receive mode. Once
the mobile host decides that the channel is in the good state, it de-
freezes and resumes data transmission as usual.

Figure 5(c) compares the performance of RCP and TCP in terms
of power consumption and achieved throughput when the mean du-
ration of the bad state varies from 1s to 10s. We assume that the
sender is unaware of the channel state, and hence when TCP is
used, the mobile host receives data and transmits ACKs irrespec-
tive of the channel state. On the other hand, when RCP is used,
the mobile host enters and leaves the sleep mode as mentioned be-
fore. The mobile host freezes the RCP timer when it enters the
sleep mode. When it wakes up, RCP resumes data request based
on the state (holes) of the receive buffer. As expected, the longer
the mobile host stays in the sleep mode, the more energy savings it
can achieve using RCP. While the energy savings are obvious, Fig-
ure 5(c) also shows an interesting result that compares the achieved
throughput between TCP and RCP. Since the mobile host suspends
all packet transmissions and receptions in the sleep mode, it obvi-
ously suffers from throughput loss in terms of giving up the data in
transit and giving up the time to use the channel. However, for var-
ious conditions of the channel state, the throughput achieved using
RCP is in fact no less than that when using TCP. The reason that
TCP suffers from a more pronounced performance degradation is
due to the adverse reaction of the congestion control mechanism in
the presence of severe packet losses.

4. R2CP: RADIAL RCP
We have shown in Section 3 that a receiver-centric transport pro-

tocol like RCP has performance gains over a sender-centric one, in
terms of intelligent loss recovery, scalable congestion control, and
efficient power management. However, the recent trends where
mobile hosts are increasingly equipped with heterogeneous wire-
less interfaces, have severely exposed the limitations of the func-
tionalities provided by existing transport protocols. Specifically, as
we discussed in Section 2.2, when a mobile host handoffs from one
interface to another during a live connection, it can benefit from the
following functionalities the transport protocol supports: (i) seam-
less handoffs without relying on infrastructure support, (ii) server
migration for achieving service continuity, and (iii) bandwidth ag-
gregation using multiple active interfaces.

In the following, we present how a multi-state extension of RCP
at the receiver called R2CP can achieve the desired functionalities,
without the requirement of changing the senders. We first discuss
the design motivation of the R2CP protocol, and then present the ar-

chitectural overview and protocol details. Finally, we demonstrate
the functionality gains achievable in R2CP using network simula-
tion and testbed emulation.

4.1 Design

4.1.1 Receiver-Centric Operation
To achieve optimal performance, a mobile host may need to

use network (or interface) specific congestion control. When the
mobile host is equipped with heterogeneous wireless interfaces, a
receiver-centric protocol allows it to freely use the desired conges-
tion control mechanism depending on the interface it chooses, or
the access network it migrates to, without involving the remote
server. In addition, during periods of mobility, the mobile host may
need to handoff from one server to another (for service continu-
ity), or change the number of servers it connects to (for bandwidth
aggregation). It is thus advantageous for the mobile host to use a
receiver-centric protocol with a simple sender design, allowing the
mobile host to have control over the reliable delivery of data from
the sender(s). RCP, being a receiver-centric protocol that allows
the mobile host to drive the protocol operation such as congestion
control and reliability, hence turns out to be an ideal protocol for
the target environment.

4.1.2 Maintaining Multiple States
Existing transport protocols suffer from performance degrada-

tion during handoffs across heterogeneous networks due to the pro-
longed handoff latency Mobile IP introduces. While end-to-end
host mobility without relying on the support from the infrastructure
has been proposed [32], it does not fully address this problem due
to the single-state design in TCP that maintains only one TCB [25]
per connection. When link layer handoffs invalidate the state main-
tained at the transport layer (e.g. due to the change in IP addresses),
the transport layer protocol needs to modify its state accordingly for
achieving transport layer mobility. Although [32] intelligently per-
forms connection migration, it introduces packet losses by “over-
writing” the old state right after the new one is created. An ideal so-
lution for achieving state migration, however, should allow the two
states to co-exist in the connection for as long as it takes to hand-
off the states (considering packets in transit). Therefore, to support
transparent host mobility without infrastructure support, a transport
layer protocol should be able to handle multiple states. We hence
build R2CP as a multi-state extension of RCP. R2CP dynamically
creates and deletes RCP states according to the number of active
interfaces in use. It effectively maintains multiple states at the mo-
bile host without requiring explicit support from the remote server.
No change is necessary at the RCP sender to support the multi-
state operation at the receiver. R2CP thus is different from related
approaches [15, 26] that require changing both ends to support the
multi-state operation. Since R2CP is a receiver-only extension of
RCP, it allows the mobile host to establish a multipoint-to-point
connection to communicate with multiple servers, while in related
work multiple states are confined to within a unicast connection.

4.1.3 Decoupling of Functionalities
An R2CP connection with k active interfaces consists of k states

at the receiver. Effectively, R2CP maintains one RCP pipe per
end-to-end path that exists between the receiver and the sender(s).
R2CP minimizes the overheads due to maintaining multiple states
in a connection, by decoupling the transport layer functionalities
associated with the per-pipe characteristics from those that pertain
to the aggregate connection. For example, congestion control, be-
ing a per-pipe functionality, is handled by individual RCP pipes.

������� � �	��
 � ��

� �

� � � ����� � � � �
� � � � � � � � � � ��� � � � � � �

! � � "
� � � �

� � � ����# � � � � �

$ %�& '($) * %

$ + , - . $ % , /) - . 0 1 * -�1 *

! � � # 23�

465��87 9 :��	:�� ;<:�9 =

4?> 5@�87 :�
�A��
�:�=

B) C '<) C D
$ & C�E

-�% C ') C D
&�, *) / %

$ % , / F B 1 G G % $

�H����� � �	��
 � ��

� �

$ %�& '($) * %

$, - . $ %�, /) - . 0	1 * - 1 *

4H5��I7 J<:�
�K�:�9 =

L % C ' F B 1 G G % $

Figure 6: R2CP Architecture

On the other hand, reliability and socket buffer management per-
tain to the aggregate connection, and hence are handled by R2CP
itself. Therefore, the R2CP engine controls what data to request
from each sender, and individual RCP pipes control how much data
it can request along its path. The overheads due to repetitive imple-
mentations of transport layer functionalities are minimized.

4.1.4 Effective Packet Scheduling
A key challenge in maintaining multiple states in a connection

is the effective multiplexing of pipes with mismatched character-
istics in terms of bandwidths, delays, and loss rates. Specifically,
since R2CP uses multiple RCP pipes across heterogeneous inter-
faces to request data from one or multiple senders, data segments
with smaller sequence numbers traversing the slower pipes may ar-
rive later than those with larger sequence numbers traversing the
faster pipes. Out-of-order arrivals at the receive buffer thus may
cause head-of-line blocking and make the aggregate connection
stall. R2CP achieves effective multiplexing and bandwidth aggre-
gation by scheduling transmissions (requests) based on the conges-
tion window and the round-trip time of each RCP pipe. Briefly,
R2CP assigns the sequence of requests to each RCP pipe based on
the (estimated) time the requested segment will arrive through the
concerned pipe. Moreover, a request is assigned to an RCP pipe
only when there is space in its congestion window. Any loss de-
tected by individual RCP pipes is reported to R2CP such that the
corresponding request is reassigned to another pipe that has space
in its window, to prevent the aggregate connection from stalling.
Hence, head-of-line blocking due to segment losses, and bandwidth
or delay mismatches of individual pipes is minimized.

4.2 Overview
Figure 6 presents an architectural overview of R2CP and its key

data structures. An R2CP connection consists of one receiver, and
one or multiple senders. Different senders of an R2CP connection
can be located at one or multiple hosts. While a unicast R2CP
connection is in fact equivalent to an RCP connection, a multipoint-
to-point R2CP connection can be considered as an aggregation of
multiple RCP connections whose receiving ends are coordinated by
an R2CP engine at the receiver using the interface functions shown
in the figure. We refer to the virtual connections that exist between
the R2CP receiver and individual senders as RCP pipes, and focus
on the receiver for the following discussions.

When the application at the mobile host opens an R2CP connec-
tion, initially one RCP pipe is created between the active interface
and the remote server. When the mobile host handoffs from one
interface to another, a new RCP pipe between the newly active in-
terface and the server is created, after which the old RCP pipe is
deleted. However, if bandwidth aggregation is possible (the old in-

terface remains active after handoffs) and desirable (instructed by
the application through a socket option), the old pipe is not deleted.
If server migration is required when the mobile host handoffs to the
new interface, the new RCP pipe is created between the newly ac-
tive interface and the new server. The application can use a socket
option to convey the address of the new server to R2CP.

Whenever multiple RCP pipes co-exist in an R2CP connection,
the R2CP engine performs transmission scheduling using the data
structures shown in Figure 6, to minimize out-of-order arrivals due
to data requested through different RCP pipes. Since multiple RCP
pipes collaboratively request data for the same connection, it is pos-
sible that data requested through individual pipes is non-contiguous,
depending on the transmission schedule used by the R2CP engine.
Hence, in R2CP the request is always transmitted in the pull mode
(refer to Section 3.3.1), such that the sender can transmit only the
data requested. However, to facilitate loss detection and loss re-
covery, at the receiver each RCP pipe internally maintains a local
sequence number space. Since the R2CP engine controls the packet
I/O (to and from the IP layer), it converts the local sequence num-
ber used by each RCP pipe to the global sequence number used by
the aggregate connection before sending out the packet, and vice
versa. We discuss in Section 4.3.1 how the conversion is achieved.

4.3 Protocol
In this section, we describe the key protocol functionalities in

R2CP including scheduling, connection management, congestion
control, flow control, and reliability.

4.3.1 Scheduling
A key functionality in R2CP is to perform packet scheduling

across multiple RCP pipes. R2CP (the R2CP engine) maintains
the following four key data structures for achieving this goal:

• binding: For each request sent out by one of the RCP pipes,
R2CP maintains the mapping between the local sequence
number of the concerned RCP pipe, and the global sequence
number of the aggregate connection in the binding data struc-
ture. The pipe through which the data segment is requested
is also recorded in the binding data structure.

• pending: The ranges of sequence numbers for data yet to be
requested are maintained in the pending data structure. It
consists of the sequence numbers of data segments that need
to be retransmitted (requested again), and sequence numbers
greater than the highest sequence number requested so far.

• rank: For every outstanding request for segment i (one with
starting sequence number i) sent by pipe j, an element is
inserted into the rank data structure with a timestamp of
T i +2∗RT Tj , where T i is the time at which the request was
transmitted, and RT Tj is the round-trip time of pipe j. The
timestamp is reflective of the time the data segment requested
in response to the arrival of segment i, is expected to arrive.

• active: When an RCP pipe issues a request to R2CP for
transmission, R2CP can return with FREEZE to the corre-
sponding RCP pipe due to unavailable space in the receive
buffer. In such an event, R2CP adds the concerned RCP pipe
to the active data structure. When any space is created in
the receive buffer, R2CP issues a resume() call to each of the
pipes in the active data structure.

We now explain how R2CP uses these data structures to perform
transmission scheduling and interacts with individual RCP pipes.
When pipe j uses the send() call with RCP sequence number s
for transmission request at time T , R2CP locates the rank k of the

request by comparing T + RT Tj with existing entries in the rank

data structure. Then it finds segment i as the kth segment to re-
quest in the pending data structure, updates the entry for segment
i in the binding data structure with (j, s), and inserts an entry
(i, T + 2∗RT Tj) in the rank data structure. Finally, it uses the se-
quence number i in the request header, and sends out the request.
When a data segment m arrives, R2CP deletes the corresponding
entry in the rank data structure, enqueues the data in the receive
buffer, finds the corresponding RCP pipe and its local sequence
number q based on the binding data structure, and passes q to the
corresponding RCP pipe using the recv() call. The concerned RCP
pipe then updates its states (e.g. congestion control parameters and
the next sequence number to send), and determines whether it can
send more requests or not. In case it can generate more requests, it
uses the send() interface with the next RCP sequence number for
transmission request as before.

Upon receiving the transmission request from any RCP pipe, if
there is no available space for more data in the receive buffer, R2CP
returns with FREEZE to freeze the concerned RCP pipe, and puts it
in the active data structure. If later any buffer space opens up
due to, say, the arrival of the head-of-line segment, R2CP uses the
resume() call to de-freeze all pipes in the active data structure.
Whenever an RCP pipe detects a loss, it uses the loss() call to in-
form R2CP. R2CP then unbinds the lost segment in the binding
data structure, inserts the sequence number in the pending data
structure, and deletes the corresponding entry from the rank data
structure. Whenever an RCP pipe updates its RTT estimate, it uses
the update() call to inform R2CP, which then updates the rank data
structure for pending requests pertaining to the concerned pipe.

4.3.2 Connection Management
When R2CP creates an RCP pipe, it uses the open() call to make

the RCP pipe start the connection setup procedure. The connection
setup procedure for each RCP pipe is discussed in Section 3.3.2.
When the RCP pipe is established, it uses the established() call to
notify R2CP. The R2CP connection is established when any of the
RCP pipe returns with the established() call. On the other hand,
when R2CP deletes an RCP pipe, it uses the close() call to make
the RCP pipe enter the closing handshake. When all RCP pipes
return with the closed() call, the R2CP connection is closed.

4.3.3 Congestion Control
Congestion control in an R2CP connection is performed on a per-

pipe basis, where each RCP pipe is responsible for controlling the
amount of data transferred through the respective path. R2CP de-
cides the congestion control mechanism to use for each wireless in-
terface by opening an appropriate RCP pipe (e.g. RCP-NewReno,
or RCP-STP as we discussed in Section 3.4.3). We assume the
choice as to which congestion control scheme to use for each in-
terface is an external decision, and is provided to R2CP through a
system configuration or a socket option.

4.3.4 Flow Control
Since R2CP has control over the receive buffer, it is responsible

for the flow control of the aggregate connection. R2CP freezes a
requesting RCP pipe if it finds that the number of outstanding data
is equal to the available buffer space. It de-freezes concerned pipes
through the resume() call when any space is created in the buffer.
The flow control mechanism for individual RCP pipes that we dis-
cuss in Section 3.3.4 will not kick in since they do not deal with the
actual data segments. Note that R2CP is also responsible for appro-
priately informing the senders about what data to purge using the
SEG.DEQ field in the RCP header that we discussed in Section 3.3.4.

��� � � � ����� 	
 � �

��� � � � ����� 	
 ���

������ �����

������ �����

��� � 	 � ����� � �

��� ! � " #

��� ! � " # #

$�%'&�()

$�%'&�(*

$+%+& (,

- . / 0�1 .�0�/'2+3�4 5 6 7�.�08�0�/ 9:7�1 5�;

8�0�/ 9:7�1 5<2

Figure 7: R2CP Testbed Scenario

4.3.5 Reliability
R2CP is primarily responsible for the reliable data transfer of the

aggregate connection. It achieves this goal by maintaining the bind-
ing information for all data segments. Once a segment is bound to a
particular RCP pipe, the concerned pipe will take over the respon-
sibility (since RCP is a reliable protocol). However, note that when
an RCP pipe detects a segment loss and reports to R2CP using the
loss() call, R2CP will unbind the corresponding data segment, and
delegate the reliable transfer of the lost segment to the next avail-
able pipe (according to the rank). While the original RCP pipe will
still strive to deliver the same segment (in terms of the RCP se-
quence number) via retransmissions, it will be assigned a different
data segment by R2CP.

4.4 Functionality Gains
In this section, we show the functionality gains when using R2CP

at a mobile host with heterogeneous wireless interfaces. We use
both network simulation and testbed emulation to present the re-
sults. While ns-2 has been popularly used for network simulation,
it can also be used as an emulator to interact with a live network.
The protocol object developed in ns-2 can tap into the device driver
of the interface card (of the host where ns-2 is running) to inject
real packets to the network. Packets received by the interface card
can also be dispatched to the target protocol object in ns-2. The
advantage of using emulation is that packets generated by the em-
ulator experience the same bandwidth fluctuations, round-trip time
variations, and losses as any other live traffic in a real network. This
is especially useful for evaluating the performance of the protocol
in an uncontrolled wireless environment. We use the testbed shown
in Figure 7 for performing emulation. The mobile host is an IBM
Thinkpad T-20 laptop, and the servers are Dell Optiplex GX110
desktops. The mobile host is equipped with two IEEE 802.11b
interfaces that allow it to connect to two WLANs belonging to dif-
ferent administrative domains (the two cards are associated with
different ESSIDs, and assigned different IP addresses). Server-I
and Server-II are replicated file servers. We also use simulation
with controlled parameters (e.g. bandwidth and round-trip time) to
show the performance of R2CP in various environments.

4.4.1 Seamless Handoffs
When mobile hosts handoff between heterogeneous wireless net-

works, a key challenge in supporting seamless handoffs is the prob-
lem associated with address change and prolonged registration de-
lay. Conventional approaches for performing vertical handoffs suf-
fer from connection disruptions due to this problem. As we ex-
plained in Section 4.1, the multi-state design in R2CP allows it to
open multiple connections (pipes) associated with the wireless in-

terfaces that become active during handoffs. By retaining the old
connection (for as long as the link layer supports) during the ini-
tial setup delay of the new connection, the application can continue
transmitting and receiving data from either or both interfaces with-
out being disrupted during handoffs.

We show in Figure 8(a) the testbed results when the mobile host
handoffs from one access network to another. The mobile host is
initially connected to Server-I through network A, and hence one
RCP pipe (RCP-1) is created in the R2CP connection. At t = 58s,
the mobile host decides to handoff to network B, so a second RCP
pipe (RCP-2) is created (using the new network address). How-
ever, as the figure shows, RCP-1 is not closed until t = 60s (a pre-
set value), and hence during t = 58s and t = 60s two pipes co-exist
in the connection to collaboratively deliver data for the application.
Even if there is some setup or ramp-up (e.g. due to slow start) de-
lay for the RCP-2 pipe, the existence of the RCP-1 pipe allows the
aggregate connection to continue progressing without being dis-
rupted. This is very different from related work that uses a single-
state transport protocol for handoffs. Since R2CP is a multi-state
transport protocol, it is capable of maintaining multiple (interface
specific) pipes effectively in a connection without suffering from
problems due to packet reordering or duplicates. Note that the re-
dundant striping technique proposed in [15] can also be used during
handoffs for achieving better performance.

4.4.2 Server Migration
A key difference between R2CP and other multi-state transport

protocols is the ability to support end-point handoffs in R2CP. By
virtue of its receiver-centric design, the sender does not maintain
any “hard” state (e.g. retransmission timers) of the connection.
Since the mobile host controls which data to receive from the sender,
handoffs from one server to another can be as simple as stop re-
questing data from the old server, and start from the new one. As
we described in Section 2.2.2, server migration involves interaction
between the transport layer and higher layer protocols. We focus
in this section on the ability of R2CP to facilitate server migration
given sufficient support from the higher layers, and hence motivate
its use as a valuable and effective building block for end-to-end
mobility support frameworks.

As Figure 7 shows, when the mobile host moves to network B,
it has access to a replicated server (Server-II). The end-to-end path
from the mobile host (using interface B) to Server-II has a shorter
round-trip time and a larger bandwidth, and hence the mobile host
decides to perform server migration from Server-I to Server-II. Ini-
tially, the R2CP connection creates an RCP pipe (RCP-1) using
network address A and the address of Server-I. When the mobile
host moves to network B, R2CP creates a new RCP pipe (RCP-3)
using network address B and the address of Server-II. Note that in
Figure 8(b) we also show a contrasting scenario where the mobile
host does not perform server migration, and hence the second RCP
pipe created (RCP-2) is between network address B and the address
of Server-I. After the new RCP pipe is established, the mobile host
requests data that has not been delivered by Server-I, instead of re-
questing from the first byte of the data.2 The difference between the
slopes of RCP-2 and RCP-3 indicates that RCP-3 provides a larger
bandwidth than RCP-2. Approaches used for achieving seamless
handoffs discussed in Section 4.4.1 can also be used for achieving
seamless server migration.

Based on the content of its receive buffer, R2CP may request
non-contiguous data from Server-II. Hence server migration using

2Note that the RCP sender on Server-II may need to purge from
its send buffer the data that is not required by the receiver, with or
without the application’s interaction.

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140

S
eq

ue
nc

e
N

um
be

r

Time (sec)

RCP-1 Stop

RCP-2 Start

RCP-1
RCP-2

5300

5400

5500

58 59 60 61

RCP-1 Stop

RCP-2 Start

(a) Seamless Handoffs

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

S
eq

ue
nc

e
N

um
be

r

Time (sec)

RCP-1

RCP-2

RCP-3

RCP-1
RCP-2
RCP-3

4800

5200

5600

6000

6400

57 58 59 60 61

RCP-1

RCP-2

RCP-3

(b) Server Migration

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

S
eq

ue
nc

e
N

um
be

r

Time (sec)

R2CP

RCP-1

RCP-2

(c) Bandwidth Aggregation

Figure 8: R2CP Testbed Results

R2CP does not not cause redundant transmissions compared to that
using only TCP (the TCP sender delivers only in-sequence data
stream). While support for selective pulling of data is provided
by some applications (e.g. HTTP 1.1 Range Requests), it can be
achieved in R2CP with no support from the server side application.

4.4.3 Bandwidth Aggregation
When a mobile host handoffs between heterogeneous wireless

networks, it is possible that the old connection remains active after
the handoff is complete. In such a case, it would be advantageous
for the mobile host to achieve aggregate bandwidths by simultane-
ously using both interfaces. Since R2CP allows multiple RCP pipes
to co-exist in one connection, and performs effective transmission
scheduling for striping across multiple pipes, a mobile host using
R2CP can easily achieve bandwidth aggregation if desired.

We first consider the testbed scenario shown in Figure 7. While
bandwidth aggregation can be achieved between the mobile host
and one server (point-to-point), we consider a scenario where the
two pipes connect to different servers (multipoint-to-point). The
mobile host opens the RCP-1/RCP-2 pipe between network address
A/B and the address of Server-I/Server-II respectively. However,
instead of closing the RCP-1 pipe after RCP-2 is established, the
mobile host keeps both pipes open during the period it is within
the coverage of both WLANs. As shown in Figure 8(c), R2CP can
achieve the aggregate bandwidth of the two pipes.

We now use simulation to evaluate the performance of R2CP in
achieving effective bandwidth aggregation under various network
conditions. We use a network topology similar to the testbed topol-
ogy shown in Figure 7. The mobile host opens two pipes to aggre-
gate bandwidths from different servers. We vary the characteristics
of the two paths, in terms of the bandwidth of the bottleneck link,
and the round-trip time of the entire path, to introduce bandwidth
mismatches and delay mismatches. We also introduce bandwidth
fluctuations by using on/off traffic sources as we described in Sec-
tion 3.4. We compare the performance of R2CP against the follow-
ing approaches: (i) Ideal: the ideal performance of bandwidth ag-
gregation, where the aggregate bandwidth equals the sum of band-
widths along the two pipes; (ii) APPS: an application layer striping
approach (similar to the one used in [15]), where the application
stripes across multiple RCP connections without using R2CP; and
(iii) R2CP-s: a simplified version of R2CP, where the data request
is assigned to individual pipes on a first-come-first-served basis
without considering the round-trip times.

Due to lack of space, we present only a subset of the perfor-
mance results in Figure 9. In Figure 9(a), we vary the bandwidth

of the two pipes such that the bandwidth of the first pipe is fixed at
4Mbps, while that of the second pipe varies from 1Mbps to 6Mbps.
We observe that both R2CP and R2CP-s achieve the ideal perfor-
mance irrespective of the bandwidth mismatches. The application
striping approach fails to achieve the desired performance for the
same reason explained in [15]. In Figure 9(b), we vary the round-
trip time of the two pipes such that the RTT of the first pipe is fixed
at 30ms, while that of the second pipe varies from 30ms to 210ms.
We find that while the performance of R2CP still closely tracks the
ideal performance, R2CP-s fails to scale when the RTT mismatch
increases beyond 3. The performance degradation of R2CP-s is
due to the scheduling used that does not take into consideration
the round-trip times of different pipes. While an FCFS style of
striping policy works well when the round-trip times of different
paths are comparable, as the RTT mismatches increase, it suffers
from frequent out-of-order arrivals. Due to the limited space in the
R2CP receive buffer, head-of-line blocking eventually triggers the
flow control of R2CP and causes the progression of the aggregate
connection to stall. We show in Figure 9(c) the percentage of pack-
ets that find the buffer 75% full upon arrivals, for three different
striping approaches. The reason for the non-performance of the ap-
plication striping approach is clear from the figure. While R2CP-s
manages to maintain a small queue size when the RTT mismatches
are small, the queue builds up noticeably as the RTT mismatches
increase. R2CP, on the other hand, achieves better performance
even with large RTT mismatches.

5. DISCUSSIONS
In this section, we first discuss the overheads and complexities

at the mobile host when using a receiver-centric transport protocol
like RCP. We then discuss several extensions for RCP when the
mobile host also acts as the sender, and when the traffic source is
not network-limited.

5.1 Mobile Host Overheads
A question that arises when moving the intelligence of the trans-

port protocol from the server to the mobile host is: would such
design demand a more sophisticated mobile host, or prove to be a
drain on the precious battery resource at the mobile host?

Note that RCP is designed for mobile hosts that use TCP as the
transport layer protocol. Since RCP is a receiver-clone of TCP, it
merely transposes various functionalities performed in TCP from
the sender to the receiver. As we showed in Figure 2, RCP does
not increase the complexity of the protocol. Since TCP is a du-
plex protocol, any implementation of the TCP protocol stack at the

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Pipe-2 Bandwidth (Mbps)

Ideal
R2CP
R2CP-s
APPS

(a) Bandwidth Mismatch

1

1.5

2

2.5

3

3.5

30 60 90 120 150 180 210

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Pipe-2 RTT (ms)

Ideal
R2CP
R2CP-s
APPS

(b) RTT Mismatch

0

2

4

6

8

10

12

30 60 90 120 150 180 210

O
ut

-o
f-

O
rd

er
 In

de
x

(%
)

Pipe-2 RTT (ms)

R2CP
R2CP-s
APPS

(c) Out-of-Order Index

Figure 9: Performance of R2CP Scheduling

mobile host already includes functionalities of both the sender and
the receiver, irrespective of whether the mobile host acts as a TCP
sender or receiver. Hence, in terms of the footprint, RCP does not
introduce any overhead at the mobile host. In terms of complexi-
ties, it is obvious that the mobile host performs more functionalities
as an RCP receiver than it does as a TCP receiver. However, in [7]
the authors study the processing overheads of the TCP/IP protocol
stack. They find that after a packet is dispatched to the target TCP
socket, the TCP sender uses 448 (CPU) instructions to process the
packet before sending it out, while the TCP receiver uses 421 in-
structions. Moreover, they find that after a packet is received by the
interface card, the protocol-specific processing overheads (includ-
ing TCP, IP, and ARP) for a 1460-byte packet constitute only 8% of
the total processing overheads – the majority being the data touch-
ing (memory copy) and operating system overheads. The authors
in [18] using packets of different sizes also make the same obser-
vation. Since the complexity of the RCP receiver is similar to that
of the TCP sender, it can be expected that the processing overheads
will increase only minimally when RCP is used at the mobile host.

In terms of energy consumption, since the mobile host performs
more functionalities, it is intuitive that the mobile host will con-
sume more power when acting as an RCP receiver (instead of a
TCP receiver). However, note that such difference in power con-
sumption exists only when the mobile host is transmitting or re-
ceiving packets (after which it will process the packet following
the state machine of the transport protocol in use). We use the fol-
lowing numbers to explain that the power consumed for transmit-
ting or receiving packets through the wireless interface significantly
outweighs the extra power consumed due to the increased compu-
tation required by RCP. For a laptop with a Pentium-III 800MHz
CPU, we measure the per-packet CPU cycles required for it to act
as a TCP sender and a TCP receiver respectively. On a Linux op-
erating system we find that the CPU cycles increase by about 5000
when the host is used as a TCP sender. Such extra CPU cycles
can be translated to additional CPU energy consumption of about
9.38µJ. When using an IEEE 802.11b wireless card to transmit or
receive a packet with a packet size of 1000 bytes, it consumes ap-
proximately 1.28mJ. Therefore, the per-packet energy consumption
increases by about 0.7% when performing the functionalities of a
TCP sender. We conclude that the increased energy consumption
does not noticeably decrease the time the mobile host can have to
transmit or receive data.

5.2 RCP Extensions
In Section 3 we present the RCP protocol by focusing on a sce-

nario where the mobile host acts as the receiver, and the application
used is backlogged (network-limited). We now briefly discuss the
operations and extensions of RCP when used in other scenarios.

5.2.1 Upstream Traffic
While mobile hosts predominantly consume data retrieved from

the backbone server, it is possible that they also need to upload data
to the backbone server. In such a scenario, the mobile host has the
following two options: (i) Use RCP for Upstream Traffic: Note that
RCP is a duplex protocol like TCP, and hence the mobile host can
use RCP to send or receive data. When uploading data to the server,
the mobile host acts the RCP sender, and the server acts as the RCP
receiver. While this option simplifies the design of the protocol, the
performance and functionality gains that we discussed in Section 2
would not apply in such a scenario. (ii) Use TCP for Upstream
Traffic: A duality exists between TCP and RCP for upstream and
downstream traffic. As a data source, the mobile host can control
how much and what data to send by using TCP. Therefore, using
TCP for upstream traffic has the same advantages as using RCP for
downstream traffic.

Seemingly, one solution for the mobile host to handle traffic in
both directions is to implement both TCP and RCP. However, being
a TCP clone, RCP can reuse many algorithms already implemented
in TCP, such as congestion control and resequencing. We hasten to
add that an ideal transport protocol for mobile hosts with heteroge-
neous wireless interfaces is one that is transpositional, with TCP
and RCP standing at both ends of the spectrum. A transpositional
transport protocol can dynamically redistribute the functionalities
of the protocol to the sender or the receiver depending on, say, the
direction of the traffic or the capability of the device. Note that
such a transpositional protocol does not need to actually “move”
the codes between the sender and the receiver, but simply changes
the data path and/or control path in the protocol stack.

5.2.2 Application-Limited Traffic
In Section 3 we assume that the sender always has data available

in the send buffer for the receiver to consume. However, it is pos-
sible that the application used is data-limited (e.g. telnet), or the
sender needs to perform reverse flow control against the receiver
due to its processing limit.3 In these cases, like TCP, the sender
can explicitly advertise flow control to throttle the amount of re-
quests issued by the receiver. When the RCP receiver hits the limit

3However, note that an RCP sender is simpler than a TCP sender.
A server running RCP thus can service more users than a server
running TCP, if the bottleneck is the processing power.

imposed by the sender, it will enter the persist mode as in TCP [39].
Afterward, it can periodically probe the sender for request permis-
sions, or wait for the explicit window update from the sender. Such
flow control can also be used to notify the receiver when there is no
more data to send at the sender.

5.2.3 Rate-Controlled Traffic
While we have consciously positioned RCP as a TCP clone that

uses the window based congestion control, it is possible to extend
RCP for traffic sources that need rate control. For example, the
sender can maintain a send timer to control the rate at which it
can burst out data. The send rate will be provided by the receiver
through its congestion control mechanism. Note that since the re-
ceiver has control over the reliability mechanism of the protocol,
it can switch between reliable (TCP-like) or unreliable (UDP-like)
data delivery without changing the semantics at the sender. Our
ongoing work also includes building R2CP atop a reliable proto-
col such as RCP for streaming applications where prompt delivery,
instead of reliable delivery, is more desirable. Using RCP to sup-
port an application that does not require full reliability is possible,
as a retransmission in an RCP pipe does not necessarily mean a
retransmission of the same application data.

6. RELATED WORK
While sender-centric approaches have prevalently been adopted

in the design of transport layer protocols, a considerable amount of
work has also focused on increasing receiver participation (com-
pared to TCP) in the protocol operation. In the following, we dis-
cuss several related work that leverages the existence of the receiver
for improving the performance and functionality of the protocol.

In [8], the authors propose a transport protocol called NETBLT
for achieving high throughput performance in bulk data transmis-
sion. While NETBLT is in fact a sender-centric protocol, an inter-
esting design is the relocation of the retransmission timer from the
sender to the receiver. The authors contend that since the receiver
knows which packet has been received and which has not, un-
necessary retransmissions can be eliminated when timeout occurs.
However, in NETBLT the sender is still predominantly responsible
for performing loss recovery, and hence the receiver needs to use
SACK for conveying other losses to the sender. WTCP, proposed
in [30], is an example that uses the receiver for performing conges-
tion control. The WTCP receiver calculates the rate at which the
sender can send, based on the inter-packet delay of received pack-
ets. By maintaining the history of packet losses, the receiver can
intelligently distinguish between the congestion losses and corrup-
tion losses, and adjust the send rate accordingly. While the receiver
does control the send rate, WTCP is not a fully receiver-centric
transport protocol. Reliability is still the role of the sender, and
hence the receiver needs to periodically send back ACKs (CACK
and SACK) to inform the sender of its buffer state. Other rate-based
transport protocols such as TFRC [13] and TCP-Real [38] also use
the receiver for tracking loss events or achieving better loss identifi-
cation. Still, the functionality of the receiver is limited to providing
a more accurate feedback or estimation of the transmission rate that
the sender can use.

In [12], the authors propose a receiver-driven transport protocol
called WebTP for optimizing the performance of Web data trans-
fer. WebTP follows the request/response model used in HTTP,
where the connection is initiated, controlled, and terminated by
requests from the receiver and responses from the sender. Like
RCP, WebTP is a fully receiver-centric transport protocol where
the receiver is responsible for flow control, congestion control, and
reliability, while the sender merely transmits whatever packet the

receiver requests. However, since WebTP is primarily designed
for the wired environment, it does not address the issue of request
losses, which RCP handles through the use of the cumulative mode
and the cyclic buffer as we discussed in Section 3.3.1. Moreover,
while WebTP also follows the congestion control algorithms used
in TCP, it employs a different timeout detection mechanism based
on the packet inter-arrival times, and it does not cut down the con-
gestion window in response to the detection of three out-of-order
arrivals. It has been shown in [12] that WebTP is in fact more ag-
gressive than TCP, whereas RCP is friendly to TCP as shown in
Figure 4. Unlike RCP, the design of WebTP is closely coupled to
the target application. WebTP processes the application data unit
(ADU) directly, and performs reliability and priority control at the
ADU level. Nonetheless, WebTP does make a case for using HTTP
atop a receiver-centric transport protocol to address the inefficien-
cies associated with the use of a sender-centric protocol like TCP.

Finally, in [33], the authors consider receiver-based management
of low bandwidth access links. They observe that since the mo-
bile host increasingly tends to maintain several concurrent con-
nections across the bandwidth-limited access link, it is important
to prioritize connections depending on the type of the application
used (e.g. an interactive application has a higher priority than file
download). Since the mobile host is aware of the bandwidth of the
access link and the relative importance of different connections, a
receiver-based approach is ideal for bandwidth management. How-
ever, using TCP, the mobile host in the proposed approach needs to
override the advertised window to indirectly control (through the
server) the bandwidth used by different connections. We note that
if RCP is used, such bandwidth management can be achieved at the
mobile host without involving the server or changing the advertised
window. The authors in [24] also consider a similar problem of
sharing the bandwidth of the wireless last-hop among multiple TCP
flows. The proposed approach adjusts the bandwidth share of each
TCP flow by manipulating the round-trip time as well as the ad-
vertised window. While the use of RTTs allows more flexibility in
controlling the per-flow bandwidth share, it requires the receiver to
perform RTT estimation (already implemented at the sender side),
and to artificially inflate RTTs by using delayed ACKs. It is obvious
that a receiver-centric transport protocol like RCP can support such
receiver-based bandwidth allocation better than TCP.

7. CONCLUSIONS
In this paper, we present a receiver-centric protocol called RCP

that is a TCP clone in its general behavior. We show that for mo-
bile hosts in wireless networks, RCP allows better loss recovery,
congestion control, and power management mechanisms compared
to a sender-centric transport protocol like TCP. More importantly,
in the context of recent trends where mobile hosts are increasingly
being equipped with multiple interfaces providing access to hetero-
geneous wireless networks, we show that RCP enables a powerful
and comprehensive transport layer solution for such multi-homed
hosts, including the ability to (i) enjoy seamless handoffs, (ii) use
network specific congestion control schemes, (iii) facilitate server
migration, and (iv) achieve flexible bandwidth aggregation. We use
both packet level simulations, and real Internet experiments to eval-
uate the proposed protocol.

8. REFERENCES
[1] Akamai Technologies. Akamai Accelerated Network

Program. http://www.akamai.com.
[2] B. Bakshi, P. Krishna, N. Vaidya, and D. Pradhan. Improving

performance of TCP over wireless networks. In Proceedings
of IEEE ICDCS, Baltimore, MD, USA, May 1997.

[3] H. Balakrishnan, V. Padmanabhan, S. Seshana, and R. Katz.
A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM Transactions on
Networking, 5(6):756–769, Dec. 1997.

[4] S. Biaz and N. Vaidya. Discriminating congestion losses
from wireless losses using inter-arrival times at the receiver.
In Proceedings of IEEE ASSET, Richardson, TX, USA, Mar.
1999.

[5] E. Blanton, M. Allman, K. Fall, and L. Wang. A conservative
SACK-based loss recovery algorithm for TCP. IETF Internet
Draft; draft-allman-tcp-sack-13.txt, Oct. 2002.

[6] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly & Associates, Sebastopol, CA, USA, Dec. 2002.

[7] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
analysis of TCP processing overhead. IEEE Communications
Magazine, 27(6):23–39, June 1989.

[8] D. Clark, M. Lambert, and L. Zhang. NETBLT: A high
throughput transport protocol. In Proceedings of ACM
SIGCOMM, Stowe, VT, USA, Aug. 1987.

[9] ETSI. BRAN; HIPERLAN/2; Requirements and Architecture
for Internetworking between HIPERLAN/2 and 3rd
Generation Cellular Systems. TR 101 957, Aug. 2001.

[10] S. Floyd and T. Henderson. The NewReno modification to
TCP’s fast recovery algorithm. IETF RFC 2582, Apr. 1999.

[11] T. Goff, J. Moronski, and D. Phatak. Freeze-TCP: A true
end-to-end TCP enhancement mechanism for mobile
environments. In Proceedings of IEEE INFOCOM, Tel-Aviv,
Israel, Mar. 2000.

[12] R. Gupta, M. Chen, S. McCanne, and J. Walrand. A
receiver-driven transport protocol for the web. In
Proceedings of INFORMS Telecommunications Conference,
Boca Raton, FL, USA, Mar. 2000.

[13] M. Handley, S. Floyd, J. Pahdye, and J. Widmer.
Equation-based congestion control for unicast applications.
In Proceedings of ACM SIGCOMM, Stockholm, Sweden,
Aug. 2000.

[14] T. Henderson and R. Katz. Satellite transport protocol (STP):
An SSCOP-based transport protocol for datagram satellite
networks. In Proceedings of Workshop on Satellite-Based
Information Services, Budapest, Hungary, Oct. 1997.

[15] H.-Y. Hsieh and R. Sivakumar. A transport layer approach
for achieving aggregate bandwidths on multi-homed mobile
hosts. In Proceedings of ACM MOBICOM, Atlanta, GA,
USA, Sept. 2002.

[16] IEEE. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. ANSI/IEEE Standard
802.11, Aug. 1999.

[17] V. Jacobson, R. Braden, and D. Borman. TCP extensions for
high performance. IETF RFC 1323, May 1992.

[18] J. Kay and J. Pasquale. Profiling and reducing processing
overheads in TCP/IP. IEEE/ACM Transactions on
Networking, 4(6):817–828, Dec. 1996.

[19] R. Krashinsky and H. Balakrishnan. Minimizing energy for
wireless web access with bounded slowdown. In Proceedings
of ACM MOBICOM, Atlanta, GA, USA, Sept. 2002.

[20] L. Magalhaes and R. Kravets. Transport level mechanisms
for bandwidth aggregation on mobile hosts. In Proceedings
of IEEE ICNP, Riverside, CA USA, Nov. 2001.

[21] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang.
TCP-Westwood: Bandwidth estimation for enhanced
transport over wireless links. In Proceedings of ACM

MOBICOM, Rome, Italy, July 2001.
[22] M. Mathis and J. Mahdavi. Forward acknowledgement:

Refining TCP congestion control. In Proceedings of ACM
SIGCOMM, Palo Alto, CA, USA, Aug. 1996.

[23] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
selective acknowledgement options. IETF RFC 2018, Oct.
1996.

[24] P. Mehra, C. De Vleeschouwer, and A. Zakhor.
Receiver-driven bandwidth sharing for TCP. In Proceedings
of IEEE INFOCOM, San Francisco, CA, USA, Apr. 2003.

[25] J. Postel. Transmission control protocol. IETF RFC 793,
Sept. 1981.

[26] M. Riegel and M. Tuexen. Mobile SCTP. IETF Internet
Draft; draft-riegel-tuexen-mobile-sctp-02.txt, Feb. 2003.

[27] A. Sanmateu, L. Morand, E. Bustos, S. Tessier, F. Paint, and
A. Sollund. Using Mobile IP for provision of seamless
handoff between heterogeneous access networks, or how a
network can support the always-on concept. In Proceedings
of EURESCOM Summit, Heidelberg, Germany, Nov. 2001.

[28] T. Simunic, L. Benini, P. Glynn, and G. De Micheli.
Dynamic power management for portable systems. In
Proceedings of ACM MOBICOM, Boston, MA, USA, Aug.
2000.

[29] H. Singh and S. Singh. Energy consumption of TCP Reno,
Newreno, and SACK in multi-hop wireless networks. In
Proceedings of ACM SIGMETRICS, Marina Del Rey, CA,
USA, June 2002.

[30] P. Sinha, N. Venkitaraman, R. Sivakumar, and
V. Bharghavan. WTCP: A reliable transport protocol for
wireless wide-area networks. In Proceedings of ACM
MOBICOM, Seattle, WA, USA, Aug. 1999.

[31] A. Snoeren, D. Andersen, and H. Balakrishnan. Fine-grained
failover using connection migration. In Proceedings of
USENIX USITS, San Francisco, CA, USA, Mar. 2001.

[32] A. Snoeren and H. Balakrishnan. An end-to-end approach to
host mobility. In Proceedings of ACM MOBICOM, Boston,
MA, USA, Aug. 2000.

[33] N. Spring, M. Chesire, M. Berryman, V. Sahasranaman,
T. Anderson, and B. Bershad. Receiver based management of
low bandwidth access links. In Proceedings of IEEE
INFOCOM, Tel-Aviv, Israel, Mar. 2000.

[34] M. Stemm and R. Katz. Vertical handoffs in wireless overlay
networks. Mobile Networks and Applications (MONET),
3(4):335–350, 1998.

[35] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Connection migration for service continuity in the
Internet. In Proceedings of IEEE ICDCS, Vienna, Austria,
July 2002.

[36] The Network Simulator. ns-2. http://www.isi.edu/nsnam/ns.
[37] V. Tsaoussidis, H. Badr, X. Ge, and K. Pentikousis.

Energy/Throughput tradeoffs of TCP error control strategies.
In Proceedings of IEEE ISCC, Antibes, France, July 2000.

[38] V. Tsaoussidis and C. Zhang. TCP-Real: Receiver-oriented
congestion control. Computer Networks, 40(4):477–497,
Nov. 2002.

[39] G. Wright and W. Stevens. TCP/IP Illustrated, Volume 2.
Addison-Wesley Publishing Company, Reading, MA, USA,
Oct. 1997.

[40] M. Zorzi and R. Rao. Is TCP energy efficient? In
Proceedings of IEEE MoMuC, San Diego, CA, USA, Nov.
1999.

